
Image Processing and Computer Graphics

Rendering Pipeline

Matthias Teschner

Computer Science Department
University of Freiburg

University of Freiburg – Computer Science Department – Computer Graphics - 2

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 3

 the process of generating an image given
 a virtual camera

 objects

 light sources

 various techniques, e.g.
 rasterization (topic of this course)

 raytracing (topic of the course “Advanced Computer Graphics”)

 one of the major research topics in computer graphics
 rendering

 animation

 geometry processing

Rendering

University of Freiburg – Computer Science Department – Computer Graphics - 4

 rendering algorithm for generating 2D images from
3D scenes

 transforming geometric primitives such as lines and
polygons into raster image representations, i.e. pixels

Rasterization

[Akenine-Moeller et al.: Real-time Rendering]

University of Freiburg – Computer Science Department – Computer Graphics - 5

 3D objects are approximately represented by
vertices (points), lines, polygons

 these primitives are processed to obtain a 2D image

Rasterization

[Akenine-Moeller]

University of Freiburg – Computer Science Department – Computer Graphics - 6

 processing stages comprise the rendering pipeline
(graphics pipeline)

 supported by commodity graphics hardware
 GPU - graphics processing unit

 computes stages of the rasterization-based
rendering pipeline

 OpenGL and DirectX are software interfaces
to graphics hardware
 this course focuses on concepts of the rendering pipeline

 this course assumes OpenGL in implementation-specific
details

Rendering Pipeline

University of Freiburg – Computer Science Department – Computer Graphics - 7

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 8

 3D input
 a virtual camera

 position, orientation, focal length

 objects
 points (vertex / vertices), lines, polygons

 geometry and material properties
(position, normal, color, texture coordinates)

 light sources
 direction, position, color, intensity

 textures (images)

 2D output
 per-pixel color values in the framebuffer

Rendering Pipeline - Task

University of Freiburg – Computer Science Department – Computer Graphics - 9

Rendering Pipeline /
Some Functionality

[Wright et al.: OpenGL SuperBible]

visibility lighting model shadow texture

 resolving visibility

 evaluating a lighting model

 computing shadows (not core functionality)

 applying textures

University of Freiburg – Computer Science Department – Computer Graphics - 10

Rendering Pipeline
Main Stages

 vertex processing / geometry stage / vertex shader
 processes all vertices independently in the same way
 performs transformations per vertex, computes lighting per vertex

 geometry shader
 generates, modifies, discards primitives

 primitive assembly and rasterization / rasterization stage
 assembles primitives such as points, lines, triangles
 converts primitives into a raster image
 generates fragments / pixel candidates
 fragment attributes are interpolated from vertices of a primitive

 fragment processing / fragment shader
 processes all fragments independently in the same way
 fragments are processed, discarded or stored in the framebuffer

University of Freiburg – Computer Science Department – Computer Graphics - 11

Rendering Pipeline
Main Stages

[Lighthouse 3D]

 vertex position transform

 lighting per vertex

 primitive assembly, combine
vertices to lines, polygons

 rasterization, computes pixel
positions affected by a primitive

 fragment generation with
interpolated attributes, e.g. color

 fragment processing (not illustrated),
fragment is discarded or used to update the
pixel information in the framebuffer, more than
one fragment can be processed per pixel position

University of Freiburg – Computer Science Department – Computer Graphics - 12

Rendering Pipeline
Main Stages

[Lighthouse 3D]

with interpolated attributes

+ geometry
shader

+ lighting

with attributes
- texture coord.
- normal
- color

Textures

University of Freiburg – Computer Science Department – Computer Graphics - 13

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 14

 model transform

 view transform

 lighting

 projection transform

 clipping

 viewport transform

Vertex Processing
(Geometry Stage)

University of Freiburg – Computer Science Department – Computer Graphics - 15

 each object and the respective vertices are
positioned, oriented, scaled in the scene
with a model transform

 camera is positioned and oriented,
represented by the view transform

 i.e., the inverse view transform is the transform
that places the camera at the origin of the
coordinate system, facing in the negative z-direction

 entire scene is transformed
with the inverse view transform

Model Transform
View Transform

University of Freiburg – Computer Science Department – Computer Graphics - 16

 M1, M2, M3, M4, V are matrices representing transformations

 M1, M2, M3, M4 are model transforms to place the objects in the scene

 V places and orientates the camera in space

 V-1 transforms the camera to the origin looking along the negative z-axis

 model and view transforms are combined in the modelview transform

 the modelview transform V-1M1..4 is applied to the objects

Model Transform
View Transform

V-1

[Akenine-Moeller et al.: Real-time Rendering]

M1
M2

M3

M4
V

Inverse

University of Freiburg – Computer Science Department – Computer Graphics - 17

 interaction of light sources and surfaces
is represented with a lighting /
illumination model

 lighting computes color for each vertex
 based on light source positions and properties

 based on transformed position, transformed
normal, and material properties of a vertex

Lighting

University of Freiburg – Computer Science Department – Computer Graphics - 18

Porthographic Pperspective

 P transforms the view volume to the canonical view volume

 the view volume depends on the camera properties
 orthographic projection cuboid

 perspective projection pyramidal frustum

 canonical view volume is a cube from (-1,-1,-1) to (1,1,1)

 view volume is specified by near, far, left, right, bottom, top

Projection Transform

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 19

 view volume (cuboid or frustum) is transformed
into a cube (canonical view volume)

 objects inside (and outside) the view volume
are transformed accordingly

 orthographic
 combination of translation and scaling

 all objects are translated and scaled in the same way

 perspective
 complex transformation

 scaling factor depends on the distance of an object to the viewer

 objects farther away from the camera appear smaller

Projection Transform

University of Freiburg – Computer Science Department – Computer Graphics - 20

 primitives, that intersect the boundary of the view
volume, are clipped
 primitives, that are inside, are passed to the next processing stage

 primitives, that are outside, are discarded

 clipping deletes and generates vertices and primitives

Clipping

[Akenine-Moeller et al.: Real-time Rendering]

University of Freiburg – Computer Science Department – Computer Graphics - 21

 projected primitive coordinates (xp, yp, zp) are
transformed to screen coordinates (xs, ys)

 screen coordinates together with depth value are
window coordinates (xs, ys, zw)

Viewport Transform /
Screen Mapping

[Akenine-Moeller et al.: Real-time Rendering]

University of Freiburg – Computer Science Department – Computer Graphics - 22

 (xp, yp) are translated and scaled from the range of
(-1, 1) to actual pixel positions (xs, ys) on the display

 zp is generally translated and scaled from the range
of (-1, 1) to (0,1) for zw

 screen coordinates (xs, ys) represent the pixel position
of a fragment that is generated in a subsequent step

 zw , the depth value, is an attribute of this fragment
used for further processing

Viewport Transform /
Screen Mapping

University of Freiburg – Computer Science Department – Computer Graphics - 23

Vertex Processing - Summary

object space

 modelview transform

eye space / camera space

 lighting, projection

clip space / normalized
device coordinates

 clipping, viewport transform

window space

University of Freiburg – Computer Science Department – Computer Graphics - 24

 input
 vertices in object / model space

 3D positions

 attributes such as normal, material properties, texture coords

 output
 vertices in window space

 2D pixel positions

 attributes such as normal, material properties, texture coords

 additional or updated attributes such as
 normalized depth (distance to the viewer)

 color (result of the evaluation of the lighting model)

Vertex Processing - Summary

Image Processing and Computer Graphics

Rendering Pipeline

Matthias Teschner

Computer Science Department
University of Freiburg

University of Freiburg – Computer Science Department – Computer Graphics - 26

Rendering Pipeline - Summary

Scene Description

Display

Vertex

Processing

Fragment

Processing

Rasterization

Primitive

Processing

University of Freiburg – Computer Science Department – Computer Graphics - 27

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 29

 input
 vertices with attributes and connectivity information

 attributes: color, depth, texture coordinates

 output
 fragments with attributes

 pixel position

 interpolated color, depth, texture coordinates

Rasterization

[Akenine-Moeller]

University of Freiburg – Computer Science Department – Computer Graphics - 30

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 31

Illustration

vertices with
connectivity

final image
(pixels)

fragments
(pixel candidates)

fragment
processing

University of Freiburg – Computer Science Department – Computer Graphics - 32

 fragment attributes are processed
and tests are performed
 fragment attributes are processed

 fragments are discarded or

 fragments pass a test and finally update the framebuffer

 processing and testing make use of
 fragment attributes

 textures

 framebuffer data that is available for each pixel position
 depth buffer, color buffer, stencil buffer, accumulation buffer

Fragment Processing

University of Freiburg – Computer Science Department – Computer Graphics - 33

Illustration

Vertex
- color
- depth

…

Texture
- color
…Connectivity

Rasterization

Fragment
- color
- depth

…

Framebuffer
- color
- depth

…

points of a triangle

how points are
connected to a triangle

additional
data

final
image

pixel
candidates

University of Freiburg – Computer Science Department – Computer Graphics - 34

Attribute Processing

 texture lookup
 use texture coords to look up a texel (pixel of a texture image)

 texturing
 combination of color and texel

 fog
 adaptation of color based on fog color and depth value

 antialiasing
 adaptation of alpha value (and color)

 color has three components: red, green, blue

 color is represented as a 4D vector (red, green, blue, alpha)

University of Freiburg – Computer Science Department – Computer Graphics - 35

Tests

 scissor test
 check if fragment is inside a specified rectangle
 used for, e.g., masked rendering

 alpha test
 check if the alpha value fulfills a certain requirement
 comparison with a specified value
 used for, e.g., transparency and billboarding

 stencil test
 check if the stencil value in the framebuffer at the position

of the fragment fulfills a certain requirement
 comparison with a specified value
 used for various rendering effects, e.g. masking, shadows

University of Freiburg – Computer Science Department – Computer Graphics - 36

Depth Test

 depth test
 compare depth value of the fragment and depth value

of the framebuffer at the position of the fragment

 used for resolving the visibility

 if the depth value of the fragment is larger than the
framebuffer depth value, the fragment is discarded

 if the depth value of the fragment is smaller than the
framebuffer depth value, the fragment passes and
(potentially) overwrites the current color and depth
values in the framebuffer

University of Freiburg – Computer Science Department – Computer Graphics - 37

Depth Test

current
framebuffer

incoming
fragments
triangle 1

updated
framebuffer

current
framebuffer

incoming
fragments
triangle 2

updated
framebuffer

Wikipedia

University of Freiburg – Computer Science Department – Computer Graphics - 38

Blending / Merging

 blending
 combines the fragment color with the framebuffer

color at the position of the fragment

 usually determined by the alpha values

 resulting color (including alpha value)
is used to update the framebuffer

 dithering
 finite number of colors

 map color value to one of the nearest renderable colors

 logical operations / masking

University of Freiburg – Computer Science Department – Computer Graphics - 39

 texture lookup
 texturing
 fog
 antialiasing
 scissor test
 alpha test
 stencil test
 depth test
 blending
 dithering
 logical operations

Fragment Processing - Summary

University of Freiburg – Computer Science Department – Computer Graphics - 40

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 41

Rendering Pipeline - Summary

Scene Description

Display

Vertex

Processing

Fragment

Processing

Rasterization

Primitive

Processing

University of Freiburg – Computer Science Department – Computer Graphics - 42

Rendering Pipeline - Summary

 primitives consist of vertices
 vertices have attributes (color, depth, texture coords)
 vertices are transformed and lit
 primitives are rasterized into fragments /

pixel candidates with interpolated attributes
 fragments are processed using

 their attributes such as color, depth, texture coordinates
 texture data / image data
 framebuffer data / data per pixel position

(color, depth, stencil, accumulation)

 if a fragment passes all tests, it replaces
the pixel data in the framebuffer

