Advanced Computer Graphics

Introduction to Ray Tracing

Matthias Teschner

Computer Science Department
University of Freiburg
Outline

- organization
- introduction
- concepts
- basic components
- syllabus
Course Goals

- ray tracing techniques
- photorealistic rendering
- global illumination techniques

requirements:
- key course in graphics and image processing
- C / C++
- basics in linear algebra
Contact

- Matthias Teschner
 052 / 01-005
teschner@informatik.uni-freiburg.de
Course Information

- key course
 - pattern recognition and computer graphics (rasterization-based rendering)

- specialization courses
 - advanced computer graphics (ray tracing)
 - simulation in computer graphics (animation)

- master project, lab course, Master thesis
 - tracks: particle fluids, raytracing
Material

- slide sets on http://cg.informatik.uni-freiburg.de/teaching.htm
Material

- Matt Pharr, Greg Humphreys
 Physically Based Rendering
 Morgan Kaufmann
 http://www.pbrt.org

- Kevin Suffern
 Ray Tracing from the Ground Up
 A K Peters
 http://www.raytracegroundup.com
Material

- Philip Dutre, Kavita Bala, Philippe Bekaert
 Advanced Global Illumination
 A K Peters
 http://www.advancedglobalillumination.com

- Peter Shirley, R. Keith Morley
 Realistic Ray Tracing
 A K Peters
Tutorials / Exercises

- every second Wednesday, starting on April 29
 - check web page for changes
- practical exercises
 - development of ray tracing components
 - check web page for information and example frameworks
Outline

- organization
- introduction
- concepts
- basic components
- syllabus
Ray Tracing - Concept

- tracing rays of light through a scene to compute the radiance that is perceived by a sensor
- tracing a path from a camera through a pixel position of a virtual image plane to compute the color of an object that is visible along the path

[Wikipedia: Ray Tracing]
Ray Tracing - Motivation

- light is modeled as geometric rays
 - travels in straight lines (e.g., no diffraction / bending)
 - travels at infinite speed (steady state of light is computed)
 - is emitted by light sources
 - is absorbed or scattered / reflected at surfaces

- radiance
 - characterizes strength and direction of radiation / light
 - is measured by sensors
 - is computed in computer-generated images
 - is preserved along lines in space
 - does not change with distance
Ray Tracing - Capabilities

- reflection
- refraction
- soft shadows
- caustics
- diffuse interreflections
- specular interreflections
- depth of field
- motion blur

[sean.seanie, www.flickr.com]
rendered with POVray 3.7
Photorealistic Rendering - History

- rasterization
 - 1965: rasterized lines (Bresenham)
 - 1967: rasterized flat-shaded polygons (Wylie)
 - 1971: Gouraud shading
 - 1973: Phong illumination model
 - 1974: texture mapping (Blinn)
 - 1974: depth buffer (Catmull)
 - 1975: Phong shading
 - 1977: shadow volumes (Crow)
 - 1978: shadow maps (Williams)
Photorealistic Rendering - History

- ray tracing
 - 1968: viewing and shadow rays, non-recursive (Appel)
- recursive ray tracing
 - 1980: ideal reflection, refraction (Whitted)
- rendering equation
 - 1986: general description of light distribution in a scene (Kajiya)
 - arbitrary global illumination effects can be considered
- distribution ray tracing
 - 1984: distributing the direction of rays (Cook)
 - 1986: Monte-Carlo evaluation of integrals (Cook)
 - approximately solves the rendering equation
Ray Tracing vs. Rasterization

- rasterization
 - given a set of viewing rays and a primitive, efficiently compute the subset of rays hitting the primitive
 - loop over all primitives
 - no explicit representation of rays

- ray tracing
 - given a viewing ray and a set of primitives, efficiently compute the subset of primitives hit by the ray
 - loop over all viewing rays
 - explicit representation of rays
Ray Tracing vs. Rasterization

- **rasterization**
 - simple and well-established algorithms
 - popular in interactive applications
 - efficient parallel processing of primitives and fragments
 - independent processing of primitives and fragments
does not account for global illumination effects, e.g. shadows and interreflections

- **ray tracing**
 - natural incorporation of numerous visual effects
 - no special algorithms for, e.g.,
 - shadows (additional geometry or additional rendering passes)
 - transparency (depth sorting)
 - trade-off between quality and performance
Ray Tracing - Challenges

- efficient ray shooting
 - ray shooting algorithms build spatial data structures to accelerate ray shooting queries
 - dynamic scenes are more challenging compared to static scenes

- optimal number of rays
 - per pixel
 - for antialiasing
 - at ray-object intersections
 - for interreflections
 - soft shadows
 - approximate evaluation of the rendering equation

- optimal recursion depth
Ray Tracing - Applications

- visual effects in movies and commercials
 - major software packages have built-in ray tracers, e.g. Maya, 3ds Max (Autodesk), Houdini (Side Effects Software)
- visualization of architectural design
 - consideration of realistic indoor and outdoor illumination
- automotive design
- flight and car simulators
- computer games
Ray Tracing - Software

- mental ray (NVIDIA ARC)
- Maxwell Render (Next Limit Technologies)
- Brazil (SplutterFish)
- Arnold (Solid Angle)
- POV-Ray
- Blender
- pbrt
Ray Tracing - Applications

- all images rendered with mental ray

Spiderman 3 (Columbia Pictures)
Bioshock 2 (Game trailer by Blur studio)
Ray Tracing - Applications

- all images rendered with mental ray

Mies van der Rohe Farnsworth House
(Artist Alessandro Prodan)

Delta Tracing

[www.mentalimages.com]
Ray Tracing - Applications

- all images rendered with mental ray

zerone cgi GmbH and Daimler AG

[www.mentalimages.com]
Ray Tracing - Applications

- video is rendered with mental ray
Ray Tracing - Applications

- video is rendered with mental ray
Ray Tracing - Applications
Ray Tracing - Applications
Outline

- organization
- introduction
- concepts
- basic components
- syllabus
Ray Tracing

- ray generation
- ray traversal
- intersection
- shading
- frame buffer

Viewing rays return a radiance value.
Shadow rays return an occlusion value.
Ray Tracing

Recursive Ray Tracing

- ray generation
- ray traversal
- intersection
- shading
- frame buffer

Viewing rays return a radiance value.
Shadow rays return an occlusion value.
Reflection and refraction rays return a radiance value.
Recursive Ray Tracing

Distribution Ray Tracing
(Stochastic Ray Tracing)

- generates more than one (randomly perturbed)
 - viewing ray per pixel
 - reflection / refraction ray at a surface point
 - shadow ray at a surface point

- examples
 - distributing shadow rays over an area light source for soft shadows
 - distributing reflection rays over a solid angle about the exact reflection direction to blur the reflection
 - perturbing ray origins per pixel to enable depth-of-field effects
 - distributing rays per pixel over time to get motion blur effects
 - distributing rays over the hemisphere of a surface point to capture the incident radiance at this point (Monte Carlo integration for solving the rendering equation)
Distribution Ray Tracing

Outline

- organization
- introduction
- concepts
- basic components
- syllabus
Components

- camera
 - generates viewing rays
- light distribution
 - location and radiant intensity of light sources
- ray-object intersection
 - with additional information, e.g. normal
- visibility
 - of light sources
- surface scattering model
 - describes how light interacts with a surface
- recursion
 - important for reflections on shiny surfaces
- ray propagation
 - variation of radiance in, e.g., fog or smoke
Camera

- a camera simulator generates viewing rays
- pinhole camera with a virtual image plane (near plane) in front of the pinhole
- pinhole is referred to as the eye
- for a position on the image, a camera simulator generates rays along which light is known to contribute to that position, e.g.
 - a ray from the eye through the image position
 - a ray that considers one or multiple lenses
Light Distribution

- determining the amount of light energy arriving at the differential area around the intersection point
- therefore, geometric and radiometric distribution of light has to be known
 - for emitted light from point light sources
 - for emitted light from area light sources
 - for reflected light for object surfaces
Ray-Object Intersection

- determine whether a ray intersects an object
- determine the first intersection (closest to the ray origin)
- determine further geometric information at the intersection, e.g.
 - surface normal
 - partial derivatives of position and normal with respect to the local surface parameterization
- efficient implementations heavily rely on spatial data structures
Visibility

- determine whether a light source is visible from a surface point to be shaded
- shadow rays are casted from the object to the light source
- if the distance to the first ray-object intersection along this ray is shorter than the distance to the light source, the surface point is in shadow
Surface Scattering

- computes the radiance scattered back along a viewing ray
- from previous components, we have
 - ray-object intersection and further geometric information
 - information on incident lighting
- we further know appearance properties, e.g.
 - a local illumination model
 - a Bidirectional Reflectance Distribution Function (BRDF)
 (how much light is reflected from an incoming direction to an outgoing direction)
Recursion

- recursively invoke the ray-tracing components if appropriate
- if, e.g., a viewing ray hits a mirror
 - the viewing ray can be reflected at the mirror
 - the ray-tracing routine is applied to the reflected ray
 - the resulting radiance is considered as additional illumination of the mirror
- to approximately solve the rendering equation,
 - various rays are generated that sample the hemisphere above the surface (Monte Carlo integration)
Ray Propagation

- can consider participating media, e.g., smoke, fog, dust
- in vacuum, radiance along a ray does not change
- in presence of participating media, light can be attenuated or extinguished by scattering it in different directions
- participating media can be characterized by its transmittance
Outline

- organization
- introduction
- concepts
- basic components
- syllabus
Course Topics

- aspects that affect efficiency and quality of the rendering
 - transformations
 - primitives
 - ray traversal / ray shooting
 - sampling / antialiasing
 - radiometric quantities
 - rendering equation
 - Monte Carlo integration