Simulation in Computer Graphics **Deformable Objects**

Matthias Teschner

Computer Science Department University of Freiburg

Albert-Ludwigs-Universität Freiburg

FREIBURG

Outline

- introduction
- forces
- performance
- collision handling
- visualization

Motivation

- sets of particles are used to model time-dependent phenomena such as ropes, cloth, deformable objects
- forces between particles account for resistance to stretch, shear, bend, volume changes ...

1D, 2D, and 3D mass-point systems, University of Freiburg

- discretization of an object into mass points
- representation of internal forces between mass points, e. g. spring forces
- computation of the dynamics, positions and velocities at discrete time points

Applications

- entertainment technologies
 - cloth
 - facial expressions
- computational medicine
 - medical training
 - pre-operative surgical planning

Bridson, Fedkiw, Anderson, Stanford University

Outline

- introduction
- forces
 - examples
 - energy constraints
 - damping
 - plasticity and other effects
- performance
- collision handling
- visualization

UNI FREIBURG

Internal Forces

 internal forces are symmetric with respect to at least two mass points

external forces

internal forces
 cause no torque

sum of internal

forces is zero

University of Freiburg – Computer Science Department – Computer Graphics - 7

internal forces

Internal Forces

- internal forces are defined for at least $\mathbf{F}_{ij}^{\text{int}} + \mathbf{F}_{ji}^{\text{int}} = \mathbf{0} \Rightarrow \mathbf{F}_{ii}^{\text{int}} = \mathbf{0}$ two points
- internal forces do not influence the global dynamic behavior of a mass-point system (linear and angular momentum is preserved)
- spring force is an internal force
- external forces can change linear and angular velocity of a mass-point system
- is gravitational force an internal force?

Gravity

• objects with positions x_1, x_2 and masses m_1, m_2 attract each other with forces F_1, F_2

$$\mathbf{F}_1 = -\mathbf{F}_2 = G \frac{m_1 m_2}{|\mathbf{x}_2 - \mathbf{x}_1|^2} \frac{\mathbf{x}_2 - \mathbf{x}_1}{|\mathbf{x}_2 - \mathbf{x}_1|}$$

- G is the gravitational constant
 - $G\approx 6.67\cdot 10^{-11}\mathrm{N~m^2kg^{-2}}$
- internal force, if applied to both objects

Gravity

- on earth
 - gravity is dominated by earth
 - mass m_1 of the earth is constant
 - distance from surface to center is nearly constant

g =
$$G \frac{m_1}{|\mathbf{x}_2 - \mathbf{x}_1|^2} \frac{\mathbf{x}_2 - \mathbf{x}_1}{|\mathbf{x}_2 - \mathbf{x}_1|} = \text{const}$$

- g is an acceleration pointing towards the earth center
- in virtual environments, the direction depends on the coordinate system, e. g. $g = 9.81 \cdot (0, 0, -1)^T m s^{-2}$
- force exerted to m_2 due to gravity: $\mathbf{F}_2 = m_2 \cdot \mathbf{g}$
- external force, if not applied to both objects

Elastic Spring

- k spring stiffness
 - *L* initial spring length
 - *l* current spring length
- linear force-deformation relation (Hooke's law)
 - F = k(L l)
- simple mechanism for internal forces
- elasticity: ability of a spring to return to its initial configuration in the absence of forces

$\int -F$

BURG

Mass-Spring System in 3D

non-linear relation of forces and mass-point positions

 $\mathbf{F}_0 = \sum_i k_i (|\mathbf{x}_i - \mathbf{x}_0| - L_i) \frac{\mathbf{x}_i - \mathbf{x}_0}{|\mathbf{x}_i - \mathbf{x}_0|}$

University of Freiburg – Computer Science Department – Computer Graphics - 12

JNI REIBURG

A Simple Deformable Object

- discretize the object into mass points
- define the connectivity (topology, adjacencies of mass points)
- set model parameters
 - point: mass, position, velocity
 - spring: stiffness, initial length
- compute forces: spring force, gravity
- update positions and velocities of all mass points with a numerical integration scheme, e.g.

 $\mathbf{v}_i^{t+h} = \mathbf{v}_i^t + h \frac{1}{m_i} \mathbf{F}_i^t \qquad \mathbf{x}_i^{t+h} = \mathbf{x}_i^t + h \mathbf{v}_i^{t+h}$

FREIBURG

Explicit Numerical Integration

- e.g., Heun
 - for all mass points compute k_{i,1}, l_{i,1}
 - for all mass points
 compute k_{i,2}, l_{i,2}
 - for all mass points compute $\mathbf{x}_{i}^{t+h}, \mathbf{v}_{i}^{t+h}$
- $\mathbf{l}_{i,1}$ depends on position \mathbf{x}_i^t and all connected neighbors \mathbf{x}_j^t ,
- $\mathbf{l}_{i,2}$ depends on the predicted position $\mathbf{x}_i^t + \mathbf{k}_{i,1}h$ and on the predicted positions of all neighbors $\mathbf{x}_j^t + \mathbf{k}_{j,1}h$

 $\mathbf{k}_{i,1} = \dot{\mathbf{x}}^t$ $\mathbf{l}_{i,1} = \dot{\mathbf{v}}_{\mathbf{x}_i^t,\dots\mathbf{x}_j^t}^t$ $\mathbf{k}_{i,2} = \dot{\mathbf{x}}_i^t + \mathbf{l}_{i,1}h$ $\mathbf{l}_{i,2} = \dot{\mathbf{v}}_{\mathbf{x}_i^t + \mathbf{k}_{i,1}h, \dots, \mathbf{x}_j^t + \mathbf{k}_{j,1}h}$ $\mathbf{x}_i^{t+h} = \mathbf{x}_i^t + h(\frac{1}{2}\mathbf{k}_{i,1} + \frac{1}{2}\mathbf{k}_{i,2})$ $\mathbf{v}_{i}^{t+h} = \mathbf{v}_{i}^{t} + h(\frac{1}{2}\mathbf{l}_{i,1} + \frac{1}{2}\mathbf{l}_{i,2})$

Implicit Numerical Integration

e.g., implicit Euler $\mathbf{x}_{i}^{t+h} = \mathbf{x}_{i}^{t} + h \mathbf{v}_{i}^{t+h}$ • $\mathbf{x}^t = (\mathbf{x}_1^T, \mathbf{x}_2^T, \dots, \mathbf{x}_n^T)^T$ $\mathbf{v}_i^{t+h} = \mathbf{v}_i^t + h \frac{1}{m} \mathbf{F}_i^{t+h}(\mathbf{x}_i^t, \dots, \mathbf{x}_j^t)$ $\mathbf{v}^t = (\mathbf{v}_1^{\mathrm{T}}, \mathbf{v}_2^{\mathrm{T}}, \dots, \mathbf{v}_n^{\mathrm{T}})^{\mathrm{T}}$ $\mathbf{F}^{\mathbf{t}}(\mathbf{x}^{t}) = (\mathbf{F}_{1}^{\mathrm{T}}, \mathbf{F}_{2}^{\mathrm{T}}, \dots, \mathbf{F}_{n}^{\mathrm{T}})^{\mathrm{T}}$ $\mathbf{M} = diag(m_1, m_1, m_1, \dots, m_n, m_n, m_n) \in \mathbb{R}^{3n \times 3n}$ • $\mathbf{M}\mathbf{v}^{t+h} = \mathbf{M}\mathbf{v}^t + h\mathbf{F}^{t+h}(\mathbf{x}^{t+h})$ $\mathbf{M}\mathbf{v}^{t+h} = \mathbf{M}\mathbf{v}^t + h\mathbf{F}^{t+h}(\mathbf{x}^t + h\mathbf{v}^{t+h})$ force linearization $\mathbf{M}\mathbf{v}^{t+h} = \mathbf{M}\mathbf{v}^t + h\mathbf{F}^t(\mathbf{x}^t) + h^2 \frac{\partial \mathbf{F}^t}{\partial \mathbf{v}^t} \mathbf{v}^{t+h} \quad \frac{\partial \mathbf{F}^t}{\partial \mathbf{v}^t} = \mathbf{J}^t \in \mathbb{R}^{3n \times 3n}$ $(\mathbf{M} - h^2 \mathbf{J}^t) \mathbf{v}^{t+h} = \mathbf{M} \mathbf{v}^t + h \mathbf{F}^t (\mathbf{x}^t)$

Implicit Numerical Integration

• in the Jacobian \mathbf{J}^t , a spring force between \mathbf{x}_i^t and \mathbf{x}_i^t is represented by four sub matrices $\mathbf{J}_{i,i}^t \in \mathbb{R}^{3 \times 3}, \ \mathbf{J}_{i,i}^t \in \mathbb{R}^{3 \times 3}, \ \mathbf{J}_{i,i}^t \in \mathbb{R}^{3 \times 3}, \ \mathbf{J}_{i,i}^t \in \mathbb{R}^{3 \times 3}$ that are accumulated at positions (3i, 3j), (3j, 3i), (3i, 3i), (3j, 3j) $\mathbf{J}_{i,i}^t = \frac{\partial \mathbf{F}_i^t}{\partial \mathbf{x}_i^t} \in \mathbb{R}^{3 \times 3}$ $\mathbf{J}_{i,i}^{t} = \frac{\partial}{\partial \mathbf{x}_{i}^{t}} k_{s} \left(\left(\mathbf{x}_{j} - \mathbf{x}_{i} \right) - L_{s} \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{|\mathbf{x}_{j} - \mathbf{x}_{i}|} \right)$ $=k_s\left(-\mathbf{I}+\frac{L_s}{|\mathbf{x}_j-\mathbf{x}_i|}\left(\mathbf{I}-\frac{1}{|\mathbf{x}_j-\mathbf{x}_i|^2}(\mathbf{x}_j-\mathbf{x}_i)(\mathbf{x}_j-\mathbf{x}_i)^{\mathrm{T}}\right)\right)$ $= -\mathbf{J}_{i,i}^t = \mathbf{J}_{i,i}^t = -\mathbf{J}_{i,i}^t$

Outline

- introduction
- forces
 - examples
 - energy constraints
 - damping
 - plasticity and other effects
- performance
- collision handling
- visualization

Spatial Discretization

- deformable objects are commonly discretized into mass points and simplices
 - line segments in 1D, triangles in 2D, tetrahedrons in 3D

Generalized Springs

- can be used to preserve, e. g.,
 - a distance between two points
 - an area defined by three points
 - a volume defined by four points
- forces are derived from constraints C
- C depends on mass point positions
- $C(\mathbf{x}_1,\ldots,\mathbf{x}_n)=0$
 - iff the constraint is met,
 - e.g. a current distance equals a goal distance, a current area equals a goal area, ...
- motivation <u>demo</u>

Constraint Forces

• potential energy E based on constraint C

$$E(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \frac{1}{2}kC(\mathbf{x}_1,\ldots,\mathbf{x}_n)^2$$

- E = 0 iff the constraint is met
- E > 0 iff the constraint is not met
- force at mass point j based on the potential energy E $\mathbf{F}_{j}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) = -\frac{\partial}{\partial \mathbf{x}_{j}} E(\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$ $= -kC(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) \frac{\partial C(\mathbf{x}_{1}, \dots, \mathbf{x}_{n})}{\partial \mathbf{x}_{j}}$

Constraint Forces

- for a constraint C , the sum of constraint forces at all involved mass points is equal to zero ∑_j F_j(x₁,..., x_n) = 0
- linear and angular momentum of the system
 (x₁,...,x_n) are preserved
- constraint forces are internal forces (conservative forces)

FREIBURG

Distance Preservation

- preserve distance L between \mathbf{x}_1 and \mathbf{x}_2 $C_d(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 - \mathbf{x}_2| - L$
 - $\mathbf{x}_1 = (x_1, y_1, z_1)^{\mathrm{T}}$ $\mathbf{x}_2 = (x_2, y_2, z_2)^{\mathrm{T}}$

 $C_d(x_1, y_1, z_1, x_2, y_2, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} - L$

FREIBURG

$$\frac{\partial C_d}{\partial \mathbf{x}_1} = \begin{pmatrix} \frac{\partial C_d}{\partial x_1} \\ \frac{\partial C_d}{\partial y_1} \\ \frac{\partial C_d}{\partial z_1} \end{pmatrix} = \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|} \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \\ z_1 - z_2 \end{pmatrix} = \frac{\mathbf{x}_1 - \mathbf{x}_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

Distance Preservation

• forces \mathbf{F}_d based on constraint C_d

$$\mathbf{F}_d(\mathbf{x}_1) = -k_d C_d \frac{\partial C_d}{\partial \mathbf{x}_1} = -k_d (|\mathbf{x}_1 - \mathbf{x}_2| - L) \frac{||\mathbf{x}_1 - \mathbf{x}_2|}{|\mathbf{x}_1 - \mathbf{x}_2|}$$
$$\mathbf{F}_d(\mathbf{x}_2) = -k_d C_d \frac{\partial C_d}{\partial \mathbf{x}_2} = k_d (|\mathbf{x}_1 - \mathbf{x}_2| - L) \frac{||\mathbf{x}_1 - \mathbf{x}_2|}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

• \mathbf{F}_d are spring forces with stiffness constant k_d

Area Preservation

- preserve area A of a triangle $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$
- edges $e_1 = x_3 x_1$ $e_2 = x_3 x_2$
- constraint $C_a(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \frac{1}{2} |\mathbf{e}_1 \times \mathbf{e}_2| A$

• forces $\mathbf{t} = \mathbf{e}_1 \times \mathbf{e}_2 \quad s = k_a \frac{C_a}{0.5|\mathbf{e}_1 \times \mathbf{e}_2|}$ • forces $\mathbf{F}_a(\mathbf{x}_1) = s\mathbf{e}_2 \times \mathbf{t}$ $\mathbf{F}_a(\mathbf{x}_2) = s\mathbf{t} \times \mathbf{e}_1$ $\mathbf{F}_a(\mathbf{x}_3) = s\mathbf{t} \times (\mathbf{e}_2 - \mathbf{e}_1)$

IBURG

Volume Preservation

- preserve volume V of a tetrahedron $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$
- edges $e_1 = x_2 x_1$ $e_2 = x_3 x_1$ $e_3 = x_4 x_1$
- constraint $C_v(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \frac{1}{6} \mathbf{e}_1(\mathbf{e}_2 \times \mathbf{e}_3) V$

• forces $\mathbf{F}_{v}(\mathbf{x}_{1}) = k_{v}C_{v}(\mathbf{e}_{2} - \mathbf{e}_{1}) \times (\mathbf{e}_{3} - \mathbf{e}_{1})$ $\mathbf{F}_{v}(\mathbf{x}_{2}) = k_{v}C_{v}\mathbf{e}_{3} \times \mathbf{e}_{2}$ $\mathbf{F}_{v}(\mathbf{x}_{3}) = k_{v}C_{v}\mathbf{e}_{1} \times \mathbf{e}_{3}$ $\mathbf{F}_{v}(\mathbf{x}_{4}) = k_{v}C_{v}\mathbf{e}_{2} \times \mathbf{e}_{1}$

Demos

distance preservation vs. volume preservation

surface tension vs. volume preservation

UNI FREIBURG

Demos

 volume preservation can be used to mimic curvature preservation at adjacent triangles

curvature can be preserved by preserving the volume of the virtual tetrahedron (x_1, x_2, x_3, x_4)

volume forces can mimic bending forces

UNI FREIBURG

Constraint Forces - Summary

- powerful mechanism to preserve various characteristics (constraints)
- are internal forces, preserve linear and angular momentum
- are defined for sets of mass points
- can be combined, weighted with stiffness constants
- drawbacks
 - can be computationally expensive
 - non-intuitive parameters in case of combined constraints
 - can be redundant or competing

Outline

- introduction
- forces
 - examples
 - energy constraints
 - damping
 - plasticity and other effects
- performance
- collision handling
- visualization

UNI FREIBURG

Damping Forces

- are proportional to a velocity
- act in the direction opposite to a velocity
- model friction
- can improve the stability of a system
- should not slow down the movement of a system

Point Damping

- damping force according to the velocity of a mass point
- force is applied in opposite direction to the velocity $m\ddot{\mathbf{x}}_t = \mathbf{F}_t - \gamma \dot{\mathbf{x}}_t$
- force at a point is "used" for acceleration and damping $m\ddot{\mathbf{x}}_t + \gamma \dot{\mathbf{x}}_t = \mathbf{F}_t$
- e.g., mass point under gravity does not accelerate iff gravity and damping cancel out each other

Explicit Point Damping

- damping does not always damp
- v velocity without damping
- v' velocity with added damping
- **F**^{*d*}- damping force

Implicit Point Damping

 considering the current velocity for damping can cause problems

 $\mathbf{v}_{t+h} = \mathbf{v}_t + h\frac{1}{m}(\mathbf{F}_t - \gamma \mathbf{v}_t) = \mathbf{v}_t + h\frac{1}{m}(\mathbf{F}_t - \mathbf{F}_t^d)$

 considering the velocity of the next time step reduces problems

$$\mathbf{v}_{t+h} = \mathbf{v}_t + h\frac{1}{m}(\mathbf{F}_t - \gamma \mathbf{v}_{t+h}) = \mathbf{v}_t + h\frac{1}{m}(\mathbf{F}_t - \mathbf{F}_{t+h}^d)$$

• can still be directly solvable for \mathbf{v}_{t+h} , e.g.,

$$\mathbf{v}_{t+h} = \frac{1}{1 + \frac{h\gamma}{m}} \left(\mathbf{v}_t + h \frac{1}{m} \mathbf{F}_t \right)$$

Explicit Spring Damping

- damping force according to the relative velocity of adjacent mass points x₁ and x₂
- normalized direction

$$\hat{\mathbf{d}}_t = rac{\mathbf{x}_2 - \mathbf{x}_1}{|\mathbf{x}_2 - \mathbf{x}_1|}$$

 difference of the magnitudes of velocities projected onto d_t (magnitude of the relative velocity)

$$m_t = \mathbf{v}_{2,t} \hat{\mathbf{d}}_t - \mathbf{v}_{1,t} \hat{\mathbf{d}}_t$$

- damping forces
 - $\mathbf{F}_{1,t} = \gamma m_t \hat{\mathbf{d}}_t \qquad \mathbf{F}_{2,t} = -\gamma m_t \hat{\mathbf{d}}_t$

Implicit Spring Damping

- generally more robust
 - $\mathbf{F}_{1,t} = \gamma m_{t+h} \hat{\mathbf{d}}_{t+h} \qquad \mathbf{F}_{2,t} = -\gamma m_{t+h} \hat{\mathbf{d}}_{t+h}$
- implementation in two integration steps
 - first step predicts positions and velocities without damping
 - second step corrects predicted quantities with added damping
- implementation in one integration step
 - predict positions and velocities within the damping force computation, e. g. using Euler
 - prediction and actual integration can be done with different schemes

University of Freiburg – Computer Science Department – Computer Graphics - 35

FREIBURG

benefits and drawbacks of damping

UNI FREIBURG

Damping - Summary

- point and spring damping influence the stability
- implicit forms are preferable due to time discretization
- reduces oscillations
- point damping affects the global object dynamics
- integration schemes can add artificial point damping (which cannot be controlled by the user)
- spring damping does not affect the global object dynamics

Outline

- introduction
- forces
 - examples
 - energy constraints
 - damping
 - plasticity and other effects
- performance
- collision handling
- visualization

UNI FREIBURG

Elasticity and Plasticity

elastic deformation is reversibleplastic deformation is not reversible

original shape

deformation due to forces

elastic object reversible deformation

plastic object irreversible deformation

Elasticity and Plasticity

- decomposition of deformation
 - $\epsilon = \epsilon_{\text{elastic}} + \epsilon_{\text{plastic}}$
- decomposition of corresponding forces $F = k\epsilon = k\epsilon_{elastic} + k\epsilon_{plastic}$
- only elastic forces are considered $F_{\text{elastic}} = k\epsilon - k\epsilon_{\text{plastic}} = k\epsilon_{\text{elastic}}$

 $\epsilon_{\rm plastic}$

Implementation

- initialization
 - $\epsilon_{\text{plastic}} = 0$
- update
 - compute ϵ
 - $\epsilon_{\text{elastic}} = \epsilon \epsilon_{\text{plastic}}$
 - if $\epsilon_{\text{elastic}} > \text{yield then } \epsilon_{\text{plastic}} = \epsilon_{\text{plastic}} + \text{creep } \epsilon_{\text{elastic}}$
 - if $\epsilon_{\text{plastic}} > \max$ then $\epsilon_{\text{plastic}} = \max$
- yield, creep, max are user-defined parameters

Elastic and Plastic Deformation

Elastic Deformation

University of Freiburg – Computer Science Department – Computer Graphics - 42

UNI FREIBURG

Resting Distance, Area, Volume

- plastic deformation corresponds to adjusting the resting distance between mass points
- principle can also be applied to other properties, e. g. area, volume
- adjustment of resting states causes internal forces
- can be used for effects such as contraction

University of Freiburg - Computer Science Department - Computer Graphics - 44

Strain Limiting

- limited deformation
- geometric, position-based implementation

if $|\mathbf{x}_1 - \mathbf{x}_2| > \alpha L$ then

$$\mathbf{x}_{1} = \mathbf{x}_{1} + \frac{m_{2}}{m_{1} + m_{2}} (|\mathbf{x}_{2} - \mathbf{x}_{1}| - \alpha L) \frac{\mathbf{x}_{2} - \mathbf{x}_{1}}{|\mathbf{x}_{2} - \mathbf{x}_{1}|}$$
$$\mathbf{x}_{2} = \mathbf{x}_{2} - \frac{m_{1}}{m_{1} + m_{2}} (|\mathbf{x}_{2} - \mathbf{x}_{1}| - \alpha L) \frac{\mathbf{x}_{2} - \mathbf{x}_{1}}{|\mathbf{x}_{2} - \mathbf{x}_{1}|}$$

\mathbf{x}_2	Ţ
	\rightarrow
	\leq
	<
	>
	>
Τ	<
\mathbf{L}^{-}	\geq
	>
	<
	<
	>
	\leq
\mathbf{X}_1	\bot

Strain Limiting

- implementation approximates a bi-phasic force-deformation relation
- position update can be performed after the integration step
- iterative implementation for mass-point systems
- preserves linear and angular momentum
 - corresponds to some internal forces

Forces - Summary

- external forces change the linear and angular momentum of a system, e.g. gravity, point damping
- internal forces can preserve characteristics, e.g. distances, areas, volumes
- damping forces improve the stability of a system
- resting length adjustments, symmetric position or momentum adjustments can mimic internal forces, e. g. for plasticity, stiff springs
- challenge:

stable simulation of stiff, non-oscillating deformable objects without explicit or artificial point damping

Outline

- introduction
- forces
- performance
- collision handling
- visualization

Performance

- criteria
 - system updates per second (frames per second)
 - simulation time step
- parameters
 - number of primitives (mass points, distances, volumes ...)
 - internal and external forces
 - numerical integration scheme
 - additional costs for, e.g., collision handling, rendering, ...

Performance - Example

 cube with 4096 mass points, 16875 tetrahedrons, 22320 springs, distance and volume forces, gravity, Pentium 4, 2GHz

method	error order	time step [ms]	comp. time [ms]	ratio
expl. Euler	1	0.5	9.5	0.05
RK 2	2	3.8	18.9	0.20
impl. Euler	1	49.0	172.0	0.28
RK 4	4	17.0	50.0	0.34
Verlet	3	11.5	9.5	1.21

Outline

- introduction
- forces
- performance
- collision handling
- visualization

Plane Representation

- in 3D, a plane can be defined with a point x_p on the plane and a normalized plane normal n_{plane}
- the plane is the set of points \mathbf{x} with $\mathbf{n}_{\text{plane}} \cdot (\mathbf{x} \mathbf{x}_p) = 0$
- for a point x, the distance to the plane is

Collision Response

- if a collision is detected, i. e. d < 0, a collision impulse is computed that prevents the interpenetration of the mass point and the plane (wall)
- we first consider the case of a particle-particle collision with n being the normalized direction from x₂ to x₁

 the response scheme is later adapted to the particle-plane case

University of Freiburg – Computer Science Department – Computer Graphics - 52

REIBURG

Coordinate Systems

 velocities v before the collision response and velocities V after the collision response are considered in the coordinate system defined by collision normal n and two orthogonal normalized tangent axes t and k

• e.g.
$$\begin{pmatrix} v_{1,n} \\ v_{1,t} \\ v_{1,k} \end{pmatrix} = \begin{pmatrix} n_x & n_y & n_z \\ t_x & t_y & t_z \\ k_x & k_y & k_z \end{pmatrix} \begin{pmatrix} v_{1,x} \\ v_{1,y} \\ v_{1,z} \end{pmatrix}$$

the velocity V after the response is transformed back

$$\begin{pmatrix} V_{1,x} \\ V_{1,y} \\ V_{1,z} \end{pmatrix} = \begin{pmatrix} n_x & t_x & k_x \\ n_y & t_y & k_y \\ n_z & t_z & k_z \end{pmatrix} \begin{pmatrix} V_{1,n} \\ V_{1,t} \\ V_{1,k} \end{pmatrix}$$

Concept

conservation of momentum

 $m_1 V_{1,n} - m_1 v_{1,n} = P_n \qquad m_2 V_{2,n} - m_2 v_{2,n} = -P_n$ $m_1 V_{1,t} - m_1 v_{1,t} = P_t \qquad m_2 V_{2,t} - m_2 v_{2,t} = -P_t$ $m_1 V_{1,k} - m_1 v_{1,k} = P_k \qquad m_2 V_{2,k} - m_2 v_{2,k} = -P_k$

- coefficient of restitution, e = 1 elastic, e = 0 inelastic $V_{1,n} V_{2,n} = -e(v_{1,n} v_{2,n})$
- friction opposes sliding motion along t and k $P_t = \mu P_n$ $P_k = \mu P_n$

Linear System

nine equations, nine unknowns

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ -\mu & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\mu & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & m_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & m_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & m_1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & m_2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & m_2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & m_2 \end{pmatrix} \begin{pmatrix} P_n \\ P_k \\ P_t \\ V_{1,n} \\ V_{1,k} \\ V_{2,n} \\ V_{2,k} \end{pmatrix} = \begin{pmatrix} -e(v_{1,n} - v_{2,n}) \\ 0 \\ m_1v_{1,n} \\ m_1v_{1,k} \\ m_2v_{2,n} \\ m_2v_{2,k} \\ m_2v_{2,k} \end{pmatrix}$$

UNI FREIBURG

Linear System

inverse

$\frac{m_1m_2}{m_1+m_2}$	0	0	$-rac{m_2}{m_1+m_2}$	0	0	$\frac{m_1}{m_1+m_2}$	0	0	
$rac{m_1m_2\mu}{m_1+m_2}$	1	0	$-rac{m_2\mu}{m_1+m_2}$	0	0	$rac{m_1\mu}{m_1+m_2}$	0	0	
$rac{m_1m_2\mu}{m_1+m_2}$	0	1	$-rac{m_2\mu}{m_1+m_2}$	0	0	$rac{m_1\mu}{m_1+m_2}$	0	0	
$rac{m_2}{m_1+m_2}$	0	0	$rac{1}{m_1+m_2}$	0	0	$rac{1}{m_1+m_2}$	0	0	
$rac{m_2\mu}{m_1+m_2}$	$\frac{1}{m_1}$	0	$-rac{m_{2}\mu}{m_{1}(m_{1}+m_{2})}$	$rac{1}{m_1}$	0	$rac{\mu}{m_1+m_2}$	0	0	
$rac{m_2\mu}{m_1+m_2}$	0	$\frac{1}{m_1}$	$-rac{m_{2}\mu}{m_{1}(m_{1}+m_{2})}$	0	$\frac{1}{m_1}$	$rac{\mu}{m_1+m_2}$	0	0	
$-rac{m_1}{m_1+m_2}$	0	0	$rac{1}{m_1+m_2}$	0	0	$rac{1}{m_1+m_2}$	0	0	
$-rac{m_1\mu}{m_1+m_2}$	$-\frac{1}{m_2}$	0	$rac{\mu}{m_1+m_2}$	0	0	$-rac{m_{1}\mu}{m_{2}(m_{1}+m_{2})}$	$\frac{1}{m_2}$	0	
$-rac{m_1\mu}{m_1+m_2}$	0	$-\frac{1}{m_2}$	$rac{\mu}{m_1+m_2}$	0	0	$-rac{m_{1}\mu}{m_{2}(m_{1}+m_{2})}$	0	$\frac{1}{m_2}$	
							Ď		

N N N N

Particle-Plane

- plane has infinite mass and does not move: $v_2 = V_2 = 0$
- columns 2, 3, 7, 8, 9 do not contribute to the solution
- to solve for the particle velocity V₁ after collision response, rows 4, 5, 6 have to be considered

$$\begin{pmatrix} \frac{m_2}{m_1+m_2} & \frac{1}{m_1+m_2} & 0 & 0\\ \frac{m_2\mu}{m_1+m_2} & -\frac{m_2\mu}{m_1(m_1+m_2)} & \frac{1}{m_1} & 0\\ \frac{m_2\mu}{m_1+m_2} & -\frac{m_2\mu}{m_1(m_1+m_2)} & 0 & \frac{1}{m_1} \end{pmatrix} \begin{pmatrix} -ev_{1,n} \\ m_1v_{1,n} \\ m_1v_{1,k} \\ m_1v_{1,k} \end{pmatrix} = \begin{pmatrix} V_{1,n} \\ V_{1,k} \\ V_{1,k} \end{pmatrix}$$

plane has infinite mass

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ \mu & -\frac{\mu}{m_1} & \frac{1}{m_1} & 0 \\ \mu & -\frac{\mu}{m_1} & 0 & \frac{1}{m_1} \end{pmatrix} \begin{pmatrix} -ev_{1,n} \\ m_1v_{1,n} \\ m_1v_{1,k} \\ m_1v_{1,k} \end{pmatrix} = \begin{pmatrix} V_{1,n} \\ V_{1,k} \\ V_{1,k} \end{pmatrix}$$

Implementation

$$V_{t,n} = -ev_{t,n}$$

$$V_{t,t} = v_{t,t} - \mu(e+1)v_{t,n}$$

$$V_{t,k} = v_{t,k} - \mu(e+1)v_{t,n}$$

- μ is difficult to handle
- $|V_{t,t}| \le |v_{t,t}|$ and $\operatorname{sign}(V_{t,t}) = \operatorname{sign}(v_{t,t})$ should be guaranteed
- $V_{t,t} = \mu v_{t,t}$ $V_{t,k} = \mu v_{t,k}$ $0 \le \mu \le 1$ is a useful simplification

Position Update

- the collision impulse updates the velocity
- however, the point is still in collision (d < 0)
- for low velocities, the position update in the following integration step may not be sufficient to resolve the collision
- therefore, the position should be updated as well, e.g. $\mathbf{x}_{t+h} = \mathbf{x}_t + d \cdot \mathbf{n}$ which projects the point onto the plane
- the position update is not physically-motivated, it just resolves problems due to discrete time steps

Outline

- introduction
- forces
- performance
- collision handling
- visualization

Concept

- geometric combination of
 - a low-resolution tetrahedral mesh for simulation and
 - a high-resolution triangular mesh for visualization
- coupling by Barycentric coordinates of a surface point with respect to a corresponding tetrahedron

simulation visualization
University of Freiburg – Computer Science Department – Computer Graphics - 61

Surface-Volume Coupling

 a point x_s can be represented with the points of a tetrahedron

UNI

Barycentric Coordinates in 3D

- a point \mathbf{x}_s can be represented using $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ $\mathbf{x}_s = \mathbf{x}_1 + \alpha_2(\mathbf{x}_2 - \mathbf{x}_1) + \alpha_3(\mathbf{x}_3 - \mathbf{x}_1) + \alpha_4(\mathbf{x}_4 - \mathbf{x}_1)$ $\mathbf{x}_s = (1 - \alpha_2 - \alpha_3 - \alpha_4)\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \alpha_3\mathbf{x}_3 + \alpha_4\mathbf{x}_4$ $\mathbf{x}_s = \alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \alpha_3\mathbf{x}_3 + \alpha_4\mathbf{x}_4$ $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$
- (α₁, α₂, α₃, α₄) are Barycentric coordinates of x_s with respect to (x₁, x₂, x₃, x₄)

Properties

• $0 < \alpha_i < 1$

 \mathbf{x}_s is inside the convex combination of $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$, i.e. inside the tetrahedron

•
$$\alpha_i = 0 \lor \alpha_i = 1$$

• \mathbf{x}_s is on the surface of the tetrahedror

•
$$\alpha_i < 0 \lor \alpha_i > 1$$

 \mathbf{x}_s is outside the tetrahedron

FREIBURG

Computation

$$\mathbf{x}_s = \mathbf{x}_1 + \alpha_2(\mathbf{x}_2 - \mathbf{x}_1) + \alpha_3(\mathbf{x}_3 - \mathbf{x}_1) + \alpha_4(\mathbf{x}_4 - \mathbf{x}_1)$$

leads to the following system

$$\begin{pmatrix} (\mathbf{x}_2 - \mathbf{x}_1) & (\mathbf{x}_3 - \mathbf{x}_1) & (\mathbf{x}_4 - \mathbf{x}_1) \end{pmatrix} \begin{pmatrix} \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \mathbf{x}_s - \mathbf{x}_1$$

singular, if two edges of the tetrahedron are parallel !

BURG

• α_1 is computed as $\alpha_1 = 1 - \alpha_2 - \alpha_3 - \alpha_4$

Implementation

- data structure
 - for each point of the surface mesh,
 - store Barycentric coords and the corresponding tetrahedron
- pre-processing
 - for each surface point, determine the closest tetrahedron of the simulation mesh (point of the surface mesh should be located inside a tetrahedron)
 - for each surface point, compute its Barycentric coords with respect to the corresponding tetrahedron
- in each simulation step
 - for each surface point, compute its position from its Barycentric coords and the positions of the mass points of the corresponding tetrahedron
- demo

Summary Mass-Point Systems

- forces, e. g. gravity, energy constraints, damping, plasticity
- numerical integration schemes (see particle systems)
- collision handling for planes
- visualization, combination of low-resolution simulation meshes with high-resolution visualization meshes

References

- Ian Millington,
 "Game Physics Engine Development",
 Elsevier Amsterdam, ISBN-13: 978-0-12-369471-3, 2007.
- David H. Eberly,
 "Game Physics",

Elsevier Amsterdam, ISBN 1-55860-740-4, 2003.

- Murilo G. Coutinho,
 "Dynamic Simulations of Multibody Systems", Springer Berlin, ISBN 0-387-95192-X, 2001.
- Andrew Witkin, Kurt Fleischer, Alan Barr,
 "Energy Constraints on Parameterized Models",
 SIGGRAPH '87, ACM New York, pp. 225-232, 1987.
- M. Teschner, B. Heidelberger, M. Mueller, M. Gross,
 "A Versatile and Robust Model for Geometrically Complex Deformable Solids", Proc. Computer Graphics International CGI'04, Crete, Greece, pp. 312-319, June 16-19, 2004.

FREIBURG