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Motivation

= sets of particles are used to model time-dependent
phenomena such as ropes, cloth, deformable objects

= forces between particles account for resistance to
stretch, shear, bend, volume changes ...

1D, 2D, and 3D mass-point systems, University of Freiburg

FREIBURG
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Example

= discretization of an object
INto mass points

= representation of internal forces
between mass points,
e. g. spring forces

= computation of the dynamics,
positions and velocities
at discrete time points
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Applications

= entertainment
technologies
= cloth
= facial expressions
= computational
medicine
= medical training
= pre-operative
surgical planning

Bridson, Fedkiw, Anderson, Stanford University
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Internal Forces

= internal forces are I
symmetric with -
respect to at least " ~

two mass points 7
Fiib+F =0 Fj+Fj +F =0

= sum of internal S5 pint _ g
forces is zero L=
/ f
= internal forces « f
cause no torque internal forces external forces __&_
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Internal Forces

= internal forces are
defined foratleast F*+F'=0 = F*=0
two points

= internal forces do not influence the global
dynamic behavior of a mass-point system
(linear and angular momentum is preserved)

= spring force is an internal force

= external forces can change linear and
angular velocity of a mass-point system

= iS gravitational force an internal force?
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Gravity

= Objects with positions xi,xs and masses mq, mo
attract each other with forces Fy, F5

F{=-F, =G n2 X=X

%2 —x1 |2 |x2—x1]

= (G isthe gravitational constant

G~ 6.67 - 107N m?kg?

= internal force, if applied to both objects
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Gravity

on earth
= gravity is dominated by earth
= mass m; of the earth is constant

= distance from surface to center is nearly constant
. g = |sz;1<1|2 éj:ih = const
g is an acceleration pointing towards the earth center
in virtual environments, the direction depends on the
coordinate system, e. g. g = 9.81- (0,0, —1)Tm s2
force exerted to mo due to gravity: Fo =msy - g

external force, if not applied to both objects
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Elastic Spring

= k -spring stiffness
L -initial spring length
[ - current spring length

= |inear force-deformation relation
(Hooke's l[aw)

F=k(L-1)
= simple mechanism for internal forces

= elasticity: ability of a spring to return to its
initial configuration in the absence of forces
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Mass-Spring System in 3D

= non-linear relation of forces and mass-point positions

X3

L3, k3

Fo =, ki(|x; — xo| — L;) =20

|Xz‘—X0
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A Simple Deformable Object

= discretize the object into mass points
= define the connectivity
(topology, adjacencies of mass points)
= set model parameters
= point: mass, position, velocity
= spring: stiffness, initial length
= compute forces: spring force, gravity
= update positions and velocities of all mass points
with a numerical integration scheme, e. g.
vit" = vl + hLF! x T = xt 4 hvith

7 1
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Explicit Numerical Integration

= 1; 1 depends on position x} and
all connected neighbors x,

e.g., Heun

= forall mass points
compute k; 1,11
= forall mass points
compute K; 2,1; 2
= forall mass points

t+h l_ﬁ—l—h

compute X, ,V,

1; 2depends on the predicted
position x! 4+ k; 1h and on
the predicted positions of all
neighbors x% + k; 1A

Xt
Vf{? Xt
xi + 11k
ng‘l‘ki,lh;---,xg-‘l‘kj,lh
1 1
t
(G + ok
xX: + (2 ,1+2 2)
1 1
t
h(=l1 + =1,
V’L _|— (2 71 —1_ 2 72)
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Implicit Numerical Integration

= e;g.,lmfhcr;t EulerT ) IR by pytth
X = (X, Xy, Xy) t+h ot tht-I—h t t
vi=(v{,vy,...,V,)
t (1) — T T TN\T
F'(x') = (F{,Fy,...,F.)
M = diag(my, mi, M1, ..., My, My, My,) € R33N

- Mvt—|—h _ Mvt i th—I—h( t—|—h)
MviTh = Mv? + hFtHh(xt + hvith)

= force linearization
Mvi " = Mv? + th( Y4 2yt IEL _ gt ¢ R3nx3n
(M — h2J") vith = Mv! 4 hF*(x")
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Implicit Numerical Integration

= in the Jacobian J¢, a spring force between x! and x¢

J
is represented by four sub matrices
t 3x3 t 3x3 t 3X3 t 3X3
Ji; €RY2 L, e RO Ty € R0 5 € R
that are accumulated at positions
(32,37), (34,31), (31,317), (37,37)

Jt _ 8_1'_'“; ERBXB

7,1 oxt

— _Jt — Jt . — _Jt .
o Jm JJ,J JJ,%

University of Freiburg — Computer Science Department — Computer Graphics - 16



Outline

= introduction

= forces

= examples

= energy constraints

= damping

= plasticity and other effects
= performance
= collision handling

= Visualization

University of Freiburg — Computer Science Department — Computer Graphics - 17



Spatial Discretization

= deformable objects are commonly discretized
into mass points and simplices

= line segmentsin 1D, triangles in 2D, tetrahedrons in
3D

1349 mass points
4562 tetras
6888 springs

2949 mass points
10257 tetras
15713 springs

8 mass points
5 tetras

FREIBURG
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Generalized Springs

= can be used to preserve, e. g.,
= a distance between two points
= an area defined by three points
= a volume defined by four points

= forces are derived from constraints C
= (C depends on mass point positions
s C(x1,...,%x,)=0
iff the constraint is met,
e. g. a current distance equals
a goal distance, a current area
equals a goal area, ...
= motivation demo
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demos/BadCube.lnk

Constraint Forces

= potential energy E based on constraint C

E(Xl, ce ,Xn) — %kC(Xl, s axn)Z

s F =0 iffthe constraintis met
s F >0 iffthe constraintis not met

= force at mass point j based on the potential energy E

0
Fi(x1,...,Xn) = —gE(Xl,...,Xn)
J
— —]{O(Xl,...;Xn)ac(xg.njxn)
Xj __@_
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Constraint Forces

= for a constraint C, the sum of constraint forces
at all involved mass points is equal to zero

Zj Fj(Xl,...,Xn) =0

= linear and angular momentum of the system
(X1,...,%Xy) are preserved

s constraint forces are internal forces
(conservative forces)
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Distance Preservation

= preserve distance L between x; and xs
Gd(Xl,XQ) — |X1 — XQ’ — L

X1 = (Jfl,yl,Zl)T X2 = ($27y2722)T

Cd(xlvylaz17$27y2a 22) — \/(371 — 332)2 + (yl — y2)2 + (Zl — 22)2 — L

[ 5ot )
8581

r1 — X2
aCd _ 8C’d _ 1 . . X1 —X9
ox1 Oy1 o |X1—X2| Y1 Y2 o |x1—x2
\ 0C 4 } 21 — &9
821
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Distance Preservation

s forces F,; based on constraint Cjy

Fa(x1) = ~kaCa§gt = —ka(|x1 — xa| = L) 2233
F = — Lk, 9Cq4 — L _ . || %1 —x2
d(x2) iCa'5s a(lx1 — x| — L) 122
2 | 1 2|

= F, are spring forces with stiffness constant kg
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Area Preservation

= preserve area A of a triangle (x1, x2,x3)

» edges €1 =X3— X1 € = X3 — X
= constraint C,(x1,x2,x3) = 3le; x ex] — A

_ _ Cq
t - el X e2 S = ka’ 0.5|e1 >(82|

= forces F,(x1) =sey Xt
FG(XQ) = st X ey

Fa(Xg) = st X (62 — el)
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Volume Preservation

= preserve volume V of a tetrahedron (xi,x2, x3, X4)
» edges e; =x9o—X; € =X3—X] €3=3X4—X]
= constraint CU(Xl,Xg,Xg,X4) — lel(eg X e3) -V

6

s forces
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distance preservation vs. surface tension vs.
volume preservation volume preservation
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C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/combined.bat
C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/combined.bat

Demos

= volume preservation can
be used to mimic curvature
preservation at adjacent
triangles

curvature can be preserved volume forces can mimic
by preserving the volume bending forces o
of the virtual tetrahedron (x;,X,,X3,X,) 2
——————
- TS
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demos/Face.lnk
demos/Face.lnk

Constraint Forces - Summary

= powerful mechanism to preserve
various characteristics (constraints)

= are internal forces, preserve linear
and angular momentum

= are defined for sets of mass points
= Can be combined, weighted with stiffness constants

= drawbacks
= can be computationally expensive
= non-intuitive parameters in case of combined constraints
= can be redundant or competing
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Damping Forces

= are proportional to a velocity

= actin the direction opposite to a velocity

= model friction

= can improve the stability of a system

= should not slow down the movement of a system
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Point Damping

= damping force according to the velocity of a mass point

= force is applied in opposite direction to the velocity
mi&t = Ft — ’}/Xt

= force at a point is "used" for acceleration and damping

mx; + X = Fy

= e.g., mass point under gravity does not accelerate
iff gravity and damping cancel out each other
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Explicit Point Damping

= damping does not always damp
= v -velocity without damping

= V' -velocity with added damping
= F9- damping force

v iel V' V1.T ’ v 1|® /
P | Fd | l"
t t+h t+ 2h
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Implicit Point Damping

= considering the current velocity for damping
can cause problems
Vitn = Vi + h%(Ft — YVy) = v; + h%(Fi — FY)
= considering the velocity of the next time step
reduces problems
Viip = Vi + h%(Ft — YViin) = Vi + h%(Ft — Ff+h)
= can still be directly solvable for v.44, €.g.,
(Vi +hiFe)

Vitp = ]__|_h_’Y
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Explicit Spring Damping

= damping force according to the relative velocity of
adjacent mass points x; and x»

= nhormalized direction

. X9—X1
dt = S

= difference of the magnitudes of velocities
orojected onto d,
(magnitude of the relative velocity)
me = V2,tat — Vl,tat
= damping forces
Fl,t — ’Ymt&t F2,t — —’Y’mtat
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Implicit Spring Damping

= generally more robust

Fl,t — ’}/mt+hat+h F2,t — —’Y’mt+hat+h
= implementation in two integration steps

= first step predicts positions and velocities
without damping

= second step corrects predicted quantities
with added damping
= implementation in one integration step
= predict positions and velocities within the
damping force computation, e. g. using Euler

= prediction and actual integration can be done
with different schemes
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Demos

benefits and drawbacks of damping
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C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/damping.bat
C:/Users/teschner/Documents/demos/OgreDefColStudio_FMX/damping.bat

Damping - Summary

= point and spring damping influence the stability

= implicit forms are preferable
due to time discretization

= reduces oscillations
= point damping affects the global object dynamics

= integration schemes can add artificial point damping
(which cannot be controlled by the user)

= spring damping does not affect
the global object dynamics
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Elasticity and Plasticity

= elastic deformation is reversible
= plastic deformation is not reversible ™ —

elastic object

\ reversible deformation

original shape deformation
due to forces

plastic object
irreversible
deformation

FREIBURG
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Elasticity and Plasticity

= decomposition of deformation
€ = €elastic T €plastic
X2

= decomposition of corresponding forces

F = ke = keelastic + keplastic T,

= only elastic forces are considered
Felastic: = ke — keplastic — keelastic

University of Freiburg — Computer Science Department — Computer Graphics - 40
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Implementation

= initialization
€plastic —

= update
compute €
€elastic — € — €plastic

if €elastic ~ yleld then €plastic — E€plastic + Creep Eelastic

if €plastic > max then epjastic = max

s yield, creep, max are user-defined parameters
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Elastic and Plastic Deformation

Elastic Deformation
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Resting Distance, Area, Volume

= plastic deformation corresponds to adjusting
the resting distance between mass points

= principle can also be applied to
other properties, e. g. area, volume

» adjustment of resting states
causes internal forces

= can be used for effects such as contraction
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Strain Limiting

= |imited deformation
= geometric, position-based implementation

if [x; — x2| > aL then

mao X2 — X1
X = Xq+ Xo — X1| — ol
1 1 m1+m2(| 2 1| )|x2—x1\
mq X2 — X1
X = X9 — Xo — X1 | — ol
’ ’ m1+m2(| ’ l )|X2—X1|
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Strain Limiting

implementation approximates a

bi-phasic force-deformation relation

position update can be performed
after the integration step

iterative implementation
for mass-point systems

preserves linear and
angular momentum

= corresponds to some
internal forces

al A

' deformation

force
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Forces - Summary

= external forces change the linear and angular
momentum of a system, e.g. gravity, point damping

= internal forces can preserve characteristics,
e.g. distances, areas, volumes

= damping forces improve the stability of a system

= resting length adjustments, symmetric position or
momentum adjustments can mimic internal forces,
e. g. for plasticity, stiff springs

= challenge:
stable simulation of stiff, non-oscillating deformable
objects without explicit or artificial point damping
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Performance

= Criteria
= system updates per second (frames per second)
= simulation time step

= parameters

= number of primitives (mass points, distances,
volumes ...)

= internal and external forces
= numerical integration scheme

= additional costs for, e.g., collision handling,
rendering, ...
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Performance - Example

= cube with 4096 mass points,
16875 tetrahedrons, 22320 AR
springs, distance and volume G455

IN/. Vi
VAN |
ANNININ/NN/N

forces, gravity, Pentium 4, 2GHz e v

)
75
KL
N

7

N

7

K
V.

SIPRRRNA
WA N VAN VAN VANVAN

method error time step comp. time ratio
order [ms] [ms]

expl. Euler 1 0.5 9.5 0.05

RK 2 2 3.8 18.9 0.20

impl. Euler 1 49.0 172.0 0.28

RK 4 4 17.0 50.0 0.34

Verlet 3 11.5 9.5 1.21
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Plane Representation

= in 3D, a plane can be defined
with a point x, on the plane
and a normalized plane normal npjane

» the planeis the set of points x with npjane - (x —x,) =0
» for a point x, the distance to the plane is

d = Nplane - (X — Xp)

Iplane
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Collision Response

= if a collision is detected, i.e. d <0,
a collision impulse is computed that prevents
the interpenetration of the mass point
and the plane (wall)

= we first consider the case of a particle-particle
collision with n being the normalized direction
from xs to x1 Mo

= the response scheme is later adapted
to the particle-plane case
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Coordinate Systems

= velocities v before the collision response and velocities V
after the collision response are considered in the
coordinate system defined by collision normal n and
two orthogonal normalized tangent axes t and k

= €. g Ul,n Ng Ny Ny U1,
U1t — tw ty tz U1,y
U1k km ky kz U1,z

= the velocity V after the response is transformed back

Vl,ac Ty t:}: km Vl,n
Vig | =1 ny ty Ky Vi
Vl,z n; tz kz Vl,k -0
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Concept

s conservation of momentum

’m1V1,n —MmMiv1n = P, m2V2,n — Mav2.n, = - P,
mlvl,t — M1 = P m2V2,t — MaV2 ¢t = — P,
mlvl,k — Mg — Py, mZVQ,kz — Mmav . — — by

s coefficient of restitution, e =1 elastic, e = 0 inelastic
Vim — Vo = —e(v1,n — v2.n)

= friction opposes sliding motion along t and k
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Linear System

= Nnine equations, nine unknowns

0 0 1 0 0 -1 0 0/ B )\ (—e(vlyn—’vgﬂn)\
1 0o 0 0 O 0 0 O Py 0

o 1 0 0 0 0 0 O P 0

0 0 mi 0 0 0 0 0 ‘/l,n mi1U1,n

—1 0 0 ma 0 0 0 0 Vlt = miU1

0o -1 0 0 m 0 0 0 Vik mivy g

0o 0 0 0 0 mg 0 O Van Mava .y,

1 0 0 0 0 0 mo 0 Vz?t maov2 ¢

0 1 0 0 0 0 0 mo/) \ Vor/) \  movas )
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\

Linear System
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= Inverse
_mima __m2 _mi1
mi+ms 0 0 mi+ms 0 0 mi+ms 0
mimapt mao [ mip
mi1-+ms 1 0 mi+ms 0 0 mi+ms 0
mme 01 gm0 0 gme 0
o 1 1
mi+mo 0 0 mi+mso 0 0 mi+mo 0
ma 1 0 _ ma 1 0 2] 0
mi+mso mi miy(mi+ma) mi mi+mse
ma 0 1 _ ma 0 1 2 0
mi+ms mi mi(mi+ma) mi mi+me
T 1 1
mi+mse 0 0 m1+ms2 0 0 mi+ma 0
o ma 1 0 4] 0 0 . i 1
mi+ms mao mi+ms mao(mi+ma) mo
__Mmip 1 N _ map
mi+ms 0 mao mi+ms 0 0 mao(mi+ma) 0

3o o000 o o o




Particle-Plane

= plane has infinite mass and does not move: vo = Vo =0
= columns 2, 3, 7, 8 9 do not contribute to the solution

= to solve for the particle velocity V; after collision
response, rows 4, 5, 6 have to be considered

mo 1 _evl,n
mi-+mo mi+ms 0 0 vl,n
ma o Mo 1 O mlvl,n _ V
m1+mo mi(mi+mse)  m - - 1.t
mo o Mo L 1 1V1,¢ Vl )
mi1+ma2 m1(mi1+mz) mi MV :

= plane has infinite mass

—ev
1 0 0 0 Ln Vin
_u 1 0 miU1.n . V.
M m. e = 1,t
2 1 mlvl,t V
f ma o MV 1,k -2
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Implementation

‘/t,n = —C€Utnp V¢
Vit v, — (e + 1) fk /Vt

Vt,k: Utk — ,u(e + 1)’Ut,n

= 4 is difficult to handle

s Vil < o] and sign(Vy,,) = sign(vy,)
should be guaranteed

s Vie=pvey Vie=pvrr 0<pu<l1
is a useful simplification
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Position Update

= the collision impulse updates the velocity
= however, the point is still in collision (d < 0)

= for low velocities, the position update in the
following integration step may not be
sufficient to resolve the collision

= therefore, the position should be updated as well, e.g.
xi+n = Xt + d - n which projects the point onto the plane

= the position update is not physically-motivated,
it just resolves problems due to discrete time steps
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Concept

= geometric combination of
= a low-resolution tetrahedral mesh for simulation and
= a high-resolution triangular mesh for visualization

= coupling by Barycentric coordinates of a surface point
with respect to a corresponding tetrahedron

~ A

N

e Yoo (e AN

simulation visualization -
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Surface-Volume Coupling

= 3 point xs can be represented with the points
of a tetrahedron

X3

FREIBURG
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Barycentric Coordinates in 3D

= a point x5 can be represented using (x1, X2, X3,X4)
Xy = X1 + as(Xo — X1) + a3z(x3 — x1) + as(x4 — X1)
Xs = (1 — ag — a3 — ay)X1 + @oXo + azXs + Xy

Xs = Q1X] + QoXg + 3X3 +uXq4 Q1 +a2+a3+ag =1

(a1, a0, 3, 4) are Barycentric coordinates of x,
with respect to (x1, x2, X3, X4)
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Properties

r O< ;<1
Xs IS inside the convex combination of (x1,x2,x3,X4) ,
i.e. inside the tetrahedron

s o, =0Va; =1
Xs IS on the surface of the tetrahedron

m ; <O0Va; >1
Xs IS outside the tetrahedron
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Computation

Xs = X1 + ao(Xo — X1) + as(x3 — X1) + ag(xq4 — X1)

= |eads to the following system
a2

((XQ—Xl) (x3 — x1) (X4—X1)) a3 | =x, — X3

= singular, if two edges of the tetrahedron are parallel |
= o) iscomputedas a; =1—as —az — a4
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Implementation

= data structure
« for each point of the surface mesh,
store Barycentric coords and the corresponding tetrahedron
= pre-processing
= for each surface point, determine the closest tetrahedron of
the simulation mesh (point of the surface mesh should be
located inside a tetrahedron)
= for each surface point, compute its Barycentric coords
with respect to the corresponding tetrahedron
= in each simulation step
= for each surface point, compute its position from its
Barycentric coords and the positions of the mass points
of the corresponding tetrahedron

= demo __B_
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Summary Mass-Point Systems

« forces, e. g. gravity, energy constraints,
damping, plasticity

= numerical integration schemes
(see particle systems)

= collision handling for planes

= Visualization, combination of low-resolution
simulation meshes with high-resolution
visualization meshes
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