Simulation in Computer Graphics

Particle-based Fluid Simulation

Matthias Teschner

Computer Science Department
University of Freiburg
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction
Fluid Representation

- fluid is represented with a set of small moving fluid elements, i.e. particles
- particles have attributes, e.g. position x_i, velocity v_i, mass m_i, volume V_i, density ρ_i, pressure p_i

representation

typical visualization
Exemplary Simulation

10 million fluid + 4 million rigid particles, 50 s simulated, 50 h computation time on a 16-core PC, www.youtube.com/cgfreiburg
Lagrangian Approach

- particles / small fluid elements / sample positions \mathbf{x}_i are advected with their velocity \mathbf{v}_i

\[
\mathbf{v}_i(x_i, y_i, z_i, t) = (u_i, v_i, w_i)
\]
\[
\mathbf{x}_i(t) = (x_i, y_i, z_i)
\]

\[
\mathbf{v}_i(x_i + \Delta t \cdot u_i, y_i + \Delta t \cdot v_i, z_i + \Delta t \cdot w_i, t + \Delta t)
\]
\[
\mathbf{x}_i(t + \Delta t) = (x_i + \Delta t \cdot u_i, y_i + \Delta t \cdot v_i, z_i + \Delta t \cdot w_i)
\]

- simulation approaches compute the velocity \mathbf{v}_i over time t
Governing Equations

- particles /sample positions \mathbf{x}_i and the respective attributes are advected with the local fluid velocity \mathbf{v}_i
 \[\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i \]
- time rate of change of the velocity \mathbf{v}_i is governed by the Lagrange form of the Navier-Stokes equation
 \[\frac{d\mathbf{v}_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 \mathbf{v}_i + \frac{\mathbf{F}_{\text{other}}}{m_i} \]
- this form of the Navier-Stokes equation requires that the particle positions are advected with the flow
- in contrast to the Eulerian form, it does not contain the convective acceleration $\mathbf{v}_i \cdot \nabla \mathbf{v}_i$, which is efficiently handled by the advection of the particles / sample positions (in Eulerian approaches, sample positions are not advected with the flow)
Accelerations

- $-\frac{1}{\rho_i} \nabla p_i$: acceleration due to pressure differences
 - pressure acts in normal direction at the surface of the fluid element
 - preserves the fluid volume / density
 - small and preferably constant density deviations are important for high-quality simulation
 - typically the largest acceleration

- $\nu \nabla^2 v_i$: acceleration due to friction forces between particles with different velocities
 - friction forces act in tangential direction at the surface of the fluid element
 - $\nu \approx 10^{-6} \text{m}^2 \cdot \text{s}^{-1}$: larger friction is less realistic, but can improve the stability

- $\frac{F_{\text{other}}}{m_i}$: e.g., boundary handling, gravity
Smoothed Particle Hydrodynamics

- proposed by Gingold/Monaghan and Lucy (1977)
- SPH can be used to interpolate fluid quantities at arbitrary positions and to approximate the spatial derivatives in the Navier-Stokes equation with a finite number of samples, i.e., adjacent particles
- SPH in a Lagrangian fluid simulation
 - fluid is represented with particles
 - particle positions and velocities are governed by
 \[\frac{dx_i}{dt} = v_i \quad \text{and} \quad \frac{dv_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 v_i + \frac{F_{other}}{m_i} \]
 \[-\frac{1}{\rho_i} \nabla p_i \quad \text{and} \quad \nu \nabla^2 v_i \quad \text{can be computed with SPH} \]
- SPH is typically used in Lagrangian, mesh-free approaches, but not limited to
SPH Interpolation

- Quantity A_i at an arbitrary position x_i is approximately computed with a set of known quantities A_j at sample positions x_j

$$A_i = \sum_j V_j A_j W_{ij} = \sum_j \frac{m_j}{\rho_j} A_j W_{ij}$$

- x_i is not necessarily a sample position
- If x_i is a sample position, it contributes to the sum

- W_{ij} is a kernel function that weights the contributions of sample positions x_j according to their distance to x_i

$$W_{ij} = W \left(\frac{\|x_i - x_j\|}{h} \right) = W(q)$$

- d is the dimensionality of the simulation domain
- h is the so-called smoothing length (not necessarily the particle distance or the size of the compact support of W_{ij})
Kernel Function

- close to a Gaussian, but with compact support
 - support typically between h and $3h$
- e.g. cubic spline (1D: $\alpha = \frac{1}{h}$ 2D: $\alpha = \frac{15}{7\pi h^2}$ 3D: $\alpha = \frac{3}{2\pi h^3}$)

$$W(q) = \alpha \begin{cases}
 \frac{2}{3} - q^2 + \frac{1}{2}q^3 & 0 \leq q < 1 \\
 \frac{1}{6}(2 - q)^3 & 1 \leq q < 2 \\
 0 & q \geq 2
\end{cases}$$

- number of particles / samples that are considered in the interpolation depends on
 - dimensionality, kernel support, particle spacing
 - e.g., 3D, cubic spline support $2h$, particle spacing h
 - result in 30-40 neighboring particles
 - number of neighbors is a trade-off between performance and interpolation accuracy
Spatial Derivatives with SPH

- **original approximations**
 \[\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij} \]
 \[\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij} \]

- **currently preferred approximations**
 \[\nabla A_i = \rho_i \sum_j m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla W_{ij} \]
 \[\nabla^2 A_i = 2 \sum_j \frac{m_j}{\rho_j} A_{ij} \frac{x_{ij} \cdot \nabla W_{ij}}{x_{ij} \cdot x_{ij} + 0.01h^2} \]
 \[\nabla \cdot A_i = -\frac{1}{\rho_i} \sum_j m_j A_{ij} \nabla W_{ij} \]
 \[A_{ij} = A_i - A_j \]
 \[A_{ij} = A_i - A_j \]
 \[x_{ij} = x_i - x_j \]
Kernel Derivatives

- **first derivative**
- \[\nabla W_{ij} = \left(\frac{\partial W_{ij}}{\partial x_i, x}, \frac{\partial W_{ij}}{\partial x_i, y}, \frac{\partial W_{ij}}{\partial x_i, z} \right)^T \]

- \[\nabla W_{ij} = \frac{\partial W(q)}{\partial q} \nabla q = \frac{\partial W(q)}{\partial q} \frac{x_{ij}}{\|x_{ij}\| h} \quad q = \frac{\|x_i - x_j\|}{h} \]

- e.g. cubic spline (1D: \(\alpha = \frac{1}{h} \) 2D: \(\alpha = \frac{15}{7\pi h^2} \) 3D: \(\alpha = \frac{3}{2\pi h^3} \))

- \[\frac{\partial W(q)}{\partial q} = \alpha \begin{cases} -2q + \frac{3}{2}q^2 & 0 \leq q < 1 \\ -\frac{1}{2}(2 - q)^2 & 1 \leq q < 2 \\ 0 & q \geq 2 \end{cases} \]

- **second derivative**

- \[\nabla^2 W_{ij} = \frac{\partial^2 W(q)}{\partial q^2} \frac{1}{h^2} + \frac{\partial W(q)}{\partial q} \frac{2}{\|x_{ij}\| h} \]
Density Computation

- explicit form
 \[\rho_i = \sum_j \frac{m_j}{\rho_j} \rho_j W_{ij} = \sum_j m_j W_{ij} \]
 - exact
 - erroneous for incomplete neighborhood, e.g. at the free surface

- differential update
 - using the continuity equation
 - time rate of change of the density is related to the divergence of the velocity field
 \[\frac{d\rho_i}{dt} = -\rho_i \nabla \cdot \mathbf{v}_i \]
 \[\frac{d\rho_i}{dt} = -\sum_j m_j \mathbf{v}_{ij} \nabla W_{ij} \]
 - no issues for incomplete neighborhoods
 - drift, i.e. less accurate for large time steps
Simple SPH Fluid Solver

- find all neighbors j of particle i
 - typically accelerated with a uniform grid
 - cell size equal to kernel support, e.g. $2h$
- compute pressure p_i
 - e.g., from density ρ_i using a state equation, e.g. $p_i = k \left(\left(\frac{\rho_i}{\rho_0} \right)^7 - 1 \right)$
 - ρ_0 is the desired rest density of the fluid
 - k is a user-defined stiffness constant that scales pressure, pressure gradient, and the resulting pressure force
 - SPH with state equation is referred to as SESPH
- compute pressure force, viscosity / gravitational force
- compute other forces, e.g. due to boundaries
- update velocity and position
Simple SPH Fluid Solver

- for all particle i do
 - find neighbors j
- for all particle i do
 - $\rho_i = \sum_j m_j W_{ij}$
 - compute p_i from ρ_i
- for all particle i do
 - $F_{i,\text{pressure}} = -\frac{m_i}{\rho_i} \nabla p_i$
 - $F_{i,\text{viscosity}} = m_i \nu \nabla^2 v_i$
 - $F_{i,\text{other}} = m_i g$
 - $F_i(t) = F_{i,\text{pressure}} + F_{i,\text{viscosity}} + F_{i,\text{other}}$
- for all particle i do
 - $v_i(t + \Delta t) = v_i(t) + \Delta t F_i(t)/m_i$
 - $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
Simple SPH Fluid Solver

- **for all particle** i **do**
 find neighbors j

- **for all particle** i **do**
 $\rho_i = \sum_j m_j W_{ij}$
 compute p_i from ρ_i

- **for all particle** i **do**
 $a_{i, \text{pressure}} = -\frac{1}{\rho_i} \nabla p_i$
 $a_{i, \text{viscosity}} = \nu \nabla^2 v_i$
 $a_{i, \text{other}} = g$
 $a_i(t) = a_{i, \text{pressure}} + a_{i, \text{viscosity}} + a_{i, \text{other}}$

- **for all particle** i **do**
 $v_{i}(t + \Delta t) = v_{i}(t) + \Delta t a_{i}(t)$
 $x_{i}(t + \Delta t) = x_{i}(t) + \Delta t v_{i}(t + \Delta t)$
Setting

- kernel has to be defined, e.g. cubic with support of $2h$
- particle mass m_i has to be specified
 - e.g., $m_i = h^3 \rho_0$ for a particle spacing of h
 - smaller spacing would result in smaller mass and more neighbors per particle
- numerical integration scheme
 - semi-implicit Euler (a.k.a. symplectic Euler or Euler-Cromer) is commonly used
- time step
 - size is governed by the Courant-Friedrich-Levy (CFL) condition
 - e.g., $\Delta t \leq \lambda \frac{h}{\|v_{\text{max}}\|}$ with $\lambda = 0.4$ and particle spacing h
 - motivation: for $\lambda = 1$, a particle moves less than its diameter per time step
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction
Force Types

- momentum equation
\[\frac{d\mathbf{v}_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 \mathbf{v}_i + \frac{\mathbf{F}_{\text{other}}}{m_i} \]
- body forces, e.g. gravity
- surface forces
 - based on shear and normal stress distribution on the surface due to deformation of the fluid element
 - normal stress related to volume changes
 - normal and shear stress related to friction due to velocity differences
Pressure Force in x-direction

- Pressure force acts orthogonal to the surface of the fluid element.

- Resulting pressure force:

\[
\left(p - \left(p + \frac{\partial p}{\partial x} \, dx \right) \right) \, dy \, dz = -\frac{\partial p}{\partial x} \, dx \, dy \, dz = -\frac{\partial p}{\partial x} \, V
\]
Overall Pressure Force

- force at particle i
 \[
 \mathbf{F}_{i}^{\text{pressure}} = - \left(\begin{array}{c}
 \frac{\partial p_i}{\partial x_{i,x}} \\
 \frac{\partial p_i}{\partial x_{i,y}} \\
 \frac{\partial p_i}{\partial x_{i,z}}
 \end{array} \right) \quad V_i = -\nabla p_i \quad V_i = -\frac{m_i}{\rho_i} \nabla p_i
 \]

- respective acceleration
 \[
 \mathbf{a}_{i}^{\text{pressure}} = \frac{\mathbf{F}_{i}^{\text{pressure}}}{m_i} = -\frac{1}{\rho_i} \nabla p_i
 \]
Cauchy Momentum Equation

- Lagrange form
 \[\frac{d\mathbf{v}}{dt} = \frac{1}{\rho} \nabla \cdot \sigma + \frac{\mathbf{F}_{\text{other}}}{m} \]

- \(\sigma \) is the stress tensor (a 3x3 matrix in 3D) describing the pressure distribution at the surface of a fluid element \(\sigma = -p\mathbf{I}_3 + \tau \)

- \(\nabla \cdot \sigma \) is the resulting force per volume acting on the fluid element

- \(\tau \) is the viscous stress tensor \(\tau = \nu \begin{pmatrix} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} + \frac{\partial w}{\partial z} & \frac{\partial w}{\partial y} + \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \end{pmatrix} \)

- \(\nabla \cdot \tau = \nu \nabla^2 \mathbf{v} \) is the resulting viscosity force per volume

- \(\frac{d\mathbf{v}_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 \mathbf{v}_i + \frac{\mathbf{F}_{\text{other}}}{m_i} \)
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction
SPH Idea

- Quantity A at position \mathbf{x} can be written as
 \[A(\mathbf{x}) = \int_{\Omega} A(\mathbf{x}') \delta(\mathbf{x} - \mathbf{x}') d\mathbf{x}' \]

- Dirac delta $\delta(\mathbf{x}) = \delta(x) \delta(y) \delta(z)$ and $\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$

- $\int_{-\infty}^{+\infty} \delta(x) dx = 1$

- Dirac delta is approximated with a kernel function with limited local support h
 \[A(\mathbf{x}) \approx \int_{\Omega_h} A(\mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) d\mathbf{x}' \]
Kernel Function

- integral should be normalized
 \[\int_\Omega W(x - x', h)dx' = 1 \]
- support should be compact
 \[W(x - x', h) = 0 \text{ for } ||x - x'|| > h \]
- should be symmetric
 \[W(x - x', h) = W(x' - x, h) \]
- should be non-negative
 \[W(x - x', h) \geq 0 \]
- should converge to the Dirac delta for
- should be differentiable
Particle Approximation

- \[A(x) \approx \int_{\Omega_h} A(x') W(x - x', h) dx' \]
 \[= \int_{\Omega_h} \frac{A(x')}{\rho(x')} W(x - x', h) \rho(x') dx' \]

- consider a limited number of samples / particles \(x_j \)
 representing a mass \(m(x_j) = \rho(x_j) V(x_j) \)
 \[A(x_i) \approx \sum_j A(x_j) W(x_i - x_j, h) V(x_j) \]
 \[A(x_i) \approx \sum_j \frac{A(x_j)}{\rho(x_j)} W(x_i - x_j, h) m(x_j) \]

- typical notation
 \[A_i = \sum_j \frac{m_j}{\rho_j} A_j W_{ij} \]
Spatial Derivatives

\[\nabla_x A(x) \approx \int_{\Omega_h} [\nabla_{x'} A(x')] W(x - x', h) dx' \]

\[\nabla_{x'} [A(x')W(x' - x, h)] = [\nabla_{x'} A(x')] W(x' - x, h) + A(x') \nabla_{x'} W(x' - x, h) \]

\[W \text{ is symmetric} \]

\[\nabla_{x'} [A(x')W(x' - x, h)] = [\nabla_{x'} A(x')] W(x - x', h) + A(x') \nabla_{x'} W(x' - x, h) \]

\[[\nabla_{x'} A(x')] W(x - x', h) = \nabla_{x'} [A(x')W(x' - x, h)] - A(x') \nabla_{x'} W(x' - x, h) \]

\[\int_{\Omega_h} \nabla_{x'} [A(x')W(x - x', h)] dx' = \int_S A(x')W(x - x', h) ndS \]

Gauss theorem

\[S \text{ is the surface of } \Omega \]

\[\int_S A(x')W(x - x', h) ndS = 0 \quad W = 0 \text{ on the surface } S \]

\[\nabla_x A(x) \approx -\int_{\Omega_h} A(x') \nabla_{x'} W(x' - x, h) dx' = \int_{\Omega_h} A(x') \nabla_x W(x - x', h) dx' \]

\[\nabla_x A(x_i) \approx \sum_j A(x_j) \nabla W(x_i - x_j, h) V(x_j) \]

\[\nabla_x A(x_i) \approx \sum_j \frac{m(x_j)}{\rho(x_j)} A(x_j) \nabla W(x_i - x_j, h) \]
Spatial Derivatives

- original forms
 \[\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij} \]
 \[\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij} \]

- however, resulting pressure forces do not preserve momentum and are not necessarily zero for constant pressure
Gradient

- momentum-preserving form

\[\nabla \left(\frac{A_i}{\rho_i} \right) = \rho_i \nabla A_i - \frac{A_i}{\rho_i^2} \nabla \rho_i = \nabla A_i - \frac{A_i}{\rho_i} \nabla \rho_i \]

\[\nabla A_i = \rho_i \left(\nabla \left(\frac{A_i}{\rho_i} \right) + \frac{A_i}{\rho_i^2} \nabla \rho_i \right) \]

- SPH approximation

\[\nabla A_i = \rho_i \left(\sum_j m_j \frac{A_j}{\rho_j} \nabla W_{ij} + A_i \sum_j m_j \frac{\rho_j}{\rho_i^2} \nabla W_{ij} \right) \]

\[= \rho_i \sum_j m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla W_{ij} \]

- resulting pressure forces preserve linear and angular momentum for arbitrary samplings
Laplacian

- second derivative is error prone and sensitive to particle disorder
- therefore, the Laplacian is typically approximated with a finite difference approximation of the first derivative

$$\nabla^2 A_i = 2 \sum_j \frac{m_j}{\rho_j} A_{ij} \frac{x_{ij} \cdot \nabla W_{ij}}{x_{ij} \cdot x_{ij} + 0.01h^2}$$

$$A_{ij} = A_i - A_j$$

$$x_{ij} = x_i - x_j$$
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction
SPH Simulation Step
Using a State Equation (SESPH)

- foreach particle do
 - compute density
 - compute pressure

- foreach particle do
 - compute forces
 - update velocities and positions

- density and force computation
 process all neighbors of a particle
Neighbor Search

- for the computation of SPH sums, each particle needs to know at least 30-40 neighbors in each simulation step
- current scenarios
 - up to 30 million fluid particles
 - up to 1 billion neighbors
 - up to 10000 simulation steps
 - up to 10^{13} neighbors processed per simulation
- efficient construction and processing of dynamically changing neighbor sets is essential
Motivation

up to 30 million fluid particles, up to 1 billion neighbors, 11 s computation time for neighbor search on a 16-core PC
Characteristics

- SPH computes sums
 - dynamically changing sets of neighboring particles
 - temporal coherence
- spatial data structures accelerate the neighbor search
 - fast query
 - fast generation (at least once for each simulation step)
 - sparsely, non-uniformly filled simulation domain
- space subdivision
 - each particle is placed in a convex space cell, e.g. a cube
- similarities to collision detection and intersection tests in raytracing
 - however, cells adjacent to the cell of a particle have to be accessed
Characteristics

- hierarchical data structures are less efficient
 - construction in $O(n \log n)$, access in $O(\log n)$
- uniform grid is generally preferred
 - construction in $O(n)$, access in $O(1)$
- Verlet lists
 - potential neighbors are computed within a distance larger than the actual kernel support
 - actual neighbors are computed from the set of potential neighbors
 - potential neighbors are updated every n-th simulation step
 - memory-intensive (processes more neighbors than a standard grid)
- storing neighbors is generally expensive
 - might be avoided for, e.g., a low number of neighbor queries per simulation step or in case of very efficient computation
Characteristics

- data structures have to process
 - fluid particles of multiple phases, e.g. air
 - rigid particles (static or moving)
 - deformable particles
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
 - uniform grid
 - index sort
 - spatial hashing
 - discussion
- incompressibility
- boundary handling
- surface reconstruction
Basic Grid

- particle is stored in a cell with coordinates \((k, l, m)\)
- 27 cells are queried in the neighborhood search \((k\pm1, l\pm1, m\pm1)\)
- cell size equals the kernel support of a particle
 - larger cells increase the number of tested particles
 - smaller cells increase the number of tested cells
- parallel construction suffers from race conditions
 - insertion of particles from different threads in the same cell
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
 - uniform grid
 - index sort
 - spatial hashing
 - discussion
- incompressibility
- boundary handling
- surface reconstruction
Construction

- cell index $c = k + l \cdot K + m \cdot K \cdot L$ is computed for a particle
 - K and L denote the number of cells in x and y direction
- particles are sorted with respect to their cell index
 - e.g., radix sort, $O(n)$
- each grid cell (k, l, m) stores a reference to the first particle in the sorted list
Construction

- parallelizable
- memory allocations are avoided
- constant memory consumption
- entire spatial grid has to be represented to find neighboring cells
Query

- sorted particle array is queried
 - parallelizable
- particles in the same cell are queried
- references to particles of adjacent cells are obtained from the references stored in the uniform grid
- improved cache-hit rate
 - particles in the same cell are close in memory
 - particles of neighboring cells are not necessarily close in memory
Z-Index Sort

- particles are sorted with respect to a z-curve index
- improved cache-hit rate
 - particles in adjacent cells are close in memory
- efficient computation of z-curve indices possible
Z-Index Sort - Sorting

- particle attributes and z-curve indices can be processed separately
- handles (particle identifier, z-curve index) are sorted in each time step
 - reduces memory transfer
 - spatial locality is only marginally influenced due to temporal coherence
- attribute sets are sorted every n^{th} simulation step
 - restores spatial locality
Z-Index Sort - Sorting

- instead of radix sort, insertion sort can be employed
 - $O(n)$ for almost sorted arrays
 - due to temporal coherence, only 2% of all particles change their cell, i.e. z-curve index, in each time step
Z-Index Sort - Reordering

particles colored according to their location in memory

spatial compactness is enforced using a z-curve
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
 - uniform grid
 - index sort
 - spatial hashing
 - discussion
- incompressibility
- boundary handling
- surface reconstruction
Spatial Hashing

- hash function maps a grid cell to a hash cell
 - infinite domain is mapped to a finite list
 - in contrast to index sort, infinite domains can be handled
- large hash tables reduce number of hash collisions
 - hash collisions occur, if different spatial cells are mapped to the same hash cell
 - hash collisions slow down the query
- reduced memory allocations
 - memory for a certain number of entries is allocated for each hash cell
- reduced cache-hit rate
 - hash table is sparsely filled
 - filled and empty cells are alternating
Compact Hashing

- hash cells store handles to a compact list of used cells
 - k entries are pre-allocated for each element in the list of used cells
 - elements in the used-cell list are generated if a particle is placed in a new cell
 - elements are deleted, if a cell gets empty
- memory consumption is reduced from $O(m \cdot k)$ to $O(m + n \cdot k)$ with $m \gg n$
- list of used cells is queried in the neighbor search
Compact Hashing - Construction

- not parallelizable
 - particles from different threads might be inserted in the same cell
- larger hash table compared to spatial hashing to reduce hash collisions
- temporal coherence is employed
 - list of used cells is not rebuilt, but updated
 - set of particles with changed cell index is estimated (about 2% of all particles)
 - particle is removed from the old cell and added to the new cell (not parallelizable)
Compact Hashing - Query

- processing of used cells
 - bad spatial locality
 - used cells close in memory are not close in space

- hash-collision flag
 - if there is no hash collision in a cell, hash indices of adjacent cells have to be computed only once for all particles in this cell
 - large hash table results in 2% cells with hash collisions
Compact Hashing - Query

- particles are sorted with respect to a z-curve every n^{th} step
- after sorting, the list of used cells has to be rebuilt
- if particles are serially inserted into the list of used cells, the list is consistent with the z-curve
 - improved cache hit rate during the traversal of the list of used cells
Compact Hashing - Reordering
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
 - uniform grid
 - index sort
 - spatial hashing
 - discussion
- incompressibility
- boundary handling
- surface reconstruction
Comparison

<table>
<thead>
<tr>
<th>method</th>
<th>construction</th>
<th>query</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic grid</td>
<td>26</td>
<td>38</td>
<td>64</td>
</tr>
<tr>
<td>index sort</td>
<td>36</td>
<td>29</td>
<td>65</td>
</tr>
<tr>
<td>z-index sort</td>
<td>16</td>
<td>27</td>
<td>43</td>
</tr>
<tr>
<td>spatial hashing</td>
<td>42</td>
<td>86</td>
<td>128</td>
</tr>
<tr>
<td>compact hashing</td>
<td>8</td>
<td>32</td>
<td>40</td>
</tr>
</tbody>
</table>

- **measurements in ms**
 - for 130K particles

- **ongoing research**
 - currently, compact hashing is used, compact list stores references to a sorted particle list
Parallel Scaling

- our system
- Amdahl 0.95
- spatial hashing

(speed up vs. threads)
Discussion

- **index sort**
 - fast query as particles are processed in the order of cell indices

- **z-index sort**
 - fast construction due to radix sort or insertion sort of an almost sorted list
 - sorting with respect to the z-curve improves cache-hit rate

- **spatial hashing**
 - slow query due to hash collisions and due to the traversal of the sparsely filled hash table

- **compact hashing**
 - fast construction (update) due to temporal coherence
 - fast query due to the compact list of used cells, due to the hash-collision flag and due to z-curve
References

- z-index sort, compact hashing

- index sort

- spatial hashing
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction
Incompressibility

- is essential for a realistic fluid behavior
 - less than 0.1% in typical scenarios
- inappropriate compression leads, e.g., to oscillations at the free surface
- compression is time-step dependent
 - volume changes should be imperceptible in adaptive time-stepping schemes
- is computationally expensive
 - simple computations require small time steps
 - large time steps require complex computations
State Equations (EOS, SESPH)

- pressure forces resolve compression induced by non-pressure forces (penalty approach)
 - density fluctuations in the fluid result in density gradients
 - density gradients result in pressure gradients
 - pressure gradients result in pressure force from high to low pressure
- fast computation, but small time steps
- pressure is computed from density, e.g.
 - \(p_i = k (\rho_i - \rho_0) \)
 - \(p_i = k \rho_i \)
 - \(p_i = k \left(\frac{\rho_i}{\rho_0} - 1 \right) \)
 - \(k \) is user-defined
 - in graphics referred to as compressible SPH
 - \(p_i = k_1 \left(\left(\frac{\rho_i}{\rho_0} \right)^{k_2} - 1 \right) \)
 - \(k_1, k_2 \) are user-defined
 - in graphics referred to as weakly compressible SPH
- compressibility is governed by the stiffness constant(s) and limits the time step
Non-iterative EOS solver (SESPH)

- for all particle i do
 find neighbors j

 for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute p_i from ρ_i with a state equation

 for all particle i do
 $F_i^{\text{pressure}} = -\frac{m_i}{\rho_i} \nabla p_i$
 $F_i^{\text{viscosity}} = m_i \nu \nabla^2 v_i$
 $F_i^{\text{other}} = m_i g$
 $F_i(t) = F_i^{\text{pressure}} + F_i^{\text{viscosity}} + F_i^{\text{other}}$

 for all particle i do
 $v_i(t + \Delta t) = v_i(t) + \Delta t F_i(t)/m_i$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
SESPH with Splitting

- compute pressure after advecting the particles with non-pressure forces

concept
- compute all non-pressure forces $F_{i}^{\text{nonp}}(t)$
- compute intermediate velocity $v_{i}^{*} = v_{i}(t) + \Delta t \frac{F_{i}^{\text{nonp}}}{m_{i}}$
- compute intermediate position $x_{i}^{*} = x_{i}(t) + \Delta t v_{i}^{*}$
- compute intermediate density $\rho_{i}^{*}(x_{i}^{*})$
- compute pressure p_{i} from intermediate density ρ_{i}^{*} using an EOS
- compute final velocity $v_{i}(t + \Delta t) = v_{i}^{*} - \Delta t \frac{1}{\rho_{i}^{*}} \nabla p_{i}$

motivation
- consider competing forces
- take (positive or negative) effects of non-pressure forces into account when computing the pressure forces
SESPH with Splitting

- **for all particle** \(i\) **do**
 - find neighbors \(j\)

- **for all particle** \(i\) **do**
 - \(\mathbf{F}_{i}^{\text{viscosity}} = m_i \nu \nabla^2 \mathbf{v}_i\)
 - \(\mathbf{F}_{i}^{\text{other}} = m_i \mathbf{g}\)
 - \(\mathbf{v}_i^* = \mathbf{v}_i(t) + \Delta t \frac{\mathbf{F}_{i}^{\text{viscosity}} + \mathbf{F}_{i}^{\text{other}}}{m_i}\)

- **for all particle** \(i\) **do**
 - \(\rho_i^* = \sum_j m_j W_{ij} + \Delta t \sum_j (\mathbf{v}_i^* - \mathbf{v}_j^*) \nabla W_{ij}\)
 - compute \(p_i\) using \(\rho_i^*\)

- **for all particle** \(i\) **do**
 - \(\mathbf{F}_{i}^{\text{pressure}} = -\frac{m_i}{\rho_i^*} \nabla p_i\)

- **for all particle** \(i\) **do**
 - \(\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i^* + \Delta t \frac{\mathbf{F}_{i}^{\text{pressure}}}{m_i}\)
 - \(\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t)\)

- follows from the continuity equation
- avoids neighbor search
Iterative SESPH with Splitting

- Pressure forces are iteratively accumulated and refined

Concept
- Compute non-pressure forces, intermediate velocity and position
- Iteratively
 - Compute intermediate density from intermediate position
 - Compute pressure from intermediate density
 - Compute pressure forces
 - Update intermediate velocity and position

Motivation
- Parameterized by a desired density error, not by a stiffness constant
- Provides a fluid state with a guaranteed density error
Iterative SESPH with Splitting

for all particle i do
 find neighbors j

for all particle i do
 $F_{i}^{\text{viscosity}} = m_i \nu \nabla^2 v_i$
 $F_{i}^{\text{other}} = m_i g$
 $v_i^* = v_i(t) + \Delta t \frac{F_{i}^{\text{viscosity}} + F_{i}^{\text{other}}}{m_i}$
 $x_i^* = x_i(t) + \Delta t v_i^*$

repeat
 for all particle i do
 compute ρ_i^* using x_i^*
 compute p_i using ρ_i^*, e.g. $p_i = k(\rho_i^* - \rho_0)$
 compute ρ_{err}, e.g. average or maximum
 for all particle i do
 $F_{i}^{\text{pressure}} = -\frac{m_i}{\rho_i^*} \nabla p_i$
 $v_i^* = v_i^* + \Delta t \frac{F_{i}^{\text{pressure}}}{m_i}$
 $x_i^* = x_i^* + \Delta t^2 \frac{F_{i}^{\text{pressure}}}{m_i}$

until $\rho_{err} < \eta$ user-defined density error

for all particle i do
 $v_i(t + \Delta t) = v_i^*$
 $x_i(t + \Delta t) = x_i^*$
Iterative SESPH - Variants

- different quantities are accumulated
 - pressure forces (local Poisson SPH)
 - pressure (predictive-corrective SPH, PCISPH)
 - advantageous, if pressure is required for other computations
 - distances (position-based fluids, PBF)
 \[
 \Delta x_i = -\frac{1}{\rho_0} \sum_j \left(\frac{p_i}{\beta_i} + \frac{p_j}{\beta_j} \right) \nabla W_{ij} \quad \beta \text{ is a pre-computed constant}
 \]
- different EOS and stiffness constants are used
 - \(k = \frac{\rho^*_i r_i^2}{2\rho_0 \Delta t^2} \) in local Poisson SPH
 - \(k = \frac{m_i^2 \Delta t^2 \sum_j \nabla W^0_{ij} \cdot \sum_j \nabla W^0_{ij} + \sum_j (\nabla W^0_{ij} \cdot \nabla W^0_{ij})}{2\rho_0^2} \) in PCISPH \(W^0 \) is precomputed
 - \(k = 1 \) in PBF \((p_i = \frac{\rho_i}{\rho_0} - 1) \)
Iterative SESPH - Performance

- typically three to five iterations for density errors between 0.1% and 1%
- typical speed-up over non-iterative SESPH: 50
 - more computations per time step compared to SESPH
 - significantly larger time step than in SESPH
- EOS and stiffness constant influence the number of required iterations to get a desired density error
 - rarely analyzed
- non-linear relation between time step and iterations
 - largest possible time step does not necessarily leads to an optimal overall performance
Pressure Computation

- iterative SESPH (PCISPH)
 - [Solenthaler 2009]
 - iterative pressure computation
 - large time step

- non-iterative SESPH (WCSPH)
 - [Becker and Teschner 2007]
 - efficient to compute
 - small time step

- computation time for the PCISPH scenario is 20 times shorter than WCSPH
Projection Schemes

- compute pressure with a pressure Poisson equation:
 \[\nabla^2 p_i = \frac{\rho_0}{\Delta t} \nabla \cdot \mathbf{v}_i^* = \frac{1}{\Delta t^2} (\rho_0 - \rho_i^*) \]
- \(\mathbf{v}_i^* \) is the predicted velocity considering all non-pressure forces.
- \(\rho_i^* \) is the corresponding predicted density, e.g. \(\rho_i^* = \rho_i - \Delta t \cdot \rho_i \cdot \nabla \cdot \mathbf{v}_i^* \)
- density invariance is preferred.
- divergence-free schemes suffer from drift.
Projection Schemes

- linear system with unknown pressure values
- iterative solvers
 - conjugate gradient
 - relaxed Jacobi
- fast computation per iteration
 - 30-40 non-zero entries in each equation
 - very few information per particle
 - matrix-free implementations
- huge time steps
- convergence tends to be an issue
 - up to 100 iterations, dependent on the formulation
Implicit Incompressible SPH
Derivation

- discretizing the continuity equation
 \[\frac{d\rho_i(t)}{dt} = -\rho_i(t) \nabla \cdot \mathbf{v}_i(t) \]
to
 \[\rho_i(t+\Delta t) - \rho_i(t) = \sum_j m_j \mathbf{v}_{ij}(t + \Delta t) \nabla W_{ij}(t) \]
 forward difference

- unknown velocity \(\mathbf{v}_i(t + \Delta t) \) can be rewritten
 using known non-pressure forces \(\mathbf{F}_{i}^{nonp}(t) \) and
 unknown pressure forces \(\mathbf{F}_{i}^{p}(t) \)

 \[\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \Delta t \frac{\mathbf{F}_{i}^{nonp}(t) + \mathbf{F}_{i}^{p}(t)}{m_i} \]

 \[\mathbf{v}_{i}^{nonp} = \mathbf{v}_i(t) + \Delta t \frac{\mathbf{F}_{i}^{nonp}(t)}{m_i} \]
 predicted velocity only using non-pressure forces
Implicit Incompressible SPH Derivation

- with $\rho_i(t + \Delta t) = \rho_0$ rest density is the desired density at $t+\Delta t$

and $\rho_{i,\text{nonp}} = \rho_i(t) + \Delta t \sum_j m_j \mathbf{v}_{ij}^{\text{nonp}} \nabla W_{ij}(t)$

predicted density, if only non-pressure forces are applied

the discretized continuity equation can be written as

$$\frac{\rho_0 - \rho_{i,\text{nonp}}(t)}{\Delta t} = \Delta t \sum_j m_j \left(\frac{\mathbf{F}_{i,\text{p}}^p(t)}{m_i} - \frac{\mathbf{F}_{j,\text{p}}^p(t)}{m_j} \right) \nabla W_{ij}(t)$$

with unknown pressure forces $\mathbf{F}_{i,\text{p}}^p(t)$

- unknown pressure forces $\mathbf{F}_{i,\text{p}}^p(t)$ can be rewritten using unknown pressures $p_i(t)$

$$\mathbf{F}_{i,\text{p}}^p(t) = -m_i \sum_j m_j \left(\frac{p_i(t)}{\rho_i^2(t)} - \frac{p_j(t)}{\rho_j^2(t)} \right) \nabla W_{ij}(t)$$

resulting in a linear system with unknown pressures
Implicit Incompressible SPH
Linear System

- one equation per particle
 \[\sum_j a_{ij} p_j = b_i = \rho_0 - \rho_i^{nonp} \]
- iterative solver, e.g.,
 \[p_i^{l+1} = (1 - \omega) p_i^l + \omega \frac{\rho_0 - \rho_i^{nonp} - \sum_{j \neq i} a_{ij} p_j^l}{a_{ii}} \]
 - relaxed Jacobi
 - matrix-free implementation
 - user-defined \(\omega (= 0.5) \)
 - \(p_i^l \) is the computed pressure in iteration \(l \)
 - \(p_i^0 \) is initialized, e.g., \(p_i^0 = 0 \) or \(p_i^0 = p_i(t - \Delta t) \)
 - system is not necessarily symmetric
 (a prerequisite for Conjugate Gradient)
Comparison with Iterative SESPH

- breaking dam
 - 100k particles
 - 0.01% average density error
 - particle radius 0.025m

<table>
<thead>
<tr>
<th>Δt [s]</th>
<th>PCISPH</th>
<th></th>
<th></th>
<th>IISPH</th>
<th></th>
<th></th>
<th>PCISPH / IISPH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg. iter.</td>
<td>total comp. time [s]</td>
<td>pressure</td>
<td>overall</td>
<td>avg. iter.</td>
<td>total comp. time [s]</td>
<td>pressure</td>
<td>overall</td>
</tr>
<tr>
<td>0.0005</td>
<td>4.3</td>
<td>540</td>
<td>1195</td>
<td></td>
<td>2.2</td>
<td>148</td>
<td>978</td>
<td></td>
</tr>
<tr>
<td>0.00067</td>
<td>7.2</td>
<td>647</td>
<td>1145</td>
<td></td>
<td>2.9</td>
<td>149</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>14.9</td>
<td>856</td>
<td>1187</td>
<td></td>
<td>4.9</td>
<td>164</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td>0.0025</td>
<td>66.5</td>
<td>1495</td>
<td>1540</td>
<td></td>
<td>18.4</td>
<td>242</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>33.5</td>
<td>273</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>45.8</td>
<td>297</td>
<td>383</td>
<td></td>
</tr>
</tbody>
</table>

- largest possible time step does not necessarily results in the best performance
References

- state equation SPH (SESPH)

- iterative SESPH

- incompressible SPH
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction
Concept

- Rigid objects are sampled with particles
 - Sufficiently dense
 - Oversampling is not an issue
- Adapted density computation of fluid particles that incorporates contributions from a rigid
- Compute pressure forces between fluid and rigid properties
 - Works with arbitrary samplings
 - Volumetric objects, planes, lines, even one particle
 - Preserves a smooth pressure field
Boundary Forces

- **rigid particle volume**
 \[V_{bi} = \frac{m_b}{\rho_{bi}} = \frac{m_b}{\sum_k m_b W_{ik}} = \frac{1}{\sum_k W_{ik}} \]
 volume estimation is independent from mass and density

- **adapted fluid density**
 \[\rho_{fi} = \sum_j m_{fi} W_{ij} + \sum_k \rho_0 V_{bk} W_{ik} \]
 rigid particles are considered as fluid particles in the fluid density computation

- **rigid-fluid pressure forces**
 \[F_{fi \leftarrow bj}^p = -F_{bj \leftarrow fi}^p = -m_{fi} \rho_0 V_{bj} \left(\frac{p_{fi}}{\rho_{fi}^2} \right) \nabla W_{ij} \]
 color-coded volume of boundary particles
Rigid-Fluid Coupling

www.youtube.com/cgfreiburg
Rigid-Fluid Coupling

www.youtube.com/cgfreiburg
References

- rigid-fluid coupling

- elastic-fluid coupling
Outline

- concept of an SPH fluid simulator
- momentum equation
- SPH basics
- neighborhood search
- incompressibility
- boundary handling
- surface reconstruction