
Matthias Teschner

Computer Science Department
University of Freiburg

Simulation in Computer Graphics

Particle-based Fluid Simulation



University of Freiburg – Computer Science Department – Computer Graphics - 2

Application (with Pixar)

10 million fluid + 4 million rigid particles, 50 s simulated, 
50 h computation time on a 16-core PC, www.youtube.com/cgfreiburg



University of Freiburg – Computer Science Department – Computer Graphics - 3

Application (Commercials)

Copyright
NHB Studios,
Berlin, 
Hamburg,
Dusseldorf



University of Freiburg – Computer Science Department – Computer Graphics - 4

Application (with FIFTY2 Technology)

PreonLab, FIFTY2 Technology GmbH, www.youtube.com -> fifty2



University of Freiburg – Computer Science Department – Computer Graphics - 5

Application (with FIFTY2 Technology)

PreonLab, FIFTY2 Technology GmbH, www.youtube.com -> fifty2



University of Freiburg – Computer Science Department – Computer Graphics - 6

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 7

Concept 



University of Freiburg – Computer Science Department – Computer Graphics - 8

Concept



University of Freiburg – Computer Science Department – Computer Graphics - 9

Fluid Representation



University of Freiburg – Computer Science Department – Computer Graphics - 10

Fluid Representation

 fluid body is subdivided into small moving
parcels, i.e. particles, with fluid properties

Fluid body Set of fluid 
parcels



University of Freiburg – Computer Science Department – Computer Graphics - 11

Particles / Fluid Parcels

 represent small fluid portions
 are represented by a sample position
 move with their velocity
 have a fixed mass
 volume and density are 

related by
 preservation of density / volume 

over time is one of the challenges
of a fluid simulator

 shape is not considered



University of Freiburg – Computer Science Department – Computer Graphics - 12

Typical Setup

 define overall fluid volume      and fluid density
 define number     of particles
 assume particles of uniform size
 compute particle mass as    
 sample      represents a particle in the simulation



University of Freiburg – Computer Science Department – Computer Graphics - 13

Particle Shape

 typically initialized as a cube
 typically visualized as a sphere
 implicitly handled as Voronoi cell by the simulation  

PreonLab, FIFTY2 Technology GmbH Adrian Secord: Weighted Voronoi Stippling, NPAR 2002. 



University of Freiburg – Computer Science Department – Computer Graphics - 14

Fluid Simulation

 computation of positions and
velocities of fluid parcels over time
 velocity change from current time    

to subsequent time

 position change



University of Freiburg – Computer Science Department – Computer Graphics - 15

Example

Fluid Fluid
parcels

Known
current

state

Unknown
future
state



University of Freiburg – Computer Science Department – Computer Graphics - 16

Accelerations

 gravity
 viscosity

 friction
 accelerate parcel towards the average 

velocity of adjacent fluid parcels

 pressure acceleration 
 prevent fluid parcels from density / volume changes



University of Freiburg – Computer Science Department – Computer Graphics - 17

Simulation Step - Example

 gravity and viscosity would change the parcel volume

 pressure acceleration avoids the volume / density change

Gravity Viscosity

Pressure
acceleration



University of Freiburg – Computer Science Department – Computer Graphics - 18

Simulation Step - Example

 current state

 overall acceleration

 subsequent state



University of Freiburg – Computer Science Department – Computer Graphics - 19

Neighboring Parcels 

 computations require 
neighboring parcels

 density or volume

 pressure acceleration

 Smoothed Particle Hydrodynamics
 Gingold and Monaghan, Lucy



University of Freiburg – Computer Science Department – Computer Graphics - 20

Simulation Step - Implementation

 determine adjacent particles / neighors
of particle          (         is neighor of         !)

 compute forces                           as sums of neighbors 

 advect the particles, e.g. Euler-Cromer

 determine neighbors
of particle 

 …      



University of Freiburg – Computer Science Department – Computer Graphics - 22

Governing Equations

 particles /sample positions      and the respective 
attributes are advected with the local fluid velocity

 time rate of change of the velocity      is governed 
by the Lagrange form of the Navier-Stokes equation

 this form of the Navier-Stokes equation requires that
the particle positions are advected with the flow 

 in contrast to the Eulerian form, it does not contain the
convective acceleration              , which is handled
by the advection of the particles / sample positions

 in Eulerian approaches, sample positions 
are not necessarily advected with the flow



University of Freiburg – Computer Science Department – Computer Graphics - 23

Accelerations

 : acceleration due to pressure differences
 preserves the fluid volume / density

 pressure forces act in normal direction at the surface of the fluid element

 small and preferably constant density deviations 
are important for high-quality simulation

 : acceleration due to friction forces 
between particles with different velocities
 friction forces act in tangential (and normal) direction 

at the surface of the fluid element

 kinematic viscosity                               : larger friction is less realistic, 
but can improve the stability, dynamic viscosity

 : e.g., gravity, boundary handling



University of Freiburg – Computer Science Department – Computer Graphics - 24

Accelerations







University of Freiburg – Computer Science Department – Computer Graphics - 25

Forces

pressure
force

viscosity
force

external
force

pressure
force

viscosity
force

external
force



University of Freiburg – Computer Science Department – Computer Graphics - 26

 fluid simulators compute the velocity field over time

 Lagrangian approaches compute the velocities for
samples that are advected with their velocity

Lagrangian Fluid Simulation



University of Freiburg – Computer Science Department – Computer Graphics - 27

Moving Parcels vs. Static Cells

Acceleration of a moving 
parcel

Acceleration at a static cell
Not specified 

whether 
parcels or cells are 

used



University of Freiburg – Computer Science Department – Computer Graphics - 28

Smoothed Particle Hydrodynamics

 proposed by Gingold / Monaghan and Lucy (1977) 

 SPH can be used to interpolate fluid quantities at 
arbitrary positions and to approximate the spatial 
derivatives in the Navier-Stokes equation with a 
finite number of samples, i.e., adjacent particles

 SPH in a Lagrangian fluid simulation
 fluid is represented with particles

 particle positions and velocities are governed
by                  and

 ,                 and               are computed with SPH

 SPH is typically used in Lagrangian, 
mesh-free approaches, but not limited to



University of Freiburg – Computer Science Department – Computer Graphics - 29

SPH Interpolation

 quantity      at an arbitrary position      is approximately
computed with a set of known quantities       at
sample positions

 is not necessarily a sample position

 if      is a sample position, it contributes to the sum

 is a kernel function that weights the contributions
of sample positions      according to their distance to

 is the dimensionality of the simulation domain 

 is the so-called smoothing length



University of Freiburg – Computer Science Department – Computer Graphics - 30

SPH Interpolation – 2D

Neutrino Physics Guide



University of Freiburg – Computer Science Department – Computer Graphics - 31

Kernel Function

 close to a Gaussian, but with compact support
 support typically between     and

 e.g. cubic spline (1D:             2D:                  3D:                 )

 number of particles / samples that are
considered in the interpolation depends on 
 dimensionality, kernel support, particle spacing

 e.g., 3D, cubic spline support      , particle spacing  
result in 30-40 neighboring particles

 number of neighbors should not be too small to
appropriately sample the kernel function



University of Freiburg – Computer Science Department – Computer Graphics - 32

Kernel Function in 1D



University of Freiburg – Computer Science Department – Computer Graphics - 33

Spatial Derivatives with SPH

 original approximations

 currently preferred approximations
preserves linear and 
angular momentum,
when used for pressure forces

more robust as it avoids 
the second derivative of W



University of Freiburg – Computer Science Department – Computer Graphics - 34

Kernel Derivative in 1D



University of Freiburg – Computer Science Department – Computer Graphics - 35

Density Computation

 explicit form

 comparatively exact

 erroneous for incomplete neighborhood, e.g. at the free surface

 differential update 
 using the continuity equation

 time rate of change of the density is related 
to the divergence of the velocity field

 no issues for incomplete neighborhoods

 drift, i.e. less accurate for large time steps



University of Freiburg – Computer Science Department – Computer Graphics - 36

Simple SPH Fluid Solver

 find all neighbors    of particle
 typically accelerated with a uniform grid 

 cell size equal to kernel support , e.g.

 compute pressure     
 e.g., from density      using a state equation, e.g. 

 is the desired rest density of the fluid

 is a user-defined stiffness constant that scales
pressure, pressure gradient, and the resulting pressure force

 SPH with state equation is referred to as SESPH

 compute pressure force, viscosity / gravitational force

 compute other forces, e.g. due to boundaries

 update velocity and position



University of Freiburg – Computer Science Department – Computer Graphics - 37

Simple SPH Fluid Solver





University of Freiburg – Computer Science Department – Computer Graphics - 38

Simple SPH Fluid Solver





University of Freiburg – Computer Science Department – Computer Graphics - 39

Accelerations with SPH





University of Freiburg – Computer Science Department – Computer Graphics - 40

Setting

 kernel has to be defined, e.g. cubic with support of

 particle mass       has to be specified
 e.g.,                     for a particle spacing of 

 smaller spacing would result in smaller mass 
and more neighbors per particle

 numerical integration scheme
 semi-implicit Euler (a.k.a. symplectic Euler or

Euler-Cromer) is commonly used

 time step
 size is governed by the Courant-Friedrich-Levy (CFL) condition

 e.g.,                           with                and particle spacing

 motivation: for            , a particle moves less 
than its diameter per time step 



Matthias Teschner

Computer Science Department
University of Freiburg

Simulation in Computer Graphics

Particle-based Fluid Simulation



University of Freiburg – Computer Science Department – Computer Graphics - 42

Simple SPH Fluid Solver



SPH approximations

Navier-Stokes
equation



University of Freiburg – Computer Science Department – Computer Graphics - 43

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 44

Force Types

 momentum equation

 body forces, e.g. gravity (external)

 surface forces (internal, i.e. conservative)
 based on shear and normal stress distribution on 

the surface due to deformation of the fluid element 

 normal stress related to volume deviation

 normal and shear stress related to friction due to velocity differences

fluid
element

gravity

pressure normal
stress shear

stress

friction

velocity
difference

resulting force
acting on the
fluid element

volume
deviation



University of Freiburg – Computer Science Department – Computer Graphics - 45

Pressure Force in x-direction

 pressure force
acts orthogonal
to the surface of
the fluid element

 resulting pressure force

dx
dy

dz

p dy dz - ( p + p/ x dx ) dy dz



University of Freiburg – Computer Science Department – Computer Graphics - 46

Overall Pressure Force

 force at particle 

 respective acceleration



University of Freiburg – Computer Science Department – Computer Graphics - 47

Cauchy Momentum Equation

 Lagrange form

 is the stress tensor (a 3x3 matrix in 3D)
describing the pressure distribution at the
surface of a fluid element

 is the resulting force per volume 
acting on the fluid element

 is the viscous stress tensor
 is the resulting 

viscosity force per volume




University of Freiburg – Computer Science Department – Computer Graphics - 48

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 49

Illustration

 approximate a function and its derivatives 
from discrete samples, e.g.

 convolution of discrete samples with 
reconstruction filter, e.g. cubic spline   

reconstructed
function

sampled 
function
(particle
data)

reconstruction
kernel 
(SPH kernel)

reconstruc-
tion kernel for
first derivative



University of Freiburg – Computer Science Department – Computer Graphics - 50

Derivation

 quantity     at position     can be written as 

 dirac delta                                    and



 dirac delta is approximated with a kernel 
function with limited local support 



University of Freiburg – Computer Science Department – Computer Graphics - 51

Kernel Function

 integral should be normalized (unity condition)

 support should be compact

 should be symmetric 

 should be non-negative

 should converge to the Dirac delta for

 should be differentiable 



University of Freiburg – Computer Science Department – Computer Graphics - 52

Kernel Function

 close to a Gaussian, but with compact support
 support typically between     and

 e.g. cubic spline (1D:             2D:                  3D:                 )

 number of particles / samples that are
considered in the interpolation depends on 
 dimensionality, kernel support, particle spacing

 e.g., 3D, cubic spline support      , particle spacing  
result practically in 30-40 neighbors

 number of neighbors should not be too small to
appropriately sample the kernel function



University of Freiburg – Computer Science Department – Computer Graphics - 53

First Kernel Derivative



 e.g. cubic spline (1D:             2D:                  3D:                 )



University of Freiburg – Computer Science Department – Computer Graphics - 54

Second Kernel Derivative



 e.g. cubic spline (1D:             2D:                  3D:                 )



University of Freiburg – Computer Science Department – Computer Graphics - 55

Design of a Kernel Function 1D

 shape close to a Gaussian, e.g.







 1D: integration over a line segment

integration by substitution



University of Freiburg – Computer Science Department – Computer Graphics - 56

Design of a Kernel Function

 2D: integration over the area of a circle

 3D: integration over the volume of a sphere



University of Freiburg – Computer Science Department – Computer Graphics - 57

Particle Approximation



 consider a limited number of samples / particles
representing a mass

 typical notation



University of Freiburg – Computer Science Department – Computer Graphics - 58

Spatial Derivatives









Gauss theorem
S is the surface of Ω

W is symmetric

W = 0 on the surface S



University of Freiburg – Computer Science Department – Computer Graphics - 59

Spatial Derivatives

 original forms 

 however, resulting forces do not 
preserve momentum 
and are not necessarily 
zero for constant values



University of Freiburg – Computer Science Department – Computer Graphics - 60

Gradient (Anti-symmetric)

 momentum-preserving form 

 SPH approximation

 applied to pressure gradient, linear and angular 
momentum is preserved for arbitrary samplings
example with two particles i and j 



University of Freiburg – Computer Science Department – Computer Graphics - 61

Gradient (Symmetric)

 term that vanishes for constant function values 

 SPH approximation

 applied to velocity divergence, zero divergence 
for a constant velocity field is obtained for arbitrary 
samplings



University of Freiburg – Computer Science Department – Computer Graphics - 62

Laplacian

 second derivative is error prone 
and sensitive to particle disorder

 too few samples to appropriately approximate 
the second kernel derivative

 therefore, the Laplacian is typically 
approximated with a finite difference 
approximation of the first derivative



University of Freiburg – Computer Science Department – Computer Graphics - 63

Spatial Derivatives - Summary

 original approximations

 currently preferred approximations
 improved robustness in case of particle disorder, i.e.









preserves linear and 
angular momentum

improved robustness as it avoids 
the second kernel derivative

zero for uniform velocity field



University of Freiburg – Computer Science Department – Computer Graphics - 64

Kernel Properties

 in case of ideal sampling











University of Freiburg – Computer Science Department – Computer Graphics - 65

Kernel Illustration

 1D illustration  









University of Freiburg – Computer Science Department – Computer Graphics - 66

Kernel Illustration

 2D illustration



University of Freiburg – Computer Science Department – Computer Graphics - 67

Kernel Illustration

 density computation
 is not an interpolation of the function m, but detects erroneous sampling

correct sampling dense sampling
(kernel contributions do
not sum up to 1/V)



Matthias Teschner

Computer Science Department
University of Freiburg

Simulation in Computer Graphics

Particle-based Fluid Simulation



University of Freiburg – Computer Science Department – Computer Graphics - 69

Simple SPH Fluid Solver



SPH approximations

Navier-Stokes
equation



University of Freiburg – Computer Science Department – Computer Graphics - 70

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 71

SPH Simulation Step
Using a State Equation (SESPH)

 foreach particle do
 compute density

 compute pressure

 foreach particle do
 compute forces

 update velocities and positions

 density and force computation 
process all neighbors of a particle 



University of Freiburg – Computer Science Department – Computer Graphics - 72

Neighbor Search

 for the computation of SPH sums in 3D, each 
particle needs to know at least 30-40 neighbors 
in each simulation step

 current scenarios
 up to 30 million fluid particles

 up to 1 billion neighbors

 up to 10000 simulation steps

 up to 1013 neighbors processed per simulation

 efficient construction and processing of 
dynamically changing neighbor sets is essential



University of Freiburg – Computer Science Department – Computer Graphics - 73

Motivation

up to 30 million fluid particles, up to 1 billion neighbors,
11 s computation time for neighbor search on a 16-core PC



University of Freiburg – Computer Science Department – Computer Graphics - 74

Characteristics

 SPH computes sums 
 dynamically changing sets of neighboring particles
 temporal coherence

 spatial data structures accelerate the neighbor search
 fast query
 fast generation (at least once for each simulation step)
 sparsely, non-uniformly filled simulation domain

 space subdivision 
 each particle is placed in a convex space cell, e.g. a cube

 similarities to collision detection 
and intersection tests in raytracing
 however, cells adjacent to the cell 

of a particle have to be accessed 



University of Freiburg – Computer Science Department – Computer Graphics - 75

Characteristics

 hierarchical data structures are less efficient
 construction in O (n log n), access in O (log n)

 uniform grid is generally preferred
 construction in O (n), access in O (1)



University of Freiburg – Computer Science Department – Computer Graphics - 76

Characteristics

 Verlet lists
 motivated by temporal coherence
 potential neighbors are computed within a distance 

larger than the actual kernel support
 actual neighbors are computed from the set of potential neighbors
 potential neighbors are updated every n-th simulation step
 memory-intensive (processes more neighbors than a standard grid)

 storing neighbors is generally expensive
 might be avoided for, e.g., a low number of neighbor queries 

per simulation step or in case of very efficient computation

 data structures have to process
 fluid particles of multiple phases, e.g. air

 rigid particles (static or moving)

 deformable particles 



University of Freiburg – Computer Science Department – Computer Graphics - 77

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search
 uniform grid

 index sort

 spatial hashing

 discussion

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 78

Basic Grid

 particle is stored in a cell with coordinates ( k, l, m )

 27 cells are queried in the neighborhood search
( k±1, l±1, m±1 )

 cell size equals the kernel support of a particle
 larger cells increase the number of tested particles

 smaller cells increase the number of tested cells 

 parallel construction suffers from race conditions
 insertion of particles from different threads in the same cell

edge length
equals kernel
support



University of Freiburg – Computer Science Department – Computer Graphics - 79

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search
 uniform grid

 index sort

 spatial hashing

 discussion

 incompressibility

 boundary handling

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 80

Construction

 cell index c = k + l · K + m · K · L 
is computed for a particle
 K and L denote the number of cells in x and y direction

 particles are sorted with respect to their cell index
 e.g., radix sort, O(n)

 each grid cell ( k, l, m ) stores a reference 
to the first particle in the sorted list

uniform grid

sorted particles with
their cell indices



University of Freiburg – Computer Science Department – Computer Graphics - 81

Construction

 generate C

 store the number of particles in each cell of C
 loop over all particles and increment the respective value in C

 accumulate the values in C

 generate S

 associate particle i with cell j:
S [ --C [ j ] ] = i
 stores the particles 

in reversed order into S

 after insertion C contains the correct offsets

[Lagae]

C

S



University of Freiburg – Computer Science Department – Computer Graphics - 82

Construction

 parallelizable

 memory allocations are avoided

 constant memory consumption

 entire spatial grid has to be represented 
to find neighboring cells



University of Freiburg – Computer Science Department – Computer Graphics - 83

Query

 sorted particle array is queried 
 parallelizable

 particles in the same cell are queried

 references to particles of adjacent cells are 
obtained from the references stored in the 
uniform grid

 improved cache-hit rate
 particles in the same cell are close in memory

 particles of neighboring cells are not necessarily 
close in memory 



University of Freiburg – Computer Science Department – Computer Graphics - 84

Z-Index Sort

 particles are sorted with
respect to a z-curve index

 improved cache-hit rate
 particles in adjacent cells

are close in memory

 efficient computation of
z-curve indices possible

z-curve



University of Freiburg – Computer Science Department – Computer Graphics - 85

Z-Index Sort - Sorting

 particle attributes and z-curve indices 
can be processed separately

 handles (particle identifier, z-curve index) 
are sorted in each time step
 reduces memory transfer

 spatial locality is only marginally 
influenced due to temporal coherence

 attribute sets are sorted 
every nth simulation step
 restores spatial locality



University of Freiburg – Computer Science Department – Computer Graphics - 86

Z-Index Sort - Sorting

 instead of radix sort, insertion sort 
can be employed
 O (n) for almost sorted arrays

 due to temporal coherence, only 2% of all particles
change their cell, i.e. z-curve index, in each time step 



University of Freiburg – Computer Science Department – Computer Graphics - 87

Z-Index Sort - Reordering

particles colored according
to their location in memory

spatial compactness is 
enforced using a z-curve



University of Freiburg – Computer Science Department – Computer Graphics - 88

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search
 uniform grid

 index sort

 spatial hashing

 discussion

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 89

Spatial Hashing

 hash function maps a grid cell to a hash cell 
 infinite 3D domain is mapped to a finite 1D list

 in contrast to index sort, infinite domains can be handled

 implementation
 compute a cell index c or a cell identifier (x, y, z) for a particle

 compute a hash function                       or 

 store the particle in a 1D array (hash table) at index



University of Freiburg – Computer Science Department – Computer Graphics - 90

Spatial Hashing

 large hash tables reduce number of hash collisions 
 hash collisions occur, if different spatial 

cells are mapped to the same hash cell

 hash collisions slow down the query

 reduced memory allocations
 memory for a certain number of entries 

is allocated for each hash cell

 reduced cache-hit rate
 hash table is sparsely filled

 filled and empty cells are alternating



University of Freiburg – Computer Science Department – Computer Graphics - 91

Compact Hashing

 hash cells store handles to a compact list of used cells
 k entries are pre-allocated for each 

element in the list of used cells

 elements in the used-cell list are 
generated if a particle is placed
in a new cell

 elements are deleted, 
if a cell gets empty

 memory consumption is 
reduced from O (m · k) to 
O (m + n · k) with m » n 

 list of used cells is queried 
in the neighbor search



University of Freiburg – Computer Science Department – Computer Graphics - 92

Compact Hashing - Construction

 not parallelizable
 particles from different threads 

might be inserted in the same cell

 larger hash table compared to spatial 
hashing to reduce hash collisions

 temporal coherence is employed
 list of used cells is not rebuilt, but updated

 set of particles with changed cell index 
is estimated (about 2% of all particles)

 particle is removed from the old cell and 
added to the new cell (not parallelizable)



University of Freiburg – Computer Science Department – Computer Graphics - 93

Compact Hashing - Query

 processing of used cells
 bad spatial locality 

 used cells close in memory are not close in space 

 hash-collision flag
 if there is no hash collision in a cell, hash indices of adjacent 

cells have to be computed only once for all particles in this cell

 large hash table results in 2% cells with hash collisions



University of Freiburg – Computer Science Department – Computer Graphics - 94

Compact Hashing - Query

 particles are sorted with respect 
to a z-curve every nth step

 after sorting, the list of used cells has to be rebuilt

 if particles are serially inserted into the list of used 
cells, the list is consistent with the z-curve
 improved cache hit rate during the traversal of the list of used cells



University of Freiburg – Computer Science Department – Computer Graphics - 95

Compact Hashing - Reordering



University of Freiburg – Computer Science Department – Computer Graphics - 96

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search
 uniform grid

 index sort

 spatial hashing

 discussion

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 97

Comparison

 measurements in ms
for 130K particles

 ongoing research
 currently, compact hashing is used,

compact list stores references to 
a sorted particle list

method construction query total

basic grid 26 38 64

index sort 36 29 65

z-index sort 16 27 43

spatial hashing 42 86 128

compact hashing 8 32 40



University of Freiburg – Computer Science Department – Computer Graphics - 98

Parallel Scaling



University of Freiburg – Computer Science Department – Computer Graphics - 99

Discussion

 index sort
 fast query as particles are processed in the order of cell indices

 z-index sort
 fast construction due to radix sort or  

insertion sort of an almost sorted list

 sorting with respect to the z-curve improves cache-hit rate

 spatial hashing
 slow query due to hash collisions and due to 

the traversal of the sparsely filled hash table

 compact hashing
 fast construction (update) due to temporal coherence

 fast query due to the compact list of used cells,
due to the hash-collision flag and due to z-curve



University of Freiburg – Computer Science Department – Computer Graphics - 100

References

 z-index sort, compact hashing
 IHMSEN M., AKINCI N., BECKER M., TESCHNER M.:

A Parallel SPH Implementation on Multi-core CPUs.
Computer Graphics Forum, 2011.

 index sort
 PURCELL T. J., DONNER C., CAMMARANO M., JENSEN H. W., 

HANRAHAN P.: Photon Mapping on Programmable Graphics 
Hardware. ACM SIGGRAPH/EUROGRAPHICS Conference on 
Graphics Hardware, 2003.

 spatial hashing
 TESCHNER M., HEIDELBERGER B., MÜLLER M., POMERANETS D., 

GROSS M.: Optimized Spatial Hashing for Collision Detection of 
Deformable Objects. Vision, Modeling, Visualization, 2003.



Matthias Teschner

Computer Science Department
University of Freiburg

Simulation in Computer Graphics

Particle-based Fluid Simulation



University of Freiburg – Computer Science Department – Computer Graphics - 102

Simple SPH Fluid Solver



SPH approximations

Navier-Stokes
equation



University of Freiburg – Computer Science Department – Computer Graphics - 103

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 104

Concept

 rigids are uniformly sampled with particles

fluid

solid



University of Freiburg – Computer Science Department – Computer Graphics - 105

Missing Contributions

 rigids are uniformly sampled with particles

fluid

solid



University of Freiburg – Computer Science Department – Computer Graphics - 106

Non-uniform Sampling

 rigids are non-uniformly sampled with particles

fluid

solid



University of Freiburg – Computer Science Department – Computer Graphics - 107

Non-uniform Sampling

color-coded volume
of boundary particles



University of Freiburg – Computer Science Department – Computer Graphics - 110

Rigid-Fluid Coupling

www.youtube.com/cgfreiburg



University of Freiburg – Computer Science Department – Computer Graphics - 111

Rigid-Fluid Coupling

www.youtube.com/cgfreiburg



University of Freiburg – Computer Science Department – Computer Graphics - 112

References

 rigid-fluid coupling
 IHMSEN M., AKINCI N., GISSLER M., TESCHNER M.:

Boundary Handling and Adaptive Time-stepping for PCISPH.
VRIPHYS, 2010.

 AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B.,
TESCHNER M.: Versatile Rigid-Fluid Coupling for 
Incompressible SPH. ACM TOG (SIGGRAPH 2012), 2012.

 elastic-fluid coupling
 AKINCI N., CORNELIS J., AKINCI G., TESCHNER M.: Coupling Elastic 

Solids with Smoothed Particle Hydrodynamics Fluids. Journal of 
Computer Animation and Virtual Worlds (CASA 2013), 2013.



University of Freiburg – Computer Science Department – Computer Graphics - 113

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction



University of Freiburg – Computer Science Department – Computer Graphics - 114

Incompressibility

 is essential for a realistic fluid behavior
 less than 0.1% in typical scenarios

 inappropriate compression leads, e.g.,
to oscillations at the free surface

 compression is time-step dependent
 volume changes should be imperceptible

in adaptive time-stepping schemes

 is computationally expensive
 simple computations require small time steps

 large time steps require complex computations



University of Freiburg – Computer Science Department – Computer Graphics - 115

State Equations (EOS, SESPH)

 pressure forces resolve compression 
induced by non-pressure forces (penalty approach)
 density fluctuations in the fluid result in density gradients

 density gradients result in pressure gradients

 pressure gradients result in pressure force from high to low pressure

 fast computation, but small time steps

 pressure is computed from density, e.g.


 in graphics referred to as compressible SPH



 in graphics referred to as weakly compressible SPH

 compressibility is governed by the stiffness 
constant(s) and limits the time step

k is user-defined

k1, k2 are user-defined



University of Freiburg – Computer Science Department – Computer Graphics - 116

Non-iterative EOS solver (SESPH)





University of Freiburg – Computer Science Department – Computer Graphics - 117

SESPH with Splitting

 compute pressure after advecting
the particles with non-pressure forces

 concept 
 compute all non-pressure forces 

 compute intermediate velocity

 compute intermediate position

 compute intermediate density

 compute pressure      from intermediate density      using an EOS

 compute final velocity

 motivation
 consider competing forces

 take (positive or negative) effects of non-pressure forces 
into account when computing the pressure forces



University of Freiburg – Computer Science Department – Computer Graphics - 118

SESPH with Splitting



- follows from the continuity equation

- avoids neighbor search

- see next slide



University of Freiburg – Computer Science Department – Computer Graphics - 119

Differential Density Update

 continuity equation

 time discretization

 space discretization

 predicted density due to the divergence of 

velocity divergence corresponds to an in- / outflow 
at a fluid element which corresponds to a density change



University of Freiburg – Computer Science Department – Computer Graphics - 120

Iterative SESPH with Splitting

 pressure forces are iteratively 
accumulated and refined

 concept 
 compute non-pressure forces, intermediate velocity and position

 iteratively

 compute intermediate density from intermediate position

 compute pressure from intermediate density

 compute pressure forces

 update intermediate velocity and position

 motivation
 parameterized by a desired density error, not by a stiffness constant

 provides a fluid state with a guaranteed density error



University of Freiburg – Computer Science Department – Computer Graphics - 121

Iterative SESPH with Splitting



user-defined density error



University of Freiburg – Computer Science Department – Computer Graphics - 122

Iterative SESPH - Variants

 different quantities are accumulated
 pressure forces (local Poisson SPH)

 pressure (predictive-corrective SPH, PCISPH)

 advantageous, if pressure is required for other computations

 distances (position-based fluids, PBF)



 different EOS and stiffness constants are used

 in local Poisson SPH

 in PCISPH 

 in PBF

β is a pre-computed constant

W0 is precomputed



University of Freiburg – Computer Science Department – Computer Graphics - 123

PCISPH - Motivation

 density at the next timestep should be rest density 



 for particle j, do not consider all contributions, but
only the contribution from i



University of Freiburg – Computer Science Department – Computer Graphics - 124

Iterative SESPH - Performance

 typically three to five iterations for 
density errors between 0.1% and 1%

 typical speed-up over non-iterative SESPH: 50
 more computations per time step compared to SESPH

 significantly larger time step than in SESPH

 EOS and stiffness constant influence the number of 
required iterations to get a desired density error
 rarely analyzed

 non-linear relation between time step and iterations
 largest possible time step does not necessarily 

lead to an optimal overall performance



University of Freiburg – Computer Science Department – Computer Graphics - 125

Pressure Computation

 iterative SESPH (PCISPH) 
 [Solenthaler 2009]

 iterative pressure 
computation

 large time step

 non-iterative SESPH
(WCSPH)
 [Becker and Teschner 2007]

 efficient to compute 

 small time step

 computation time for the PCISPH scenario 
is 20 times shorter than WCSPH 



University of Freiburg – Computer Science Department – Computer Graphics - 126

Projection Schemes

 compute pressure with a pressure Poisson equation

 is the predicted velocity considering 
all non-pressure forces

 is the corresponding predicted density, 
e.g.

 density invariance is preferred

 divergence-free schemes suffer from drift  



University of Freiburg – Computer Science Department – Computer Graphics - 127

Projection Schemes - Derivation





University of Freiburg – Computer Science Department – Computer Graphics - 128

Projection Schemes - Derivation



divergence of the velocity at the next 
time step should be zero. 



University of Freiburg – Computer Science Department – Computer Graphics - 129

Projection Schemes

 linear system with unknown pressure values

 iterative solvers
 Conjugate Gradient

 relaxed Jacobi

 fast computation per iteration
 30-40 non-zero entries in each equation

 very few information per particle

 matrix-free implementations

 huge time steps

 convergence tends to be an issue
 up to 100 iterations, dependent on the formulation



University of Freiburg – Computer Science Department – Computer Graphics - 130

 discretizing the continuity equation
to

 unknown velocity can be rewritten 
using known non-pressure accel.                and 
unknown pressure accel.

forward difference SPH

predicted velocity only 
using non-pressure forces

Implicit Incompressible SPH
Derivation



University of Freiburg – Computer Science Department – Computer Graphics - 131

 with                            

and 

the discretized continuity equation can be written as

with unknown pressure accel.

 unknown pressure accel. can be 

rewritten using unknown pressures

resulting in a linear system with unknown pressures

rest density is the desired density at t+Δt

predicted density, if only non-pressure forces are applied

Implicit Incompressible SPH
Derivation



University of Freiburg – Computer Science Department – Computer Graphics - 132

 one equation per particle

 iterative solver, e.g., 

 relaxed Jacobi

 matrix-free implementation 

 user-defined    

 is the computed pressure in iteration

 is initialized, e.g.,              or

 system is not necessarily symmetric 
(a prerequisite for Conjugate Gradient) 

Implicit Incompressible SPH
Linear System



University of Freiburg – Computer Science Department – Computer Graphics - 133

 PPE

 discretized PPE






Implicit Incompressible SPH
Interpretation

predicted 
density error

density change
due to pressure
accelerations 

pressure accel. causes a 
velocity change vp whose
divergence causes a 
density change 



University of Freiburg – Computer Science Department – Computer Graphics - 134

 PPE

 discretized PPE including boundary handling

Implicit Incompressible SPH
Boundary Handling



University of Freiburg – Computer Science Department – Computer Graphics - 135

 initialization
 density

 predicted velocity

 source term

 pressure 

 diagonal element of matrix 

Implicit Incompressible SPH
Implementation with Boundary Handling



University of Freiburg – Computer Science Department – Computer Graphics - 136

 iteration 
 first particle loop

 predicted pressure acceleration

 second particle loop

 predicted density change due to pressure acceleration

 pressure update

 predicted density deviation per particle

Implicit Incompressible SPH
Implementation with Boundary Handling



University of Freiburg – Computer Science Department – Computer Graphics - 137

Comparison with Iterative SESPH

 breaking dam
 100k particles

 0.01% average density error

 particle radius 0.025m

 largest possible time step does not necessarily
result in the best performance 



University of Freiburg – Computer Science Department – Computer Graphics - 138

References

 state equation SPH (SESPH)
 BECKER M., TESCHNER M.: Weakly Compressible SPH for 

Free Surface Flows. ACM SIGGRAPH/Eurographics SCA, 2007.

 iterative SESPH
 SOLENTHALER B., PAJAROLA R.: Predictive-corrective 

Incompressible SPH. ACM TOG (SIGGRAPH 2009), 2009.

 HE X., LIU N., Li S., WANG H., WANG G.: Local Poisson SPH for 
Viscous Incompressible Fluids, Computer Graphics Forum, 2012.

 MACKLIN M., MUELLER M., Position-based 
Fluids, ACM TOG (SIGGRAPH 2013), 2013.

 incompressible SPH
 IHMSEN M., CORNELIS J., SOLENTHALER B., HORVATH C., 

TESCHNER M.: Implicit Incompressible SPH. IEEE Transactions 
on Visualization and Computer Graphics TVCG, 2013.



University of Freiburg – Computer Science Department – Computer Graphics - 139

Outline

 concept of an SPH fluid simulator

 momentum equation

 SPH basics

 neighborhood search

 boundary handling

 incompressibility

 surface reconstruction


