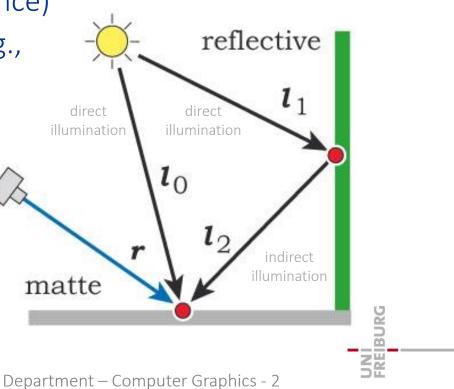
Advanced Computer Graphics Path Tracing

Matthias Teschner

Computer Science Department University of Freiburg

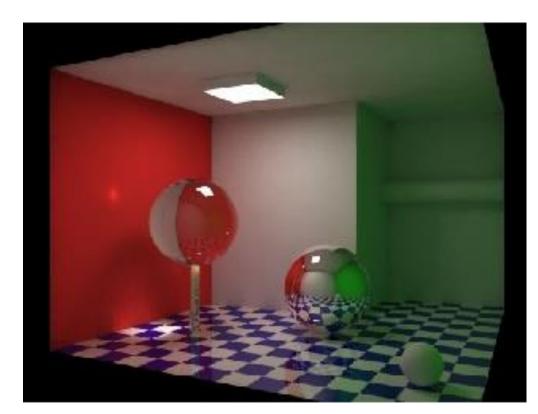
Albert-Ludwigs-Universität Freiburg


FREIBURG

Motivation

- global illumination tries to account for all light-transport mechanisms in a scene
 - considers direct and indirect illumination (emitted and reflected radiance)
 - allows for effects such as, e.g.,
 - interreflections

 (surfaces illuminate
 each other, potentially
 changing their colors)
 - caustics


 (reflected radiance from surfaces is focused at a scene point)

[Suffern]

Motivation

 caustics and color transfer / bleeding from red and green side walls, i.e. interreflections

http://www.cse.iitb.ac.in/~rhushabh/

Outline

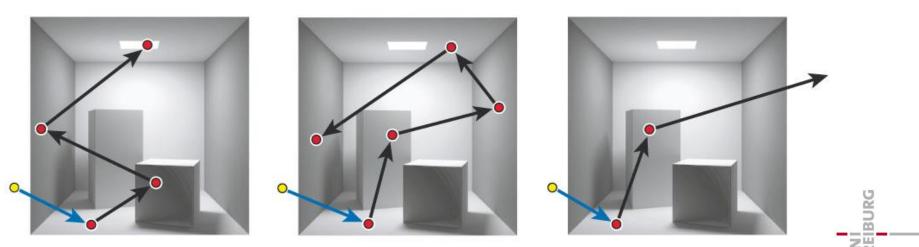
- path tracing
- brute-force path tracing
- direct illumination
- indirect illumination

Path Tracing - Concept

- generate light transport paths (a chain of rays) from visible surface points to light sources
 - rays are traced recursively until hitting a light source
- recursively evaluate the rendering equation along a path
- ray generation in a path is governed by light sources and BRDFs
- recursion depth is generally governed by the amount of radiance along a ray
- can distinguish direct and indirect illumination
 - direct: emitted radiance from light sources
 - indirect: reflected radiance from surfaces (and light sources)

UNI REIBURG

Path Tracing - Algorithm


- for a pixel p, a ray is cast from the eye through p into the scene
- at the hit point, the rendering equation is evaluated using Monte Carlo integration
- to approximate the incident radiance, rays are traced into random sample directions
- sample directions are chosen according to
 - cosine weighting of the incident radiance
 - BRDF
 - light sources
- this scheme is recursively applied as long as there is a significant amount of radiance transported along a ray

University of Freiburg – Computer Science Department – Computer Graphics - 6

BURG

Path Tracing - Illustration

- rays are recursively cast along a path to estimate the transported radiance
- recursion stops if
 - a light source is hit
 - a maximum depth / minimum radiance is reached
 - the ray leaves the scene / hits the background

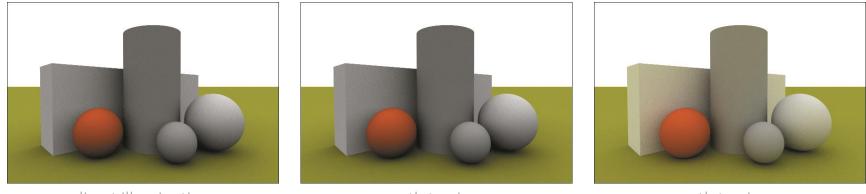
University of Freiburg – Computer Science Department – Computer Graphics - 7

[Suffern]

Outline

- path tracing
- brute-force path tracing
- direct illumination
- indirect illumination

Path Tracing - Brute Force

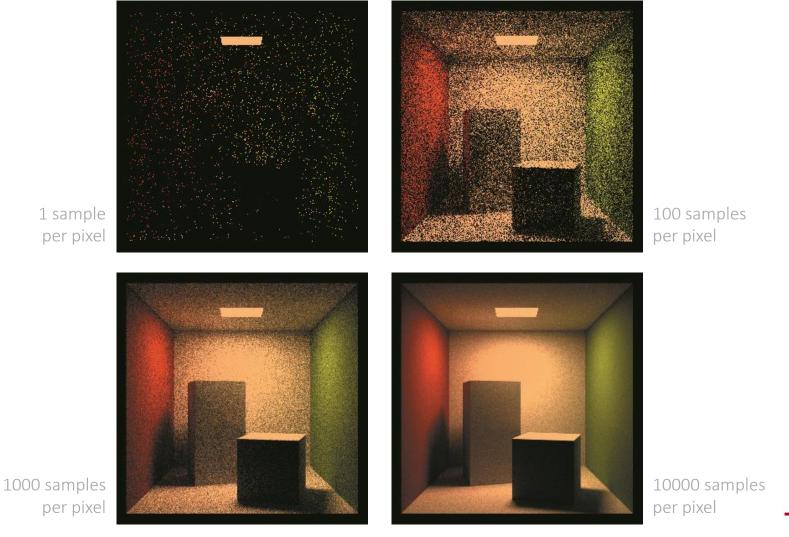

- emitted radiance is returned or reflected radiance at point p is computed $L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{2\pi^+} f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) \cos\theta_i d\omega_i$ therefore, rays are cast into the scene to compute the emitted radiance from point $r_c(p,\omega_i)$ $L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{2\pi^+} f_r(p,\omega_i,\omega_o) L_o(r_c(p,\omega_i),-\omega_i) \cos\theta_i d\omega_i$ using Monte Carlo $F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(p,\omega_i,\omega_o) L_o(r_c(p,\omega_i),-\omega_i) \cos \theta_i}{p(\omega_i)}$ if a path does not hit a light source, zero is returned
- if a path hits a light source, the emitted radiance is transported along the ray weighted with $\frac{f_r(p,\omega_i,\omega_o)\cos\theta_i}{p(\omega_i)}$ at each intersection point

Path Tracing - Recursion Depth

- depending on material properties
 - larger paths for specular / shorter paths for diffuse material
- depending on hemispherical-hemispherical reflectance
 - total reflection over the hemisphere due to illumination from the hemisphere
 - $\rho_{hh}(2\pi^+, 2\pi^+) = \frac{1}{\pi} \int_{2\pi^+} \int_{2\pi^+} f_r(\omega_i, \omega_o) \cos \theta_i \cos \theta_o d\omega_i d\omega_o$
- depending on the weight of the returned radiance
 - at each intersection point, returned radiance is weighted with $\frac{f_r(p,\omega_i,\omega_o)\cos\theta_i}{p(\omega_i)}$
 - this coefficient can be accumulated along a path
 - stop if the accumulated coefficient is below a threshold value

Path Tracing - Properties

- works with environment lights
- rather inefficient for area light sources as many paths return zero radiance
- does not work with point lights or directional light


direct illumination

path tracing one bounce

path tracing five bounces

Path Tracing - Results

University of Freiburg – Computer Science Department – Computer Graphics - 14

BURG

[Suffern]

Outline

- path tracing
- brute-force path tracing
- direct illumination
- indirect illumination

Motivation

- light sources dominate the illumination of surfaces and are rather small
- improved efficiency by explicitly sending rays to light sources
 - $L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{2\pi^+} f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) \cos\theta_i d\omega_i$

emitted radiance reflected radiance $L_o(p,\omega_o) = L_e(p,\omega_o) + L_r(p,\omega_o)$

- assumption
 - no emitted radiance for objects $L_e(p, \omega_o) = 0$ $L_r(p, \omega_o) > 0$ $L_e(p,\omega_o) > 0 \quad L_r(p,\omega_o) > 0$
 - for light sources

Motivation

for objects

 $L_o(p,\omega_o) = \int_{2\pi^+} f_r(p,\omega_i,\omega_o) (L_e(r_c(p,\omega_i),-\omega_i) + L_r(r_c(p,\omega_i),-\omega_i)) \cos\theta_i d\omega_i$

emitted radiance direct illumination

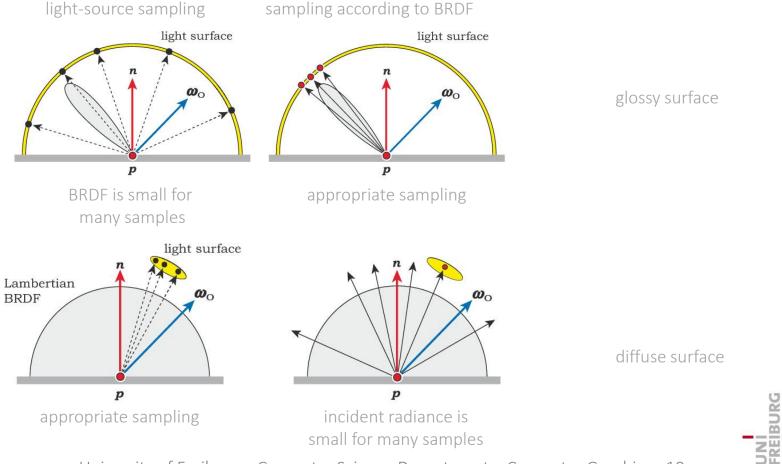
reflected radiance indirect illumination

 $L_o(p,\omega_o) = \int_{2\pi^+} f_r(p,\omega_i,\omega_o) L_r(r_c(p,\omega_i),-\omega_i) \cos\theta_i d\omega_i$

 $+\int_{2\pi^+} f_r(p,\omega_i,\omega_o) L_e(r_c(p,\omega_i),-\omega_i)\cos heta_i \mathrm{d}\omega_i$ zero for objects

this second term significantly contributes to L_o

 contribution of direct illumination is computed using the area form of the integral


 $L_o(p,\omega_o) = \int_{2\pi^+} f_r(p,\omega_i,\omega_o) L_r(r_c(p,\omega_i),-\omega_i) \cos\theta_i d\omega_i$ $+ \int_A f_r(p,\omega_i,\omega_o) L_e(p',-\omega_i) \frac{\cos\theta_i \cos\theta'}{||p'-p||^2} V(p,p') dA$

requires a sampling of the light sources

V represents the visibility of the light source, estimated by a shadow ray

Hemisphere vs. Area Form

preferred form depends on BRDF and light source

University of Freiburg – Computer Science Department – Computer Graphics - 18

[Suffern]

Hemisphere vs. Area Form

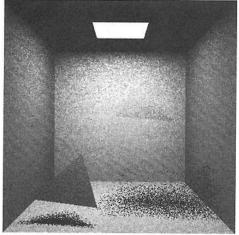
- both forms can be combined
 - area form with light-source sampling plus hemisphere form ignoring the emitted radiance
 - $L_o(p,\omega_o) = L_e(p,\omega_o) + L_r(p,\omega_o)$
 - area form considers $L_e(p, \omega_o)$
 - light source sampling excludes directions with $L_e(p,\omega_o)=0$
 - hemisphere form considers $L_r(p, \omega_o)$
 - $L_e(p, \omega_o)$ is ignored to guarantee that direct illumination is not considered twice

Result

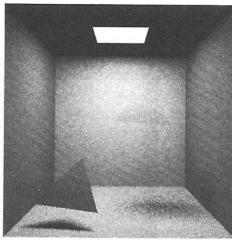
path tracing with one bounce
and 100 samples per pixel
for some pixels, no path hits
the light source
almost no soft shadows (requires
a minimum number of rays into
the direction of the light source)

path tracing with one bounce and 100 light source samples per pixel

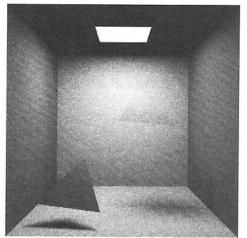
Light-Source Sampling

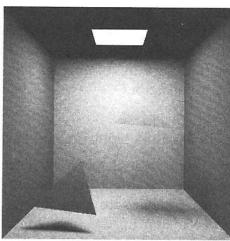

- point lights, spot lights, directional light
 - one sample
- area lights
 - estimator

 $L_{\text{direct}}(p,\omega_i) = \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{1}{p(p')} f_r(p,\omega_i,\omega_o) L_e(p',-\omega_i) G(p,p') V(p,p')$


JNI REIBURG

- uniform PDF $p(p') = \frac{1}{A}$ $L_{\text{direct}}(p,\omega_i) = \frac{A}{N_s} \sum_{i=1}^{N_s} f_r(p,\omega_i,\omega_o) L_e(p',-\omega_i) G(p,p') V(p,p')$
- number of samples essential for the quality of soft shadows
- for points in penumbra regions, V(p,p') = 0 or V(p,p') = 1
 - too few shadow rays (i.e. light source samples) cause noise in these regions
- for points outside shadow, variations in G(p, p')
 can cause poise Graphics - Computer Science Department - Computer Graphics - 21


Light-Source Sampling


1 random shadow ray

9 random shadow rays

36 random shadow rays

100 random shadow rays

Sampling of Multiple Area Light Sources

- can be handled separately
 - add all contributions of shadow rays
- can be handled in a combined way
 - discrete PDF $p_L(k)$ selects a light source from N_L sources
 - $p_L(k)$ depends on position p
 - conditional PDF p(y|k) is used to generate a sample point given light source k

 $L_{\text{direct}}(p,\omega_i) = \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{1}{p_L(k) \cdot p(y|k)} f_r(p,\omega_i,\omega_o) L_e(p',-\omega_i) G(p,p') V(p,p')$

theoretically, only one shadow ray can be used

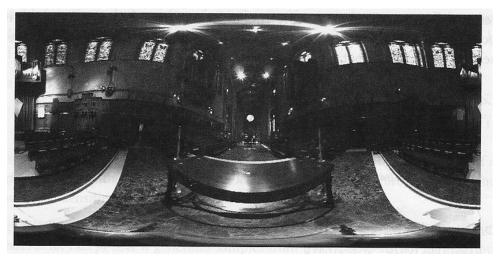
Combined Sampling of Multiple Area Light Sources

uniform source selection, uniform area sampling

• $p_L(k) = \frac{1}{N_L}$ $p(y|k) = \frac{1}{A_{L_k}}$

• $L_{\text{direct}}(p,\omega_i) = \frac{N_L}{N_s} \sum_{i=1}^{N_s} A_{L_k} f_r(p,\omega_i,\omega_o) L_e(p',-\omega_i) G(p,p') V(p,p')$

- power-proportional source selection
 - $p_L(k) = \frac{P_k}{P_{\text{total}}}$ $p(y|k) = \frac{1}{A_{L_k}}$
 - $L_{\text{direct}}(p,\omega_i) = \frac{P_{\text{total}}}{N_s} \sum_{i=1}^{N_s} \frac{A_{L_k}}{P_k} f_r(p,\omega_i,\omega_o) L_e(p',-\omega_i) G(p,p') V(p,p')$
 - gives importance to bright sources
 - is less efficient if bright sources are occluded
 - better than just ignoring dark, small or far away sources (which would result in bias)


REIBURG

Optimizations

- efficient computation of $V(\boldsymbol{p},\boldsymbol{p}')$
 - light buffer keeps track of occluding geometry
 - for a light source, it stores occluding geometry in all directions
 - does not work for area lights, less efficient for a large number of light sources
- importance-proportional light source sampling per surface point

Environment Map Illumination

- encodes the total illumination from the hemisphere of directions around a point
- 2D parameterization, e.g. latitude, longitude
- hemisphere form of the rendering equation can be used

Paul Debevec, Grace Cathedral

Piecewise-Constant 2D Distribution

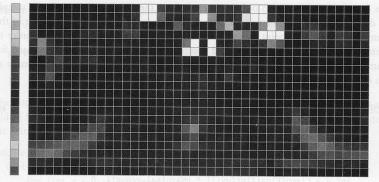
- $n_u \times n_v$ samples defined over $(u, v) \in [0, 1]^2$
 - a parameterization of the environment map
- f(u,v) is defined by a set of $n_u \times n_v$ values $f[u_i, v_i]$
 - $u_i \in [0, \dots, n_u 1]$ $v_i \in [0, \dots, n_v 1]$
 - $f[u_i, v_i]$ is the value of f(u, v) in the range $\left|\frac{i}{n_u}, \frac{i+1}{n_u}\right| \times \left|\frac{j}{n_v}, \frac{j+1}{n_v}\right|$
 - $f(u,v) = f[\tilde{u},\tilde{v}]$ with $\tilde{u} = \lfloor n_u u \rfloor$ and $\tilde{v} = \lfloor n_v v \rfloor$
- integral over the domain
 - $I_f = \int \int f(u, v) \, \mathrm{d}u \, \mathrm{d}v = \frac{1}{n_u n_v} \sum_i \sum_j f[u_i, v_j]$ PDF

•
$$p(u,v) = \frac{1}{I_f}f(u,v) = \frac{1}{I_f}f[\tilde{u},\tilde{v}]$$

REIBURG

Piecewise-Constant 2D Distribution

- marginal density function
 - $p_v(v) = \int p(u, v) \, \mathrm{d}u = \frac{1}{I_f} \frac{1}{n_u} \sum_i f[u_i, \tilde{v}]$
 - piecewise-constant 1D function
 - defined by n_v values $p_v[\tilde{v}]$
- conditional density
 - $p_u(u|v) = \frac{p(u,v)}{p_v(v)} = \frac{1}{I_f} \frac{f[\tilde{u},\tilde{v}]}{p[\tilde{v}]}$
 - piecewise-constant 1D function
- sample generation
 - see example 3 of the inversion method


Piecewise-Constant 2D Distribution

environment map

- low-resolution of the marginal density function and the conditional distributions for rows
- first, a row is selected according to the marginal density function
- then, a column is selected from the row's 1D conditional distribution

Paul Debevec, Grace Cathedral

Outline

- path tracing
- brute-force path tracing
- direct illumination
- indirect illumination

Introduction

- reflected light is indirect illumination
- indirect illumination is difficult / expensive to capture
- indirect illumination is important for photo-realistic effects
 - e.g., caustics, diffuse interreflections

Sampling

Monte-Carlo estimator for indirect illumination

 $L_o(p,\omega_o) = \frac{1}{N} \sum_{i=1}^N \frac{1}{p(\omega_i)} f_r(p,\omega_i,\omega_o) L_r(r_c(p,\omega_i),-\omega_i) \cos \theta_i$

- importance sampling
 - uniform sampling (less efficient)
 - proportional to the cosine factor (useful for diffuse surfaces)
 - proportional to the BRDF (useful for glossy surfaces)
 - proportional to the incident radiance (usually unknown, but can be determined by other techniques, e.g. photon mapping)
 - a combination of these factors

Summary

- generate light transport paths (a chain of rays) from visible surface points to light sources
 - rays are traced recursively until hitting a light source
- recursively evaluate the rendering equation along a path
- ray generation in a path is governed by light sources and BRDFs
- recursion depth is generally governed by the amount of radiance along a ray
- distinguishes direct and indirect illumination
 - direct: emitted radiance from light sources
 - indirect: reflected radiance from surfaces (and light sources)