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Application (with Pixar)

10 million fluid + 4 million rigid particles, 50 s simulated,
50 h computation time on a 16-core PC, www.youtube.com/cgfreiburg
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Application (Commercials)

Copyright
NHB Studios,
Berlin,
Hamburg,
Dusseldorf
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Application (with FIFTY2 Technology)
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PreonlLab: Drive Through

Preonlab, FIFTY2 Technology GmbH, www.youtube.com -> fifty2
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Application (with FIFTY2 Technology)

Preonlab, FIFTY2 Technology GmbH, www.youtube.com -> fifty2
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction

University of Freiburg — Computer Science Department — Computer Graphics - 6



Concept

o

+ TELREL
51 2E3EEY
TETETL
X IR
L
AR &
BRI <
T e 2
L e S
e
R SR
e 7
5

University of Freiburg — Computer Science Department — Computer Graphics - 7



Concept

BURG

UN
FRE

University of Freiburg — Computer Science Department — Computer Graphics - 8



Fluid Representation
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Fluid Representation

» fluid body is subdivided into small moving
parcels, i.e. particles, with fluid properties

X7V7mﬂv7p7p

Fluid body Set of fluid
parcels

FREIBURG
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Particles / Fluid Parcels

= represent small fluid portions

= are represented by a sample position x;
= move with their velocity v;

= have a fixed mass m;

= volume and density are N
related by V; = ™ / z
= preservation of density / volume Xi

over time is one of the challenges
of a fluid simulator

= shape is not considered

miapiaVi
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Typical Setup

= define overall fluid volume V' and fluid density po
= define number n of particles

= assume particles of uniform size V; = %

= compute particle mass as m; = po - V;

= sample x; represents a particle in the simulation

[ J @ o
[ J [ ) o
Va o
‘/i: L2 o . L
X
o o o
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Particle Shape

= typically initialized as a cube
= typically visualized as a sphere
= implicitly handled as Voronoi cell by the simulation

Z &

Preonlab, FIFTY2 Technology GmbH Adrian Secord: Weighted Voronoi Stippling, NPAR 2002.
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Fluid Simulation

= computation of positions and

velocities of fluid parcels over time

= velocity change from current time ¢
to subsequent time t + At

v(t+ At) = v(t) + At - a(t) v(#)
= position change
x(t+ At) =x(t) + At - v(t + At)

v(t + At)

a(t + At)
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Example

v(t+ At) =v(t) + At - a(t)
x(t+ At) =x(t) + At - v(t + At)

Fluid Fluid Known Unknown
parcels current future
state state
O
[+
=
S P—
et
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Accelerations

= gravity g

= VISCOSity vV3v
= friction

= accelerate parcel towards the average
velocity of adjacent fluid parcels

1

= pressure acceleration —;Vp

= prevent fluid parcels from density / volume changes
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Simulation Step - Example

= gravity and viscosity would change the parcel volume

0
v(t) =0 l 8 ® vViv(t)=0
Gravity Viscosity

= pressure acceleration avoids the volume / density change

T —-Vp=—g

P

Pressure
acceleration
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Simulation Step - Example

= current state

x(t) =0
v(t) =0
= overall acceleration = a(t) =g+ vV?v(t) - ;Vp
=g+0-g=0
= Subsequent state x(t + At) = x(t) + At - v(t) =

0
0

v(t+ At) = v(t) + At - a(t)
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Neighboring Parcels

= computations require

neighboring parcels j
= density or volume
_ _ v
pi =2 miWis Vi= s vow,
= pressure acceleration
— =V = = 30 (pi 4 pj) ViV Wi
1 C— (P 4 Pi .
_EVPZ = Zj m; (pf p?) VW;;
= Smoothed Particle Hydrodynamics
= Gingold and Monaghan, Lucy
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Simulation Step - Implementation

= determine adjacent particles / neighors
x;(t) of particle x;(t) (x;(t)is neighor of x;(¢)!)

= compute forces Fy(t) = > . ... as sums of neighbors

= advect the particles, e.g. Euler-Cromer

= determine neighbors . .
of particle x;(t + At) °
x; (t)
*x; (1)
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Governing Equations

= particles /sample positions x; and the respective
attributes are advected with the local fluid velocity v;

dx;

dt
= time rate of change of the velocity v; is governed
by the Lagrange form of the Navier-Stokes equation
d . 1 F?;other
= this form of the Navier-Stokes equation requires that
the particle positions are advected with the flow

= in contrast to the Eulerian form, it does not contain the
convective acceleration v; - Vv; , which is handled
by the advection of the particles / sample positions

= in Eulerian approaches, sample positions
are not necessarily advected with the flow o
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Accelerations

. —ivpi . acceleration due to pressure differences

= preserves the fluid volume / density
= pressure forces act in normal direction at the surface of the fluid element

= small and preferably constant density deviations
are important for high-quality simulation

= V?v,: acceleration due to friction forces

between particles with different velocities
= friction forces act in tangential (and normal) direction
at the surface of the fluid element
= kinematic viscosity v ~ 107%m? - s~ |arger friction is less realistic,
but can improve the stability, dynamic viscosity n = = v - pg

P . e.g., gravity, boundary handling

m;
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Accelerations

o
8531; p 0 O
_1 — 1 p _1
= Ij‘?p._- ) o, = p‘7 0 P 0
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s Vv =1V (VV) = vV Oxy,  Oxy Oz,
sz a’Uz 8’Uz
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— 82vy + 62vy + 820y
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Forces

ViSCosity
- force
pressure pressure
force force
external viscosity >
force force
¢ external
force

v
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Lagrangian Fluid Simulation

» fluid simulators compute the velocity field over time

= Lagrangian approaches compute the velocities for
samples x; that are advected with their velocity v;

7 7 P @ — o o> &

S S . A

/! 7 7 o« [ 7 S

/ f ! ¢ VAV

Vi@, yi, zin t) = (ug, v;, w;) vi(x; + At - uy, y; + At - v;, 2z + At - w;, t + At)
x;(t) = (CUz Yi, %) X;i(t + At) = (z; + At - uy, y; + At - vy, 2 + At - wy;)
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Moving Parcels vs. Static Cells

& —g+vViv— LVp

Acceleration of a moving
parcel
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Smoothed Particle Hydrodynamics

= proposed by Gingold / Monaghan and Lucy (1977)

= SPH can be used to interpolate fluid quantities at
arbitrary positions and to approximate the spatial
derivatives in the Navier-Stokes equation with a
finite number of samples, i.e., adjacent particles

= SPH in a Lagrangian fluid simulation

= fluid is represented with particles
e part|cle positions and velocities are governed

by = v, and d" =1 -V +vV3iv; + F;h -
x D, VpZ and yV2vl are computed with SPH

= SPH s typlcally used in Lagrangian,
mesh-free approaches, but not limited to i}
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SPH Interpolation

= quantity A; at an arbitrary position x; is approximately
computed with a set of known quantities A; at
sample positions x;
Ai =325 ViAiWij = 325 5H AW
= X;iSs not necessarily a sample position
= if x;is a sample position, it contributes to the sum
= W;jis a kernel function that weights the contributions
of sample positions x; according to their distance to x;
Wij =W (—”Xiﬁxjn) = Wi(q)

= dis the dimensionality of the simulation domain
= histhe so-called smoothing length
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SPH Interpolation — 2D

Particle of interest

Neutrino Physics Guide
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Kernel Function

= close to a Gaussian, but with compact support
= support typically between h and 3h
= e.g. cubicspline (1D: a = 5-2D:a= 2= 3D: a = =5 )

(2—¢)P—4(1—-¢q)® 0<g<1
W(g)=aq (2—¢)° 1<qg<2 gq=
0 q> 2

= number of particles / samples that are

considered in the interpolation depends on
= dimensionality, kernel support, particle spacing

[ = |

= e.g., 3D, cubic spline support 2h, particle spacing h
result in 30-40 neighboring particles

= number of neighbors should not be too small to
appropriately sample the kernel function
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Kernel Function in 1D

%4 W
0—8 8 x 0—8
(2— )3 40 -y o<zl <h 2
W(z) =g (2— ‘i—l)g’ h < x| <2h W(g;) — %6_2-(0.5%)2
0 x| > 2h
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Spatial Derivatives with SPH

= original approximations

VA@ = Zj T;—;AJVWZJ
V2A; =Y, A VW,

= currently preferred approximations

preserves linear and

VAz = P Zj m; (p_2 + p_?ﬂ) VWij angular momentum,

i when used for pressure forces

2. — 9 m; A X VW;; more robust as it avoids
\ ¢ ZJ Pj ij X;j-Xi;+0.01h? the second derivative of W

VoA =—1% mA; VW,

Az’j:Ai_Aj Aij:Ai_Aj Xz‘j:Xz'_Xj
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Kernel Derivative in 1D

W (a VWi(x).
(06— ( ) h - 1
I h=4
} —
| /_
h =2
078 -6 -4 -2 l; 2 4 6 8 w -8 (‘3 —L‘l —‘2 lI] ; Lll 6‘ 8 x
1 (2—'%_')3—4(1—%)3 0<|z|<h ) —3(2—%)2“2(1—%)2 0<[z|<h
W(r) =gz (2— 1) h<lo|<2h VW)= —gig{ -32-5h? h <z <2h
0 |x| > 2h 0 |x|= 2h
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Density Computation

= explicit form
s
pi =25 5 PiWis = 22 miWij
= comparatively exact
= erroneous for incomplete neighborhood, e.g. at the free surface

= differential update

= using the continuity equation

= time rate of change of the density is related
to the divergence of the velocity field % = —p;V - v;

dpi __ ~ y

= noissues for incomplete neighborhoods
= drift, i.e. less accurate for large time steps
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Simple SPH Fluid Solver

find all neighbors j of particle i

= typically accelerated with a uniform grid
= cell size equal to kernel support, e.g. 2k

compute pressure p; ;
= e.g., from density p; using a state equation, e.g. p; =k ((5—0) — 1)
= po is the desired rest density of the fluid

= Kk is auser-defined stiffness constant that scales
pressure, pressure gradient, and the resulting pressure force

= SPH with state equation is referred to as SESPH
compute pressure force, viscosity / gravitational force

compute other forces, e.g. due to boundaries
update velocity and position
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Simple SPH Fluid Solver

s for all particle 1 do
find neighbors j

for all particle i do

Pi = Zj m;Wi;
compute p; from p;

for all particle © do

pressure m;
Fi - P; VPZ'

_ 2
= m;rV*°Vv;
F?/ (t) — F?T@SS’U;'I"Q + F’I:J’LSCOS?/ty —I— thhefr

1

v18cosity
Fi th

other
F’i

for all particle © do
V; (t —+ At) =V; (t) -+ AtFZ (t)/mz
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Simple SPH Fluid Solver

s for all particle 1 do
find neighbors j

for all particle » do

pi =D, miWi;
compute p; from p;

for all particle » do

pressure 1
i — _Eva'

viscosit
a, Y= V2,
other __
a; =g
ressure viscosit
a;(t) = al + a, Y 4+ aother

for all particle © do
Vz'(t + At) = V; (t) + Ataq; (t)
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Accelerations with SPH

0 pressure __ i Pj
al = =% my (B + %) VW,
J

02

2
viscosity mj o X VWi
other __

a; =g

University of Freiburg — Computer Science Department — Computer Graphics - 39



Setting

= kernel has to be defined, e.g. cubic with support of 2h

= particle mass m; has to be specified
= e.g., m; = h3py for a particle spacing of h

= smaller spacing would result in smaller mass
and more neighbors per particle

= numerical integration scheme

= semi-implicit Euler (a.k.a. symplectic Euler or
Euler-Cromer) is commonly used
= time step
= sSize is governed by the Courant-Friedrich-Levy (CFL) condition
n e.g, At< )\W with A = 0.1 and particle spacing h

= motivation: for A <1, a particle moves less
than its diameter per time step
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Simple SPH Fluid Solver

s for all particle ¢ do a;, = =— ;M (ﬁ—% T %) VWi;

find neighbors j viscosity m; i VWi
: = 2v Z . Vij 5
for all particle i do ’ J pj " xij-xi;+0.01h
p other

p; = Zj m,; Wi, a; — 8 SPH approximations
compute p; from p;
for all particle » do

f""essum — —lei Navier-Stokes
Pi :
v18cosit equation
a, Y=V,
other __
a; =8
ressure v1scosit
a;(t) = al + a, Y 4 gother

for all particle © do
Vz'(t + At) = V; (t) + Ataq; (t)
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction
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Force Types

= momentum equation

dt

other
F'i

dv; — —%Vp@' + szvi + —4—

T ;

= body forces, e.g. gravity (external)
» surface forces (internal, i.e. conservative)

= based on shear and normal stress distribution on

the surface due to deformation of the fluid element
= normal stress related to volume deviation
= normal and shear stress related to friction due to velocity differences

fluid pressure normal
element stress
resulting force ¥ gravity
acting on the other M 7.
fluid element Fi Pi Pi

volume
deviation

friction

shear
stress

——,

velocity
difference
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Pressure Force in x-direction

= pressure force

acts orthogonal :
to the surface of Az
_ - <
the fluid element  pdyd: 5 (4 +8p/ox dx) dy dz
dy dx

= resulting pressure force
(p— (p+g—§ d:c)) dy dz = —g—i dr dy dz = —% %4
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Overall Pressure Force

= force at particle ¢

Opi
832,,;’:3
pressure Di _ _ My
F =—| 3= Vi=—=Vp; V; = ——+Vp;
a%,y Pi
Pi
aiﬂr@’z

= respective acceleration

ressure
pressure __ F?

_— 1 ,
v N m; - inPf,;
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Cauchy Momentum Equation

= Lagrange form
d 1V o+
s O S the stress tensor (a 3x3 matrix in 3D)
describing the pressure distribution at the
surface of a fluid element o = —pls + 7
= V.o isthe resulting force per volume
acting on the fluid element 9u 4 0u %+ o
= 7 isthe viscous stress tensor r=v| 24+ 2;‘; 5+ 3;
= V.7 =0vV?v s the resulting A8 87
viscosity force per volume

‘ thhe’r‘
. dd‘;@ = —ini + vViv; +

Fother

T ;
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction
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Illustration

= approximate a function and its derivatives
from discrete samples, e.g. p, Vp, V?v

= convolution of discrete samples with
reconstruction filter, e.g. cubic spline

A

reconstructed
~~ function

1 1]

d

sampled
function

(particle
data)

reconstruction reconstruc-

kernel tion kernel for
(SPH kernel) first derivative -
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Derivation

= quantity A at position x can be written as
A(x) = [ A(x)o(x — x")dx’

» diracdelta 6(x) =d(x)d(y)o(z) and d(x) = {

o [T25(z)dr =1

= dirac delta is approximated with a kernel

function with limited local support &
Alx) = [, AW (x —x', h)dx’

oo x =0
0 z#0
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Kernel Function

= integral should be normalized (unity condition)
JoW(x—x',h)dx' =1

= support should be compact
Wi(x—x',h)=0for [|x —x'|| > h

= should be symmetric
W(x—x'h)=W(x"—x,h)

= should be non-negative
W(x—x'h) >0

= should converge to the Dirac delta for A — 0

= should be differentiable
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Kernel Function

= close to a Gaussian, but with compact support
= support typically between h and 3h
= e.g. cubicspline (1D: a = 5-2D:a= 2= 3D: a = =5 )

(2—¢)P—4(1—-¢q)® 0<g<1
W(g)=aq (2—¢)° 1<qg<2 gq=
0 q> 2

= number of particles / samples that are

considered in the interpolation depends on
= dimensionality, kernel support, particle spacing

[ = |

= e.g., 3D, cubic spline support 2h, particle spacing h
result practically in 30-40 neighbors

= number of neighbors should not be too small to
appropriately sample the kernel function
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First Kernel Derivative

T
. anﬁ::(aw% oW, GW%)

8:87; T ? 83)2',9, ? 8(L‘i,z

VW@'j — 8W(q) Vq

= e.g. cubic spline (1D: @ = &-2D: a = 725 3D: a = 5
— Xij
Va4 = 1,
-3(2-¢)?+12(1—-¢)* 0<qg<1
agfq(q) —a{ —3(2—q)? 1<g<?2
0 q>2
—3(2—-¢)*+12(1—-¢)? 0<qg<1
VWi, _O‘||x3||h, —3(2 —q)? 1<qg<?
0 q=>2
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Second Kernel Derivative

’ 2 oW,
N V2W,L-j =V - (VW,LJ) — %Q:W’U + %CEW%J + 83: %

T,I

VIW, = St (Va)? + P (V - (Vg)

0q dq
. . 1
= e.g. cubicspline (1D: @ = &2D: a= 725 3D:a = =3 )
Xij xij _ xgll* 1
(VO = 1 Tl = Ty 1252 = 2
. 2
V- (V) = ay
-32—-¢q)?+12(1-¢)? 0<qg<1
M —ad -3(2-¢) 1<g<?
0 q> 2

6(2 - q) 1<g<2
0 q>2 e
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Design of a Kernel Function 1D

= shape close to a Gaussian, e.g.

_ ) ) (2-¢)°—-4(1-¢q)° 0<qg<1
n oW (sl — 0 (2) = ol (q) = W(g) a{ (()2—(_1)3 1§g<2
q =

= ) f02h @W(Qf)da’; = 2 f02 aW(q)hdq — 1 integration by substitution
1
2 foz W(q)hdq

[ | o =

= 1D: integration over a line segment 2f02 W(q)hdg =

2 [F[(2—q)® —4(1 - q)*] hdg +2 [ (2 — ¢)*hdg = 21 h + 21h

1
@ = 5h
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Design of a Kernel Function

= 2D: integration over the area of a circle

2R (2)z dade = [T [2 W (g)hgh dgd¢ =

27 fy [a(2 — @)* — 4g(1 — g)*] B2dg+2n f1 1(2-q)*h*dq =

5

Q= T 72

= 3D: integration over the volume of a sphere

2ﬂ%h2+27rl3—0h2

o S f) W )asing dedodg = [T [ 2, [3 W (g)(gh)hsing dgdfde =

dr [ 122 — )® — 4q(1 — @)®] h3dg+4r [{ ¢>(2—q)3h3dg =

o
Q= Trh3
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Particle Approximation

%th x" YW (x — x', h)dx’
= [ A(X)WX—X ,h)p(x')dx’

p(x’)

= consider a limited number of samples / particles x;
representing a mass m(x;) = p(x;)V(x;)
A(xi) = ) Ax))W(xi — x5, )V (x;)

A(xy) = Y, A%y (x; — x5, h)ym(x;)

J p(x;)

= typical notation
A =5 ZLAW

J Pj
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Spatial Derivatives

m ViAx) = [ [V AX)W(x —x', h)dx’
BV [AX )W (X —x,h)] = [V AX)| W (X' —x,h) + AX )V W (x' —x,h)

W is symmetric
Vi [AX YW (x" — x, h)]
[V A(X) | W(x —x', h)

Vo AX)|W(x—x",h) + A(X )V W(x" — x,h)
Vi [AX )W (x' —x,h)] — A(X) Vo W (x' — x, h)

Gauss theorem

/ r r__ / r
0 th Vi [AXYW (X' —x,h)]dx’ = fS AW (x" — x, h)ndS S is the surface of O
!/

o AX)W(x' —x,h)ndS =0 W =0on the surface S
ViA(X) = = [ AX)Ve W(x' —x,h)dx’ = [, AX)ViW(x —x',h)dx’
= VJ;A(XZ) ~ Z : A(XJ)VW(X@ — Xj, h)V(XJ)

J

Ve A(x;) &~ ) MA(Xj)VW(Xi — X, h)

J p(x;)
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Spatial Derivatives

= original forms
VA =Y, 2 A VW
V2A; =3, MA VAW,
= however, resulting forces do not
preserve momentum
and are not necessarily

zero for constant values A; = A;
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Gradient (Anti-symmetric)

= momentum-preserving form

pi ) p; P p3
o A, A; Vp@
VAz—Pz(V(pZ)‘F 02 )

= SPH approximation
VAZ = pj (ZJ >y JVW’LJ _I_Azz mg Py Vsz)

Pj ']p.?@

. A
= P; Zj mj (% -+ p_,;zj) VWM

T

= applied to pressure gradient, linear and angular
momentum is preserved for arbitrary samplings

example with two particles i and |
ai=m; (4 + %) VWi = —m; (% +4) YW, = —a; VW= -VW;; -=-
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Gradient (Symmetric)

= term that vanishes for constant function values
V (pidi) = /Oz'v (A;) + AV (pi)

VA = - (V(pidi) — AiVpi)
= SPH approximation
VA = L (zj M AGW - A Y, p,,vww)

= pl% Z] mj (A A )VWZJ — i Zj mjAjf,;VW@;j

= applied to velocity divergence, zero divergence
for a constant velocity field is obtained for arbitrary

samplings
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Laplacian

= second derivative is error prone
and sensitive to particle disorder

= too few samples to appropriately approximate
the second kernel derivative

= therefore, the Laplacian is typically
approximated with a finite difference
approximation of the first derivative

24, — mi A, X VWi
v A% o 2 Zj P A?’j xij-xij+0.01h2

Xf,;j — X —Xj
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Spatial Derivatives - Summary

= original approximations

= currently preferred approximations
= improved robustness in case of particle disorder, i.e. Zj VW;; #0

_ Pi Pj preserves linear and
= Vpi = p; Z m; (_2 p_%) VWZJ

P angular momentum
V=2, BT s
=V v, = _é Zj mjvz'jVWij zero for uniform velocity field
m Vi =V, =V Xij = X; — X -—8_
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Kernel Properties

= in case of ideal sampling

m pi:ijjWij:miZjWij myg — My
i 1

N mzz Ww—pz—mi = Z-Wij—vi

n VW, = —-VW;; VWi =ariy ..
" Zj VWW =0
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Kernel lllustration

1D illustration

g=1 ¢=0 ¢=1
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Kernel lllustration

= 2D illustration

2—¢P—-4(1—-¢)? 0<qg<1

W(g) = 53 (2— ) 1<g<2 q= Lol
0 q>2
W(O) 147rh2 ((2 B 0)3 ( - 0)3) - 1427roh2 ° ° °
W(l) = 147rh2 (2-1)° = 142/52 b A = h?
W(V2) = 122 (2 — V2 = H555 ®o—— o o
S Wi = W(0) + 4W (1) + 4W (v/2) ~ 1001 ‘/57'
O O O

University of Freiburg — Computer Science Department — Computer Graphics - 66



Kernel lllustration

= density computation
= isnotaninterpolation of the function m, but detects erroneous sampling

A 0 om B A o N _m
P —W—ijWm Pz—ijWw>90—Vg
m m
R0 h <|h°
S ———
correct sampling dense sampling

(kernel contributions do
not sum up to 1/V)
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Simple SPH Fluid Solver

s for all particle ¢ do a;, = =— ;M (ﬁ—% T %) VWi;

find neighbors j viscosity m; i VWi
: = 2v Z . Vij 5
for all particle i do ’ J pj " xij-xi;+0.01h
p other

p; = Zj m,; Wi, a; — 8 SPH approximations
compute p; from p;
for all particle » do

f""essum — —lei Navier-Stokes
Pi :
v18cosit equation
a, Y=V,
other __
a; =8
ressure v1scosit
a;(t) = al + a, Y 4 gother

for all particle © do
Vz'(t + At) = V; (t) + Ataq; (t)
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction
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SPH Simulation Step
Using a State Equation (SESPH)

= foreach particle do

= compute density
= compute pressure

= foreach particle do

= compute forces
= update velocities and positions

= density and force computation
process all neighbors of a particle
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Neighbor Search

= for the computation of SPH sums in 3D, each
particle needs to know at least 30-40 neighbors
in each simulation step

s current scenarios

= up to 30 million fluid particles

= up to 1 billion neighbors

= Up to 10000 simulation steps

= Uup to 10%3 neighbors processed per simulation

= efficient construction and processing of
dynamically changing neighbor sets is essential
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Motivation

up to 30 million fluid particles, up to 1 billion neighbors, %
11 s computation time for neighbor search on a 16-core PC _Eg_
o
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Characteristics

= SPH computes sums

= dynamically changing sets of neighboring particles
= temporal coherence

= spatial data structures accelerate the neighbor search

= fast query
= fast generation (at least once for each simulation step)
= sparsely, non-uniformly filled simulation domain

= Space subdivision
= each particle is placed in a convex space cell, e.g. a cube

= Similarities to collision detection

and intersection tests in raytracing

= however, cells adjacent to the cell
of a particle have to be accessed
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Characteristics

= hierarchical data structures are less efficient
= constructionin O (n log n), access in O (log n)

»= uniform grid is generally preferred
= constructionin O (n), accessin O (1)

Z. .
° . o] F. ¢
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Characteristics

= motivated by temporal coherence
= potential neighbors are computed within a distance
larger than the actual kernel support
= actual neighbors are computed from the set of potential neighbors
= potential neighbors are updated every n-th simulation step
= memory-intensive (processes more neighbors than a standard grid)

= storing neighbors is generally expensive

= might be avoided for, e.g., a low number of neighbor queries
per simulation step or in case of very efficient computation

= data structures have to process

= fluid particles of multiple phases, e.g. air
= rigid particles (static or moving)
= deformable particles
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Outline

= concept of an SPH fluid simulator
= momentum equation
= SPH basics

= neighborhood search
= uniform grid
= indexsort
= spatial hashing
= discussion

= boundary handling
= incompressibility
= surface reconstruction
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Basic Grid

= particle is stored in a cell with coordinates ( k, |, m )
= 27 cells are queried in the neighborhood search
( k1, 1£1, m+1)

= cell size equals the kernel support of a particle

= larger cells increase the number of tested particles
= smaller cells increase the number of tested cells

= parallel construction suffers from race conditions
= insertion of particles from different threads in the same cell

. o o o edge length
/) equals kernel
. ) . . support
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Outline

= concept of an SPH fluid simulator
= momentum equation
= SPH basics

= neighborhood search
= uniform grid
= indexsort
= spatial hashing
= discussion

= incompressibility
= boundary handling
= surface reconstruction
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Construction

s cellindexc=k+|-K+m-K-L

is computed for a particle
= KandL denote the number of cells in x and y direction

= particles are sorted with respect to their cell index
= e.g., radix sort, O(n)

= each grid cell (k, |, m ) stores a reference
to the first particle in the sorted list

01123 |4|5|6]|7 |8 uniform grid

sorted particles with

1 1 2 2 3 4 4 5 their cell indices
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Construction

= generate C

= store the number of particles in each cell of C
= |oop over all particles and increment the respective value in C

s accumulate the valuesin C

= generate S clof1]2
= associate particle i with cell j: / |
S[--Cljl]=i c LA

= stores the particles
in reversed order into S

s afterinsertion C contains the correct offsets
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Construction

= parallelizable
= memory allocations are avoided
= constant memory consumption

= entire spatial grid has to be represented
to find neighboring cells
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Query

= sorted particle array is queried
= parallelizable

= particles in the same cell are queried

= references to particles of adjacent cells are
obtained from the references stored in the
uniform grid

= improved cache-hit rate

= particlesin the same cell are close in memory

= particles of neighboring cells are not necessarily
close in memory
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Z-Index Sort

= particles are sorted with %
_ : e
respect to a z-curve index N
= improved cache-hit rate 35 3*‘5 &
= particles in adjacent cells % \:‘g\ea

are close in memory

= efficient computation of W
z-curve indices possible M M

Z-Ccurve
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Z-Index Sort - Sorting

= particle attributes and z-curve indices
can be processed separately

= handles (particle identifier, z-curve index)

are sorted in each time step

= reduces memory transfer

= spatial locality is only marginally
influenced due to temporal coherence

= attribute sets are sorted

every nt" simulation step
= restores spatial locality
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Z-Index Sort - Sorting

= instead of radix sort, insertion sort

can be employed

= O (n)foralmost sorted arrays

= due to temporal coherence, only 2% of all particles
change their cell, i.e. z-curve index, in each time step
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Z-Index Sort - Reordering

particles colored according spatial compactness is
to their location in memory enforced using a z-curve
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Outline

= concept of an SPH fluid simulator
= momentum equation
= SPH basics

= neighborhood search
= uniform grid
= indexsort
= spatial hashing
= discussion

= boundary handling
= incompressibility
= surface reconstruction
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Spatial Hashing

= hash function maps a grid cell to a hash cell

infinite 3D domain is mapped to a finite 1D list
in contrast to index sort, infinite domains can be handled

= implementation

compute a cell index c or a cell identifier (x, vy, z) for a particle
compute a hash function 7 = h(c) or 1 = h(a:, Y, Z)
store the particle in a 1D array (hash table) at index 2
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Spatial Hashing

= |large hash tables reduce number of hash collisions

= hash collisions occur, if different spatial
cells are mapped to the same hash cell

= hash collisions slow down the query
= reduced memory allocations

= memory for a certain number of entries
is allocated for each hash cell

= reduced cache-hit rate

= hash table is sparsely filled
= filled and empty cells are alternating
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Compact Hashing

= hash cells store handles to a compact list of used cells

= k entries are pre-allocated for each
element in the list of used cells

= elementsin the used-cell list are

generated if a particle is placed )

in a new cell ' 1 7 Bl

= elements are deleted,

if a cell gets empty

= memory consumption is
reduced from O (m - k) to

O(m+n-k)withm»n

= |ist of used cells is queried
in the neighbor search B
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Compact Hashing - Construction

= not parallelizable

= particles from different threads
might be inserted in the same cell

= |larger hash table compared to spatial
hashing to reduce hash collisions

= temporal coherence is employed

= list of used cells is not rebuilt, but updated

= set of particles with changed cell index
is estimated (about 2% of all particles)

= particle is removed from the old cell and
added to the new cell (not parallelizable)
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Compact Hashing - Query

= processing of used cells

= bad spatial locality
= used cells close in memory are not close in space

= hash-collision flag

= if thereis no hash collision in a cell, hash indices of adjacent
cells have to be computed only once for all particles in this cell

= |arge hash table results in 2% cells with hash collisions
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Compact Hashing - Query

= particles are sorted with respect

to a z-curve every nt step
= after sorting, the list of used cells has to be rebuilt
= if particles are serially inserted into the list of used

cells, the list is consistent with the z-curve
= improved cache hit rate during the traversal of the list of used cells
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Compact Hashing - Reordering
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Outline

= concept of an SPH fluid simulator
= momentum equation
= SPH basics

= neighborhood search
= uniform grid
= indexsort
= spatial hashing
= discussion

= boundary handling
= incompressibility
= surface reconstruction
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Comparison

method construction query total
basic grid 26 38 64
index sort 36 29 65
z-index sort 16 27 43
spatial hashing 472 86 128
compact hashing 8 32 40

= Mmeasurements in ms
for 130K particles

= ONngoing research

= currently, compact hashing is used,
compact list stores references to
a sorted particle list
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Parallel Scaling

12

our system ——
10 + Amdahl 0.95 ——
spatial hashing ——
o 8
=
T 6
L
o
4
2
0 ] ] ] ] ] ] ]
12 4 8 12 16 20 24

threads
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Discussion

index sort

= fast query as particles are processed in the order of cell indices

Z-index sort

= fast construction due to radix sort or
insertion sort of an almost sorted list

= sorting with respect to the z-curve improves cache-hit rate

spatial hashing

= Slow query due to hash collisions and due to
the traversal of the sparsely filled hash table

compact hashing

= fast construction (update) due to temporal coherence

= fast query due to the compact list of used cells,
due to the hash-collision flag and due to z-curve
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Simple SPH Fluid Solver

s for all particle ¢ do a;, = =— ;M (ﬁ—% T %) VWi;

find neighbors j viscosity m; i VWi
: = 2v Z . Vij 5
for all particle i do ’ J pj " xij-xi;+0.01h
p other

p; = Zj m,; Wi, a; — 8 SPH approximations
compute p; from p;
for all particle » do

f""essum — —lei Navier-Stokes
Pi :
v18cosit equation
a, Y=V,
other __
a; =8
ressure v1scosit
a;(t) = al + a, Y 4 gother

for all particle © do
Vz'(t + At) = V; (t) + Ataq; (t)
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction
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Concept

= rigids are uniformly sampled with particles

fluid m; =m;, =m,

P _ Pi Piy,
all = >, M (— + ) VWi,
1 ’Lb
P~ Pi | Pi .
B



Missing Contributions

= rigids are uniformly sampled with particles

‘ ‘ Pi =M Z,L-f Wz'if + m; Zz’b Wi, +

fluid ~
- pi & my Zif Wii, +miy1 D, Wi,
1
Zif Wiif + 7 Z’ib Wz’ib — VvV
solid

i Pi i i
ay ~ —m; Z,,;f (ﬁ—% pgf) VWii, —mivs Zib (p_ + p_) VWi,
Zif VWMJC + Y2 Zib VWi, =0

FREIBURG
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Non-uniform Sampling

= rigids are non-uniformly sampled with particles
pi = m ) Wiip + 7122, mi, Wi,

fluid

| o
Vi, 3 Z’ibb W’Lb%bb
Po

solid

I
I
FRE:BURG
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Non-uniform Sampling

color-coded volume
of boundary particles
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Rigid-Fluid Coupling

www.youtube.com/cgfreiburg
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Rigid-Fluid Coupling

BURG

www.youtube.com/cgfreiburg

UN
FRE
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction

University of Freiburg — Computer Science Department — Computer Graphics - 113



Incompressibility

is essential for a realistic fluid behavior
= lessthan 0.1% in typical scenarios

inappropriate compression leads, e.g.,
to oscillations at the free surface

compression is time-step dependent

= volume changes should be imperceptible
in adaptive time-stepping schemes

is computationally expensive

= Ssimple computations require small time steps
= large time steps require complex computations
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State Equations (EOS, SESPH)

= pressure forces resolve compression

induced by non-pressure forces (penalty approach)
= density fluctuations in the fluid result in density gradients
= density gradients result in pressure gradients
= pressure gradients result in pressure force from high to low pressure

» fast computation, but small time steps

= pressure is computed from density, e.g.
s pi=k(pi —po) pi=kpi pi= k(% — 1) k is user-defined
= in graphics referred to as compressible SPH
= p; = kl((%)kz — 1) k,, k, are user-defined
= in graphics referred to as weakly compressible SPH

= compressibility is governed by the stiffness
constant(s) and limits the time step

University of Freiburg — Computer Science Department — Computer Graphics - 115



Non-iterative EOS solver (SESPH)

s for all particle © do
find neighbors j

for all particle ¢ do

Pi — Zj m Wz '
compute p; from p; with a state equation

for all particle © do

pressure 1L
()

2
= miVV V;
ressure viscosit
F;(t) = F? + F, Yy Fother

1

viscosity
Fi th

other
Ffi

for all particle 1 do
V; (t + At) —=V; (t) -+ AtFZ (t)/mz
X, (t + At) = X; (t) + Atv; (t -+ At)
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SESPH with Splitting

= compute pressure after advecting
the particles with non-pressure forces

m concept
= compute all non-pressure forces  F;“"(t)
= compute intermediate velocity vi=v;(t) + At Fﬂ:np
= compute intermediate position x; = x;(t) + Atv;
= compute intermediate density pr(x¥)

= compute pressure p; from intermediate density p; using an EOS
= compute final velocity v;(t + At) = v} — Atp%Vp,,;
= Mmotivation

= consider competing forces

= take (positive or negative) effects of non-pressure forces
into account when computing the pressure forces
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SESPH with Splitting

m  for all particle i do
find neighbors j

for all particle 1 do
Fpiscosiy _ miUVQVi

Fyiscosity+thher
vi=v;(t) + At— —

1
other
Ffi

for all particle 1 do
pi = 2o miWig + Aty my(vi —vi)VIW

: ) J %J - avoids neighbor search
compute p; using p;

- follows from the continuity equation

- see next slide

for all particle 1 do
FPT’GSS’U;T'e m
[

- = P’g vpi

for all particle 1 do
vi(t + At) = v + AtFY Y Im,
Xf,;(t + At) = X; (t) + AtV@'(t -+ At)
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Differential Density Update

= continuity equation

Dp; — v Vi velocity divergence corresponds to an in- / outflow
Dt Po i at a fluid element which corresponds to a density change

= time discretization

p; —pi(t) _ *
At = POV "V

= space discretization
p; =22 mi Wi . .
A = oo (g Sy my(vi = vV

PO

= predicted density due to the divergence of v
pi =D, miWij + Aty m;(v; —vi)VIVy;
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[terative SESPH with Splitting

= pressure forces are iteratively
accumulated and refined

m concept
= compute non-pressure forces, intermediate velocity and position
= iteratively
= compute intermediate density from intermediate position
= compute pressure from intermediate density
= compute pressure forces
= update intermediate velocity and position

= Mmotivation
= parameterized by a desired density error, not by a stiffness constant
= provides a fluid state with a guaranteed density error
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[terative SESPH with Splitting

B  for all particle 1 do
find neighbors j

for all particle 1 do
LD %
Fuiscosity mil/vz"@ thher = m;g

i
vzscoszt other
vi=vi(t) + ArE A x* = x;(t) + Atv?

my
repeat
for all particle 1 do
compute p; using X;
compute p; using pf, e.g. p; = k(pl — po)
compute pPerp, €.g. average or maximum
for all particle ¢ do )
ppressure

FPressure — _migp, v =vit At _——  x] =x;+ARD

m; ) m;

FPT"ESSU'I"G

until Perr < 1) user-defined density error
for all particle 1 do
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Iterative SESPH - VVariants

» different quantities are accumulated

= pressure forces (local Poisson SPH)
= pressure (predictive-corrective SPH, PCISPH)

= advantageous, if pressure is required for other computations
= distances (position-based fluids, PBF)

= Ax; = —pio > (5 + %)VWQ:J' B is a pre-computed constant

= different EOS and stiffness constants are used

* 2
P T

= k= 3 %7 inlocal Poisson SPH

L Zpg . 0
s k= mZ A2 VWIS VW2 +5 (VWD - VWD) in PCISPH  W?is precomputed

« k=1 inPBF (pi=2—1)
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PCISPH - Motivation

= density at the next timestep should be rest density

Fi = —-m; Zj(ﬁ—% - %)VWM ~ —mj 2p2 2.5 VWi
po— pf = Atmy - 3 (—m32 S VWi +m2 2 S W) VW

= for particle j, do not con5|der all contrlbutlons, but

only the contribution from i
FY, = —mi(Bs — VWi ~ —m 22?" > VW

Jli
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[terative SESPH - Performance

= typically three to five iterations for
density errors between 0.1% and 1%
= typical speed-up over non-iterative SESPH: 50

= more computations per time step compared to SESPH
= significantly larger time step than in SESPH

s EOS and stiffness constant influence the number of

required iterations to get a desired density error
= rarely analyzed

= non-linear relation between time step and iterations

= |argest possible time step does not necessarily
lead to an optimal overall performance
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Pressure Computation

= iterative SESPH (PCISPH)

= [Solenthaler 2009]

= iterative pressure
computation

= |arge time step
= nhon-iterative SESPH
(WCSPH)

= [Becker and Teschner 2007] PCISPH

= efficient to compute

= small time step
= computation time for the PCISPH scenario
is 20 times shorter than WCSPH
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Projection Schemes

= compute pressure with a pressure Poisson equation
AtV2p; = poV - v} = 73 (p0 — p})

= V; isthe predicted velocity considering
all non-pressure forces

= p; isthe corresponding predicted density,
e.g. p;i=pi—At-p;-V-v]

= density invariance is preferred

= divergence-free schemes suffer from drift
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Projection Schemes - Derivation

other
F?l

l dv; — _p_lzvpl + VVQVIL' S S

dt m;

ey

other
vi(t+ At) = vi(t) + At( — %Vp@- +vV3v; + L)

m;

9 F_oth,er
V,::k == V,,;(t) —+ At(l/v V; + 7’—)

vi(t+ At) = v — Atini

vi(t+At)—v] 1
At = — 5. VD
vi(t+At)—v 1

V- t = -V Lvp,
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Projection Schemes - Derivation

(A =V
n v nEReY v Ly,

V-ovi(t+At) =V -v] = —V-Atini

V -v; (t -+ At) =0 divergence of the velocity at the next
time step should be zero.

V.v; = Ativzpi
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Projection Schemes

= |inear system with unknown pressure values

s iterative solvers

= Conjugate Gradient
= relaxed Jacobi

= fast computation per iteration

= 30-40 non-zero entries in each equation
= very few information per particle
= matrix-free implementations

= huge time steps

m convergence tends to be an issue
= up to 100 iterations, dependent on the formulation

University of Freiburg — Computer Science Department — Computer Graphics - 129



Implicit Incompressible SPH
Derivation

= discretizing the continuity equation
Dp: (t+At) _
= —pi(t + At)V - v (t + At) to

Dt
i At)—p;
pilth B0l = S™ v (t+ At) VW ()
forward difference SPH

= unknown velocity v;(t + At) can be rewritten
using known non-pressure accel. a;”"**(¢) and
unknown pressure accel. a; ()
vi(t + At) = Vi () + Ata?onp(tl +Atal (t)

\L

predicted velocity only
using non-pressure forces
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Implicit Incompressible SPH
Derivation

m With pi(t+ At) = pg rest density is the desired density at t+At
and o = pi(t) + ALY myvi VIWi(t)

predicted density, if only non-pressure forces are applied

the discretized continuity equation can be written as
pOA_f: = At . m; (al(t) — a?(t)) VW,;(t)
with unknown pressure accel. a¥ (¢)
= unknown pressure accel. a’(t) can be
rewritten using unknown pressures p;(t)
al(t) = — 5 m; (3 — By ) VW)
resulting in a linear system with unknown pressures
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Implicit Incompressible SPH
Linear System

= One equation per particle

. po—p;
Zjaij_s’b_ At

= iterative solver, e.g.,

l
Si = 2j2i Qiglj
g

pitt =1 -w)pl+w

= relaxed Jacobi
= matrix-free implementation
= user-defined w(=0.5)
= plisthe computed pressure in iteration I
« plisinitialized, e.g., p¥ =0 or p? = p;(t — At)
= system is not necessarily symmetric
(a prerequisite for Conjugate Gradient)
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Implicit Incompressible SPH
Interpretation

= PPE At*V?p; = po — p;

density change predicted
due to pressure density error
accelerations

= discretized PPE
n Ap m—

- Atz zj:mj (af — af) VWU = pPo — p;-k ap —

\ _ 5S4
-~

(Ap);

= Aty my (Atal — Ata?) VWi = po — p; pressure accel. causes a

* locity ch Pwh
At Zj m; (Vf _ VI?) VWij — po — p! vg ocity change vP whose
divergence causes a

J

At-p; -V -Vl =pg—p: density change
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Implicit Incompressible SPH
Boundary Handling

= PPE
At*N2pp = po — p} = po — ps + DtpoV - v}
= discretized PPE including boundary handling Ap =s

Df
? = — fo My, (Pf -+ f) VWfff —’)/sz msz%vwffb

f

2 2
AL ) my, (a? - a?f) VWiyp, + A8 myp,af VW, =
fr fo

"

(Ap)y

po—pr— ALY my, (v;; - vj;;f) VIV, — Athfb — vy, (t+ AD)) VIV,

h

h o~

o~

"

Sf
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Implicit Incompressible SPH
Implementation with Boundary Handling

= initialization

= density pr=2_p, mpWeps + 225 mpWep,

= predicted velocity v} =v;+ Ata """

= source term sy =po—pr— At my, (vj: — vjzf) VWyp, — ALY, my, ...
= pressure P} =0

= diagonal element of matrix A

my my
arp =AY my, ( > p—%fVWfff —2y) p%b vafb) VWi,
fo

t Po
my my
+ A2 Z my, ( 2 —p%f VW, — 29 Z pgb VW fb) VWi,
I fr o '
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Implicit Incompressible SPH
Implementation with Boundary Handling

s iteration !

= first particle loop
= predicted pressure acceleration
l L !
PN\l py o Piy _ Pr
(ay)" = —D>_p, my; (pg + pgf) VWrge =7 25, ms22 VWi,
= Ssecond particle loop
= predicted density change due to pressure acceleration
(Ap)lf — At2 fo TTLff ((a?)l - (a?f)‘!) VWfff + Atz Zfb m f, (a?)lVWffb
= pressure update

—(Ap)*
pifl = max (pgc + TR a(ffp)f : 0)

= predicted density deviation per particle
(05"")' = (Ap)} — s
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Comparison with Iterative SESPH

= breaking dam

= 100k particles
= 0.01% average density error

= particle radius 0.025m

PCISPH IISPH PCISPH / IISPH

total comp. time [s] total comp. time [s] ratio
At [s] avg. iter. pressure overall avg. iter. pressure overall iterations pressure overall
0.0005 4.3 540 1195 2.2 148 978 2.0 3.6 1.2
0.00067 7.2 647 1145 2.9 149 753 2.5 4.3 1.5
0.001 14.9 856 1187 4.9 164 576 3.0 5.2 2.1
0.0025 66.5 1495 1540 18.4 242 410 3.6 6.2 3.8
0.004 - - - 33.5 273 379 - - -
0.005 - 45.8 297 383 -

= |largest possible time step does not necessarily
result in the best performance
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Outline

= concept of an SPH fluid simulator
= momentum equation

= SPH basics

= neighborhood search

= boundary handling

= incompressibility

= surface reconstruction
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