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 sets of particles are used to model time-dependent
phenomena such as ropes, cloth, deformable objects

 forces between particles account for resistance to
stretch, shear, bend, volume changes ...

Motivation

1D, 2D, and 3D mass-point systems, University of Freiburg
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 discretization of an object 
into mass points

 representation of internal forces
between mass points, 
e. g. spring forces 

 computation of the dynamics, 
positions and velocities 
at discrete time points 

Example
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 entertainment 
technologies
 cloth

 facial expressions

 computational 
medicine
 medical training

 pre-operative 
surgical planning

Applications

Bridson, Fedkiw, Anderson, Stanford University
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 internal forces are 
symmetric with 
respect to at least 
two mass points

 sum of internal 
forces is zero

 internal forces 
cause no torque

Internal Forces

internal forces external forces
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 internal forces are 
defined for at least 
two points

 internal forces do not influence the global
dynamic behavior of a mass-point system
(linear and angular momentum is preserved)

 spring force is an internal force

 external forces can change linear and
angular velocity of a mass-point system

 is gravitational force an internal force?

Internal Forces
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 objects with positions               and masses
attract each other with forces

 is the gravitational constant

 internal force, if applied to both objects

Gravity



University of Freiburg – Computer Science Department – Computer Graphics - 10

 on earth
 gravity is dominated by earth

 mass          of the earth is constant

 distance from surface to center is nearly constant  



 is an acceleration pointing towards the earth center

 in virtual environments, the direction depends on the
coordinate system, e. g.

 force exerted to         due to gravity:

 external force, if not applied to both objects

Gravity
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 - spring stiffness
- initial spring length
- current spring length

 linear force-deformation relation
(Hooke’s law)

 simple mechanism for internal forces

 elasticity: ability of a spring to return to its 
initial configuration in the absence of forces

Elastic Spring
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 non-linear relation of forces and mass-point positions

Mass-Spring System in 3D
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 discretize the object into mass points

 define the connectivity 
(topology, adjacencies of mass points)

 set model parameters
 point: mass, position, velocity

 spring: stiffness, initial length

 compute forces: spring force, gravity

 update positions and velocities of all mass points
with a numerical integration scheme, e. g.

A Simple Deformable Object
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 e.g., Heun
 for all mass points

compute 

 for all mass points
compute

 for all mass points
compute

 depends on position      and 
all connected neighbors

 depends on the predicted
position                      and on 
the predicted positions of all
neighbors 

Explicit Numerical Integration
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 e.g., implicit Euler





 force linearization

Implicit Numerical Integration
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 in the Jacobian     , a spring force between      and       
is represented by four sub matrices

that are accumulated at positions

Implicit Numerical Integration
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 deformable objects are commonly discretized 
into mass points and simplices
 line segments in 1D, triangles in 2D, tetrahedrons in 

3D 

Spatial Discretization

2949 mass points

10257 tetras

15713 springs

1349 mass points

4562 tetras

6888 springs

8 mass points

5 tetras
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 can be used to preserve, e. g.,  
 a distance between two points
 an area defined by three points
 a volume defined by four points

 forces are derived from constraints
 depends on mass point positions


iff the constraint is met,
e. g. a current distance equals 
a goal distance, a current area
equals a goal area, …

 motivation demo

Generalized Springs

demos/BadCube.lnk
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 potential energy      based on constraint

 iff the constraint is met 

 iff the constraint is not met

 force at mass point    based on the potential energy  

Constraint Forces
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 for a constraint     , the sum of constraint forces
at all involved mass points is equal to zero 

 linear and angular momentum of the system
are preserved

 constraint forces are internal forces 
(conservative forces)

Constraint Forces
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 preserve distance     between       and

Distance Preservation
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 forces         based on constraint

 are spring forces with stiffness constant 

Distance Preservation
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 preserve area     of a triangle

 edges

 constraint

 forces 

Area Preservation



University of Freiburg – Computer Science Department – Computer Graphics - 25

 preserve volume     of a tetrahedron

 edges

 constraint

 forces 

Volume Preservation
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Demos

distance preservation vs.
volume preservation

surface tension vs.
volume preservation

C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/combined.bat
C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/combined.bat
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 volume preservation can
be used to mimic curvature
preservation at adjacent
triangles

Demos

volume forces can mimic
bending forces

curvature can be preserved 
by preserving the volume 

of the virtual tetrahedron (x1,x2,x3,x4)

demos/Face.lnk
demos/Face.lnk


University of Freiburg – Computer Science Department – Computer Graphics - 28

 powerful mechanism to preserve 
various characteristics (constraints)

 are internal forces, preserve linear 
and angular momentum

 are defined for sets of mass points

 can be combined, weighted with stiffness constants

 drawbacks
 can be computationally expensive

 non-intuitive parameters in case of combined constraints

 can be redundant or competing

Constraint Forces - Summary
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 are proportional to a velocity 

 act in the direction opposite to a velocity 

 model friction

 can improve the stability of a system

 should not slow down the movement of a system

Damping Forces



University of Freiburg – Computer Science Department – Computer Graphics - 31

 damping force according to the velocity of a mass point

 force is applied in opposite direction to the velocity 

 force at a point is "used" for acceleration and damping

 e.g., mass point under gravity does not accelerate 
iff gravity and damping cancel out each other

Point Damping
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 damping does not always damp

 - velocity without damping

 - velocity with added damping

 - damping force

Explicit Point Damping
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 considering the current velocity for damping 
can cause problems

 considering the velocity of the next time step 
reduces problems 

 can still be directly solvable for          , e.g.,

Implicit Point Damping
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 damping force according to the relative velocity of 
adjacent mass points      and

 normalized direction 

 difference of the magnitudes of velocities 
projected onto
(magnitude of the relative velocity)

 damping forces

Explicit Spring Damping
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 generally more robust

 implementation in two integration steps
 first step predicts positions and velocities 

without damping

 second step corrects predicted quantities 
with added damping

 implementation in one integration step
 predict positions and velocities within the 

damping force computation, e. g. using Euler

 prediction and actual integration can be done 
with different schemes

Implicit Spring Damping
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Demos

benefits and drawbacks of damping

C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/damping.bat
C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/damping.bat
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 point and spring damping influence the stability

 implicit forms are preferable 
due to time discretization

 reduces oscillations

 point damping affects the global object dynamics

 integration schemes can add artificial point damping
(which cannot be controlled by the user)

 spring damping does not affect 
the global object dynamics

Damping - Summary
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 elastic deformation is reversible 

 plastic deformation is not reversible

Elasticity and Plasticity

original shape deformation
due to forces

elastic object
reversible deformation

plastic object
irreversible

deformation
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 decomposition of deformation

 decomposition of corresponding forces

 only elastic forces are considered

Elasticity and Plasticity
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 initialization

 update

 are user-defined parameters

Implementation
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Elastic and Plastic Deformation
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 plastic deformation corresponds to adjusting
the resting distance between mass points

 principle can also be applied to 
other properties, e. g. area, volume

 adjustment of resting states 
causes internal forces

 can be used for effects such as contraction

Resting Distance, Area, Volume
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 limited deformation

 geometric, position-based implementation

Strain Limiting
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 implementation approximates a 
bi-phasic force-deformation relation

 position update can be performed 
after the integration step 

 iterative implementation 
for mass-point systems

 preserves linear and 
angular momentum
 corresponds to some 

internal forces

Strain Limiting

force

deformation
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 external forces change the linear and angular 
momentum of a system, e.g. gravity, point damping 

 internal forces can preserve characteristics, 
e.g. distances, areas, volumes

 damping forces improve the stability of a system 
 resting length adjustments, symmetric position or 

momentum adjustments can mimic internal forces, 
e. g. for plasticity, stiff springs  

 challenge:
stable simulation of stiff, non-oscillating deformable 
objects without explicit or artificial point damping

Forces - Summary
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 criteria
 system updates per second (frames per second) 

 simulation time step

 parameters
 number of primitives (mass points, distances, 

volumes …)

 internal and external forces

 numerical integration scheme

 additional costs for, e.g., collision handling, 
rendering, …

Performance
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 cube with 4096 mass points, 
16875 tetrahedrons, 22320 
springs, distance and volume 
forces, gravity, Pentium 4, 2GHz

Performance - Example

method               error            time step   comp. time           ratio
order                [ms]            [ms]

expl. Euler 1 0.5 9.5 0.05

RK 2 2 3.8 18.9 0.20

impl. Euler 1 49.0 172.0 0.28

RK 4 4 17.0 50.0 0.34

Verlet 3 11.5 9.5 1.21
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 in 3D, a plane can be defined 
with a point      on the plane
and a normalized plane normal

 the plane is the set of points     with

 for a point    , the distance to the plane is    

Plane Representation
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 if a collision is detected, i. e.            ,
a collision impulse is computed that prevents
the interpenetration of the mass point 
and the plane (wall)

 we first consider the case of a particle-particle 
collision with     being the normalized direction 
from       to 

 the response scheme is later adapted 
to the particle-plane case 

Collision Response
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 velocities    before the collision response and velocities
after the collision response are considered in the 
coordinate system defined by collision normal     and
two orthogonal normalized tangent axes     and 

 e. g.

 the velocity     after the response is transformed back

Coordinate Systems
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 conservation of momentum

 coefficient of restitution,            elastic,            inelastic

 friction opposes sliding motion along    and 

Concept
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 nine equations, nine unknowns

Linear System
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 inverse

Linear System
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 plane has infinite mass and does not move:

 columns 2, 3, 7, 8, 9 do not contribute to the solution

 to solve for the particle velocity      after collision 
response, rows 4, 5, 6 have to be considered

 plane has infinite mass

Particle-Plane
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 is difficult to handle             

 and                          
should be guaranteed  



is a useful simplification  

Implementation
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 the collision impulse updates the velocity

 however, the point is still in collision

 for low velocities, the position update in the 
following integration step may not be 
sufficient to resolve the collision

 therefore, the position should be updated as well, e.g.
which projects the point onto the plane

 the position update is not physically-motivated, 
it just resolves problems due to discrete time steps

Position Update
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 geometric combination of 
 a low-resolution tetrahedral mesh for simulation and

 a high-resolution triangular mesh for visualization

 coupling by Barycentric coordinates of a surface point
with respect to a corresponding tetrahedron

Concept

simulation visualization
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 a point       can be represented with the points 
of a tetrahedron

Surface-Volume Coupling
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 a point       can be represented using 

 are Barycentric coordinates of      
with respect to

Barycentric Coordinates in 3D
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

is inside the convex combination of                           ,
i.e. inside the tetrahedron



is on the surface of the tetrahedron



is outside the tetrahedron

Properties
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 leads to the following system

 singular, if two edges of the tetrahedron are parallel !

 is computed as 

Computation
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 data structure
 for each point of the surface mesh,

store Barycentric coords and the corresponding tetrahedron 
 pre-processing

 for each surface point, determine the closest tetrahedron of 
the simulation mesh (point of the surface mesh should be 
located inside a tetrahedron)

 for each surface point, compute its Barycentric coords
with respect to the corresponding tetrahedron

 in each simulation step
 for each surface point, compute its position from its 

Barycentric coords and the positions of the mass points 
of the corresponding tetrahedron

 demo

Implementation
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 forces, e. g. gravity, energy constraints, 
damping, plasticity

 numerical integration schemes 
(see particle systems)

 collision handling for planes

 visualization, combination of low-resolution 
simulation meshes with high-resolution 
visualization meshes

Summary Mass-Point Systems
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