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Chapter 38

38.1 Introduction

This chapter describes a method for fast, stable fluid simulation that runs entirely on
the GPU. It introduces fluid dynamics and the associated mathematics, and it describes
in detail the techniques to perform the simulation on the GPU. After reading this
chapter, you should have a basic understanding of fluid dynamics and know how to
simulate fluids using the GPU. The source code accompanying this book demonstrates
the techniques described in this chapter.

38.1 Introduction
Fluids are everywhere: water passing between riverbanks, smoke curling from a glowing
cigarette, steam rushing from a teapot, water vapor forming into clouds, and paint
being mixed in a can. Underlying all of them is the flow of fluids. All are phenomena
that we would like to portray realistically in interactive graphics applications. Figure
38-1 shows examples of fluids simulated using the source code provided with this book.

Fluid simulation is a useful building block that is the basis for simulating a variety of
natural phenomena. Because of the large amount of parallelism in graphics hardware,
the simulation we describe runs significantly faster on the GPU than on the CPU.
Using an NVIDIA GeForce FX, we have achieved a speedup of up to six times over an
equivalent CPU simulation.
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38.1.1 Our Goal
Our goal is to assist you in learning a powerful tool, not just to teach you a new trick.
Fluid dynamics is such a useful component of more complex simulations that treating
it as a black box would be a mistake. Without understanding the basic physics and
mathematics of fluids, using and extending the algorithms we present would be very
difficult. For this reason, we did not skimp on the mathematics here. As a result, this
chapter contains many potentially daunting equations. Wherever possible, we provide
clear explanations and draw connections between the math and its implementation.

38.1.2 Our Assumptions
The reader is expected to have at least a college-level calculus background, including a
basic grasp of differential equations. An understanding of vector calculus principles is
helpful, but not required (we will review what we need). Also, experience with finite
difference approximations of derivatives is useful. If you have ever implemented any
sort of physical simulation, such as projectile motion or rigid body dynamics, many of
the concepts we use will be familiar.

Figure 38-1. Colored “Dye” Carried by a Swirling Fluid
Insets: The velocity field of each fluid. Velocities in the x and y directions are stored in the red and
green color channels, respectively.
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38.1.3 Our Approach
The techniques we describe are based on the “stable fluids” method of Stam 1999.
However, while Stam’s simulations used a CPU implementation, we choose to imple-
ment ours on graphics hardware because GPUs are well suited to the type of computa-
tions required by fluid simulation. The simulation we describe is performed on a grid
of cells. Programmable GPUs are optimized for performing computations on pixels,
which we can consider to be a grid of cells. GPUs achieve high performance through
parallelism: they are capable of processing multiple vertices and pixels simultaneously.
They are also optimized to perform multiple texture lookups per cycle. Because our
simulation grids are stored in textures, this speed and parallelism is just what we need.

This chapter cannot teach you everything about fluid dynamics. The scope of the simu-
lation concepts that we can cover here is necessarily limited. We restrict ourselves to
simulation of a continuous volume of fluid on a two-dimensional rectangular domain.
Also, we do not simulate free surface boundaries between fluids, such as the interface
between sloshing water and air. There are many extensions to these basic techniques.
We mention a few of these at the end of the chapter, and we provide pointers to further
reading about them.

We use consistent mathematical notation throughout the chapter. In equations, italics
are used for variables that represent scalar quantities, such as pressure, p. Boldface is
used to represent vector quantities, such as velocity, u. All vectors in this chapter are
assumed to be two-dimensional.

Section 38.2 provides a mathematical background, including a discussion of the equa-
tions that govern fluid flow and a review of basic vector calculus concepts and notation.
It then discusses the approach to solving the equations. Section 38.3 describes imple-
mentation of the fluid simulation on the GPU. Section 38.4 describes some applica-
tions of the simulation, Section 38.5 presents extensions, and Section 38.6 concludes
the chapter. 

38.2 Mathematical Background
To simulate the behavior of a fluid, we must have a mathematical representation of the
state of the fluid at any given time. The most important quantity to represent is the
velocity of the fluid, because velocity determines how the fluid moves itself and the
things that are in it. The fluid’s velocity varies in both time and space, so we represent it
as a vector field. 
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A vector field is a mapping of a vector-valued function onto a parameterized space,
such as a Cartesian grid. (Other spatial parameterizations are possible, but for purposes
of this chapter we assume a two-dimensional Cartesian grid.) The velocity vector field
of our fluid is defined such that for every position x = (x, y), there is an associated ve-
locity at time t, u(x, t) = (u(x, t), v(x, t), w(x, t)), as shown in Figure 38-2. 

The key to fluid simulation is to take steps in time and, at each time step, correctly
determine the current velocity field. We can do this by solving a set of equations that
describes the evolution of the velocity field over time, under a variety of forces. Once
we have the velocity field, we can do interesting things with it, such as using it to move
objects, smoke densities, and other quantities that can be displayed in our application.

Figure 38-2. The Fluid Velocity Grid
The state of the fluid simulation is represented on an M×N grid like the one shown here. The
arrows represent velocity.



38.2.1 The Navier-Stokes Equations for Incompressible Flow
In physics it’s common to make simplifying assumptions when modeling complex phe-
nomena. Fluid simulation is no exception. We assume an incompressible, homogeneous
fluid.

A fluid is incompressible if the volume of any subregion of the fluid is constant over
time. A fluid is homogeneous if its density, ρ, is constant in space. The combination of
incompressibility and homogeneity means that density is constant in both time and
space. These assumptions are common in fluid dynamics, and they do not decrease the
applicability of the resulting mathematics to the simulation of real fluids, such as water
and air.

We simulate fluid dynamics on a regular Cartesian grid with spatial coordinates 
x = (x, y) and time variable t. The fluid is represented by its velocity field u(x, t), as
described earlier, and a scalar pressure field p(x, t). These fields vary in both space and
time. If the velocity and pressure are known for the initial time t = 0, then the state of
the fluid over time can be described by the Navier-Stokes equations for incompressible
flow:

where ρ is the (constant) fluid density, ν is the kinematic viscosity, and F = ( fx, fy )
represents any external forces that act on the fluid. Notice that Equation 1 is actually
two equations, because u is a vector quantity:

Thus, we have three unknowns (u, v, and p) and three equations.

The Navier-Stokes equations may initially seem daunting, but like many complex con-
cepts, we can better understand them by breaking them into simple pieces. Don’t worry
if the individual mathematical operations in the equations don’t make sense yet. First, we
will try to understand the different factors influencing the fluid flow. The four terms on
the right-hand side of Equation 1 are accelerations. We’ll look at them each in turn.
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38.2.2 Terms in the Navier-Stokes Equations

Advection
The velocity of a fluid causes the fluid to transport objects, densities, and other quanti-
ties along with the flow. Imagine squirting dye into a moving fluid. The dye is trans-
ported, or advected, along the fluid’s velocity field. In fact, the velocity of a fluid carries
itself along just as it carries the dye. The first term on the right-hand side of Equation 1
represents this self-advection of the velocity field and is called the advection term.

Pressure
Because the molecules of a fluid can move around each other, they tend to “squish” and
“slosh.” When force is applied to a fluid, it does not instantly propagate through the
entire volume. Instead, the molecules close to the force push on those farther away, and
pressure builds up. Because pressure is force per unit area, any pressure in the fluid
naturally leads to acceleration. (Think of Newton’s second law, F = ma.) The second
term, called the pressure term, represents this acceleration. 

Diffusion
From experience with real fluids, you know that some fluids are “thicker” than others.
For example, molasses and maple syrup flow slowly, but rubbing alcohol flows quickly.
We say that thick fluids have a high viscosity. Viscosity is a measure of how resistive a
fluid is to flow. This resistance results in diffusion of the momentum (and therefore
velocity), so we call the third term the diffusion term. 

External Forces
The fourth term encapsulates acceleration due to external forces applied to the fluid.
These forces may be either local forces or body forces. Local forces are applied to a spe-
cific region of the fluid—for example, the force of a fan blowing air. Body forces, such
as the force of gravity, apply evenly to the entire fluid.

We will return to the Navier-Stokes equations after a quick review of vector calculus.
For a detailed derivation and more details, we recommend Chorin and Marsden 1993
and Griebel et al. 1998.

38.2.3 A Brief Review of Vector Calculus
Equations 1 and 2 contain three different uses of the symbol ∇ (often pronounced
“del”), which is also known as the nabla operator. The three applications of nabla are
the gradient, the divergence, and the Laplacian operators, as shown in Table 38-1. The 

Chapter 38 Fast Fluid Dynamics Simulation on the GPU



38.2 Mathematical Background 643

Table 38-1. Vector Calculus Operators Used in Fluid Simulation

Operator Definition Finite Difference Form

Gradient

Divergence

Laplacian

subscripts i and j used in the expressions in the table refer to discrete locations on a
Cartesian grid, and δx and δy are the grid spacing in the x and y dimensions, respec-
tively (see Figure 38-2).

The gradient of a scalar field is a vector of partial derivatives of the scalar field. Diver-
gence, which appears in Equation 2, has an important physical significance. It is the
rate at which “density” exits a given region of space. In the Navier-Stokes equations, it
is applied to the velocity of the flow, and it measures the net change in velocity across a
surface surrounding a small piece of the fluid. Equation 2, the continuity equation, en-
forces the incompressibility assumption by ensuring that the fluid always has zero diver-
gence. The dot product in the divergence operator results in a sum of partial derivatives
(rather than a vector, as with the gradient operator). This means that the divergence
operator can be applied only to a vector field, such as the velocity, u = (u, v).

Notice that the gradient of a scalar field is a vector field, and the divergence of a vector
field is a scalar field. If the divergence operator is applied to the result of the gradient
operator, the result is the Laplacian operator ∇ ⋅ ∇ = ∇2. If the grid cells are square
(that is, if δx = δy, which we assume for the remainder of this chapter), the Laplacian
simplifies to:

The Laplacian operator appears commonly in physics, most notably in the form of
diffusion equations, such as the heat equation. Equations of the form ∇2x = b are
known as Poisson equations. The case where b = 0 is Laplace’s equation, which is the
origin of the Laplacian operator. In Equation 2, the Laplacian is applied to a vector
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field. This is a notational simplification: the operator is applied separately to each scalar
component of the vector field.

38.2.4 Solving the Navier-Stokes Equations
The Navier-Stokes equations can be solved analytically for only a few simple physical
configurations. However, it is possible to use numerical integration techniques to solve
them incrementally. Because we are interested in watching the evolution of the flow over
time, an incremental numerical solution suits our needs. 

As with any algorithm, we must divide the solution of the Navier-Stokes equations into
simple steps. The method we use is based on the stable fluids technique described in
Stam 1999. In this section we describe the mathematics of each of these steps, and in
Section 38.3 we describe their implementation using the Cg language on the GPU.

First we need to transform the equations into a form that is more amenable to numeri-
cal solution. Recall that the Navier-Stokes equations are three equations that we can
solve for the quantities u, v, and p. However, it is not obvious how to solve them. The
following section describes a transformation that leads to a straightforward algorithm.

The Helmholtz-Hodge Decomposition
Basic vector calculus tells us that any vector v can be decomposed into a set of basis
vector components whose sum is v. For example, we commonly represent vectors on a
Cartesian grid as a pair of distances along the grid axes: v = (x, y). The same vector can
be written v = x î + y ĵ , where î and ĵ are unit basis vectors aligned to the axes of the
grid.

In the same way that we can decompose a vector into a sum of vectors, we can also
decompose a vector field into a sum of vector fields. Let D be the region in space, or in
our case the plane, on which our fluid is defined. Let this region have a smooth (that is,
differentiable) boundary, ∂D, with normal direction n. We can use the following theo-
rem, as stated in Chorin and Marsden 1993. 

Helmholtz-Hodge Decomposition Theorem
A vector field w on D can be uniquely decomposed in the form:

where u has zero divergence and is parallel to ∂D; that is, u ⋅ n = 0 on ∂D.

w u= + ∇p, (7)
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We use the theorem without proof. For details and a proof of this theorem, refer to
Section 1.3 of Chorin and Marsden 1993.

This theorem states that any vector field can be decomposed into the sum of two other
vector fields: a divergence-free vector field, and the gradient of a scalar field. It also says
that the divergence-free field goes to zero at the boundary. It is a powerful tool, leading
us to two useful realizations. 

First Realization
Solving the Navier-Stokes equations involves three computations to update the velocity
at each time step: advection, diffusion, and force application. The result is a new veloc-
ity field, w, with nonzero divergence. But the continuity equation requires that we end
each time step with a divergence-free velocity. Fortunately, the Helmholtz-Hodge De-
composition Theorem tells us that the divergence of the velocity can be corrected by
subtracting the gradient of the resulting pressure field:

Second Realization
The theorem also leads to a method for computing the pressure field. If we apply the
divergence operator to both sides of Equation 7, we obtain:

But since Equation 2 enforces that ∇ ⋅ u = 0, this simplifies to:

which is a Poisson equation (see Section 38.2.3) for the pressure of the fluid, sometimes
called the Poisson-pressure equation. This means that after we arrive at our divergent
velocity, w, we can solve Equation 10 for p, and then use w and p to compute the new
divergence-free field, u, using Equation 8. We’ll return to this later.

Now we need a way to compute w. To do this, let’s return to our comparison of vectors
and vector fields. From the definition of the dot product, we know that we can find the
projection of a vector r onto a unit vector ŝ by computing the dot product of r and ŝ.
The dot product is a projection operator for vectors that maps a vector r onto its com-
ponent in the direction of ŝ. We can use the Helmholtz-Hodge Decomposition Theo-
rem to define a projection operator, P, that projects a vector field w onto its
divergence-free component, u. If we apply P to Equation 7, we get: 

∇ = ∇ ⋅2p w , (10)

∇ ⋅ = ∇ ⋅ + ∇ = ∇ ⋅ + ∇( )w u up p2 . (9)

u w= − ∇p. (8)
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But by the definition of P, Pw = Pu = u. Therefore, P(∇p) = 0. Now let’s use these
ideas to simplify the Navier-Stokes equations.

First, we apply our projection operator to both sides of Equation 1:

Because u is divergence-free, so is the derivative on the left-hand side, so P(∂u/∂ t) =
∂u/∂ t. Also, P(∇p) = 0, so the pressure term drops out. We’re left with the following
equation:

The great thing about this equation is that it symbolically encapsulates our entire algo-
rithm for simulating fluid flow. We first compute what’s inside the parentheses on the
right-hand side. From left to right, we compute the advection, diffusion, and force
terms. Application of these three steps results in a divergent velocity field, w, to which
we apply our projection operator to get a new divergence-free field, u. To do so, we solve
Equation 10 for p, and then subtract the gradient of p from w, as in Equation 8.

In a typical implementation, the various components are not computed and added
together, as in Equation 11. Instead, the solution is found via composition of transfor-
mations on the state; in other words, each component is a step that takes a field as
input, and produces a new field as output. We can define an operator S that is equiva-
lent to the solution of Equation 11 over a single time step. The operator is defined as
the composition of operators for advection (A), diffusion (D), force application (F),
and projection (P):

Thus, a step of the simulation algorithm can be expressed 
The operators are applied right to left; first advection, followed by diffusion, force ap-
plication, and projection. Note that time is omitted here for clarity, but in practice, the
time step must be used in the computation of each operator. Now let’s look more
closely at the advection and diffusion steps, and then approach the solution of Poisson
equations.
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Advection
Advection is the process by which a fluid’s velocity transports itself and other quantities
in the fluid. To compute the advection of a quantity, we must update the quantity at
each grid point. Because we are computing how a quantity moves along the velocity
field, it helps to imagine that each grid cell is represented by a particle. A first attempt
at computing the result of advection might be to update the grid as we would update a
particle system. Just move the position, r, of each particle forward along the velocity
field the distance it would travel in time δt:

You might recognize this as Euler’s method; it is a simple method for explicit (or for-
ward) integration of ordinary differential equations. (There are more accurate methods,
such as the midpoint method and the Runge-Kutta methods.)

There are two problems with this approach: The first is that simulations that use ex-
plicit methods for advection are unstable for large time steps, and they can “blow up” if
the magnitude of u(t)δt is greater than the size of a single grid cell. The second problem
is specific to GPU implementation. We implement our simulation in fragment pro-
grams, which cannot change the locations of the fragments they are writing. This for-
ward-integration method requires the ability to “move” the particles, so it cannot be
implemented on current GPUs.

The solution is to invert the problem and use an implicit method (Stam 1999). Rather
than advecting quantities by computing where a particle moves over the current time
step, we trace the trajectory of the particle from each grid cell back in time to its former
position, and we copy the quantities at that position to the starting grid cell. To update
a quantity q (this could be velocity, density, temperature, or any quantity carried by the
fluid), we use the following equation:

Not only can we easily implement this method on the GPU, but as Stam showed, it is
stable for arbitrary time steps and velocities. Figure 38-3 depicts the advection compu-
tation at the cell marked with a double circle. Tracing the velocity field back in time
leads to the green ×. The four grid values nearest the green × (connected by a green
square in the figure) are bilinearly interpolated, and the result is written to the starting
grid cell.

q t t q t t tx x u x, , , .+( ) = − ( )( )δ δ (13)

r r ut t t t t+( ) = +δ δ( ) ( ) .
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Viscous Diffusion
As explained earlier, viscous fluids have a certain resistance to flow, which results in dif-
fusion (or dissipation) of velocity. A partial differential equation for viscous diffusion is:

As in advection, we have a choice of how to solve this equation. An obvious approach is
to formulate an explicit, discrete form in order to develop a simple algorithm:

In this equation, ∇2 is the discrete form of the Laplacian operator, Equation 3. Like the
explicit Euler method for computing advection, this method is unstable for large values
of δt and ν. We follow Stam’s lead again and use an implicit formulation of Equation
14:

I u x u x− ∇( ) +( ) = ( )νδ δt t t t2 , , , (15)

u x u x u x, , , .t t t t t+( ) = ( ) + ∇ ( )δ νδ 2

∂
∂

= ∇
u

u
t

ν 2 . (14)
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Figure 38-3. Computing Fluid Advection
The implicit advection step traces backward through the velocity field to determine how quantities
are carried forward.



where I is the identity matrix. This formulation is stable for arbitrary time steps and
viscosities. This equation is a (somewhat disguised) Poisson equation for velocity. Re-
member that our use of the Helmholtz-Hodge decomposition results in a Poisson equa-
tion for pressure. These equations can be solved using an iterative relaxation technique.

Solution of Poisson Equations
We need to solve two Poisson equations: the Poisson-pressure equation and the viscous
diffusion equation. Poisson equations are common in physics and well understood. We
use an iterative solution technique that starts with an approximate solution and im-
proves it every iteration. 

The Poisson equation is a matrix equation of the form Ax = b, where x is the vector of
values for which we are solving (p or u in our case), b is a vector of constants, and A is
a matrix. In our case, A is implicitly represented in the Laplacian operator ∇2, so it
need not be explicitly stored as a matrix. The iterative solution technique we use starts
with an initial “guess” for the solution, x(0), and each step k produces an improved solu-
tion, x(k ). The superscript notation indicates the iteration number. The simplest itera-
tive technique is called Jacobi iteration. A derivation of Jacobi iteration for general
matrix equations can be found in Golub and Van Loan 1996.

More sophisticated methods, such as conjugate gradient and multigrid methods, con-
verge faster, but we use Jacobi iteration because of its simplicity and easy implementa-
tion. For details and examples of more sophisticated solvers, see Bolz et al. 2003,
Goodnight et al. 2003, and Krüger and Westermann 2003.

Equations 10 and 15 appear different, but both can be discretized using Equation 3
and rewritten in the form:

where α and β are constants. The values of x, b, α, and β are different for the two
equations. In the Poisson-pressure equation, x represents p, b represents ∇ ⋅ w, 
α = −(δx)2, and β = 4.1 For the viscous diffusion equation, both x and b represent u, 
α = (δx)2/νδt, and β = 4 + α.

We formulate the equations this way because it lets us use the same code to solve either
equation. To solve the equations, we simply run a number of iterations in which we
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1. Note that the solution of this equation is actually pδt, not p. This is not a problem, because the pressure
is used only to compute the gradient in the projection step. Because δt is constant over the grid, it does not
affect the gradient.
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apply Equation 16 at every grid cell, using the results of the previous iteration as input
to the next (x(k +1) becomes x(k)). Because Jacobi iteration converges slowly, we need to
execute many iterations. Fortunately, Jacobi iterations are cheap to execute on the
GPU, so we can run many iterations in a very short time.

Initial and Boundary Conditions
Any differential equation problem defined on a finite domain requires boundary condi-
tions in order to be well posed. The boundary conditions determine how we compute
values at the edges of the simulation domain. Also, to compute the evolution of the
flow over time, we must know how it started—in other words, its initial conditions. For
our fluid simulation, we assume the fluid initially has zero velocity and zero pressure
everywhere. Boundary conditions require a bit more discussion.

During each time step, we solve equations for two quantities—velocity and pressure—
and we need boundary conditions for both. Because our fluid is simulated on a rectan-
gular grid, we assume that it is a fluid in a box and cannot flow through the sides of the
box. For velocity, we use the no-slip condition, which specifies that velocity goes to zero
at the boundaries. The correct solution of the Poisson-pressure equation requires pure
Neumann boundary conditions: ∂p/∂n = 0. This means that at a boundary, the rate of
change of pressure in the direction normal to the boundary is zero. We revisit boundary
conditions at the end of Section 38.3.

38.3 Implementation
Now that we understand the problem and the basics of solving it, we can move forward
with the implementation. A good place to start is to lay out some pseudocode for the
algorithm. The algorithm is the same every time step, so this pseudocode represents a
single time step. The variables u and p hold the velocity and pressure field data. 

// Apply the first 3 operators in Equation 12.

u = advect(u);

u = diffuse(u);

u = addForces(u);

// Now apply the projection operator to the result.

p = computePressure(u);

u = subtractPressureGradient(u, p);

Chapter 38 Fast Fluid Dynamics Simulation on the GPU



In practice, temporary storage is needed, because most of these operations cannot be
performed in place. For example, the advection step in the pseudocode is more accu-
rately written as:

uTemp = advect(u);

swap(u, uTemp);

This pseudocode contains no implementation-specific details. In fact, the same
pseudocode describes CPU and GPU implementations equally well. Our goal is to
perform all the steps on the GPU. Computation of this sort on the GPU may be unfa-
miliar to some readers, so we will draw some analogies between operations in a typical
CPU fluid simulation and their counterparts on the GPU.

38.3.1 CPU–GPU Analogies
Fundamental to any computer are its memory and processing models, so any applica-
tion must consider data representation and computation. Let’s touch on the differences
between CPUs and GPUs with regard to both of these. 

Textures = Arrays
Our simulation represents data on a two-dimensional grid. The natural representation
for this grid on the CPU is an array. The analog of an array on the GPU is a texture.
Although textures are not as flexible as arrays, their flexibility is improving as graphics
hardware evolves. Textures on current GPUs support all the basic operations necessary to
implement a fluid simulation. Because textures usually have three or four color channels,
they provide a natural data structure for vector data types with two to four components.
Alternatively, multiple scalar fields can be stored in a single texture. The most basic oper-
ation is an array (or memory) read, which is accomplished by using a texture lookup.
Thus, the GPU analog of an array offset is a texture coordinate. We need at least two
textures to represent the state of the fluid: one for velocity and one for pressure. In order
to visualize the flow, we maintain an additional texture that contains a quantity carried
by the fluid. We can think of this as “ink.” Figure 38-4 shows examples of these textures,
as well as an additional texture for vorticity, described in Section 38.5.1.

Loop Bodies = Fragment Programs
A CPU implementation of the simulation performs the steps in the algorithm by loop-
ing, using a pair of nested loops to iterate over each cell in the grid. At each cell, the
same computation is performed. GPUs do not have the capability to perform this inner
loop over each texel in a texture. However, the fragment pipeline is designed to perform

38.3 Implementation 651
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identical computations at each fragment. To the programmer, it appears as if there is a
processor for each fragment, and that all fragments are updated simultaneously. In the
parlance of parallel programming, this model is known as single instruction, multiple
data (SIMD) computation. Thus, the GPU analog of computation inside nested loops
over an array is a fragment program applied in SIMD fashion to each fragment.

Feedback = Texture Update
In Section 38.2.4, we described how we use Jacobi iteration to solve Poisson equations.
This type of iterative method uses the result of an iteration as input for the next itera-
tion. This feedback is common in numerical methods. In a CPU implementation, one
typically does not even consider feedback, because it is trivially implemented using
variables and arrays that can be both read and written. On the GPU, though, the out-
put of fragment processors is always written to the frame buffer. Think of the frame
buffer as a two-dimensional array that cannot be directly read. There are two ways to
get the contents of the frame buffer into a texture that can be read:

● Copy to texture (CTT) copies from the frame buffer to a texture.

● Render to texture (RTT) uses a texture as the frame buffer so the GPU can write di-
rectly to it. 

CTT and RTT function equally well, but have a performance trade-off. For the sake of
generality we do not assume the use of either and refer to the process of writing to a
texture as a texture update.

Earlier we mentioned that, in practice, each of the five steps in the algorithm updates a
temporary grid and then performs a swap. RTT requires the use of two textures to
implement feedback, because the results of rendering to a texture while it is bound for

Figure 38-4. The State Fields of a Fluid Simulation, Stored in Textures
From left to right, the fields are “ink,” velocity (scaled and biased into the range [0, 1], so zero
velocity is gray), pressure (blue represents low pressure, red represents high pressure), and
vorticity (yellow represents counter-clockwise rotation, blue represents clockwise rotation).



reading are undefined. The swap in this case is merely a swap of texture IDs. The per-
formance cost of RTT is therefore constant. CTT, on the other hand, requires only one
texture. The frame buffer acts as a temporary grid, and a swap is performed by copying
the data from the frame buffer to the texture. The performance cost of this copy is
proportional to the texture size.

38.3.2 Slab Operations
We break down the steps of our simulation into what we call slab operations (slabop, for
short).2 Each slabop consists of processing one or more (often all) fragments in the
frame buffer—usually with a fragment program active—followed by a texture update.
Fragment processing is driven by rendering geometric primitives. For this application,
the geometry we render is simple: just quad and line primitives.

There are two types of fragments to process in any slab operation: interior fragments
and boundary fragments. Our 2D grid reserves a single-cell perimeter to store and
compute boundary conditions. Typically, a different computation is performed on the
interior and at the boundaries. To update the interior fragments, we render a quadrilat-
eral that covers all but a one-pixel border on the perimeter of the frame buffer. We ren-
der four line primitives to update the boundary cells. We apply separate fragment
programs to interior and border fragments. See Figure 38-5.

38.3.3 Implementation in Fragment Programs
Now that we know the steps of our algorithm, our data representation, and how to
perform a slab operation, we can write the fragment programs that perform computa-
tions at each cell.

Advection
The fragment program implementation of advection shown in Listing 38-1 follows
nearly exactly from Equation 13, repeated here: 

There is one slight difference. Because texture coordinates are not in the same units as
our simulation domain (the texture coordinates are in the range [0, N ], where N is the
grid resolution), we must scale the velocity into grid space. This is reflected in Cg code
with the multiplication of the local velocity by the parameter rdx, which represents the

q t t q t t tx x u x, , , .+( ) = − ( )( )δ δ (13)
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2. We call them slab operations because GPU simulation in 3D requires us to break the 3D grid down into
a stack of 2D “slabs,” because the frame buffer is limited to two dimensions.
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reciprocal of the grid scale δx. The texture wrap mode must be set to CLAMP_TO_EDGE
so that back-tracing outside the range [0, N ] will be clamped to the boundary texels.
The boundary conditions described later correctly update these texels so that this situa-
tion operates correctly.

Listing 38-1. Advection Fragment Program

void advect(float2 coords   : WPOS,   // grid coordinates

out float4 xNew : COLOR,  // advected qty

uniform float timestep,

uniform float rdx,        // 1 / grid scale

uniform samplerRECT u,    // input velocity

uniform samplerRECT x)    // qty to advect

{

// follow the velocity field "back in time"

float2 pos = coords - timestep * rdx * f2texRECT(u, coords); 

// interpolate and write to the output fragment

xNew = f4texRECTbilerp(x, pos);  

} 
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Figure 38-5. Primitives Used to Update the Interior and Boundaries of the Grid
Updating a grid involves rendering a quad for the interior and lines for the boundaries. Separate
fragment programs are applied to interior and border fragments.



In this code, the parameter u is the velocity field texture, and x is the field that is to be
advected. This could be the velocity or another quantity, such as dye concentration.
The function f4texRECTbilerp() is a utility to perform bilinear interpolation of
the four texels closest to the texture coordinates passed to it. Because current GPUs do
not support automatic bilinear interpolation in floating-point textures, we must imple-
ment it with this type of code. 

Viscous Diffusion
With the description of the Jacobi iteration technique given in Section 38.2.4, writing
a Jacobi iteration fragment program is simple, as shown in Listing 38-2.

Listing 38-2. The Jacobi Iteration Fragment Program Used to Solve Poisson Equations

void jacobi(half2 coords   : WPOS,   // grid coordinates

out half4 xNew : COLOR,  // result

uniform half alpha,

uniform half rBeta,      // reciprocal beta

uniform samplerRECT x,   // x vector (Ax = b)

uniform samplerRECT b)   // b vector (Ax = b)

{

// left, right, bottom, and top x samples

half4 xL = h4texRECT(x, coords - half2(1, 0));

half4 xR = h4texRECT(x, coords + half2(1, 0));

half4 xB = h4texRECT(x, coords - half2(0, 1));

half4 xT = h4texRECT(x, coords + half2(0, 1));

// b sample, from center

half4 bC = h4texRECT(b, coords);

// evaluate Jacobi iteration

xNew = (xL + xR + xB + xT + alpha * bC) * rBeta;

}

Notice that the rBeta parameter is the reciprocal of β from Equation 16. To solve the
diffusion equation, we set alpha to (δx)2/νδt , rBeta to 1/(4 + (δx)2/νδt), and the x
and b parameters to the velocity texture. We then run a number of iterations (usually
20 to 50, but more can be used to reduce the error).

Force Application
The simplest step in our algorithm is computing the acceleration caused by external
forces. In the demonstration application found in the accompanying materials, you can
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apply an impulse to the fluid by clicking and dragging with the mouse. To implement
this, we draw a spot into the velocity texture at the position of the click. The color of
the spot encodes the direction and magnitude of the impulse: the red channel contains
the magnitude in x, and the green channel contains the magnitude in y. The spot is
actually a two-dimensional Gaussian “splat.” 

We use a fragment program to check each fragment’s distance from the impulse posi-
tion. Then we add the quantity c to the color:

Here, F is the force computed from the direction and length of the mouse drag, r is the
desired impulse radius, and (x, y) and (xp, yp) are the fragment position and impulse
(click) position in window coordinates, respectively.

Projection
In the beginning of this section, we learned that the projection step is divided into two
operations: solving the Poisson-pressure equation for p, and subtracting the gradient of
p from the intermediate velocity field. This requires three fragment programs: the afore-
mentioned Jacobi iteration program, a program to compute the divergence of the inter-
mediate velocity field, and a program to subtract the gradient of p from the
intermediate velocity field.

The divergence program shown in Listing 38-3 takes the intermediate velocity field as
parameter w and one-half of the reciprocal of the grid scale as parameter halfrdx, and it
computes the divergence according to the finite difference formula given in Table 38-1,
on page 643.

The divergence is written to a temporary texture, which is then used as input to the b
parameter of the Jacobi iteration program. The x parameter of the Jacobi program is set
to the pressure texture, which is first cleared to all zero values (in other words, we are
using zero as our initial guess for the pressure field). The alpha and rBeta parameters
are set to −(δx)2 and ¼, respectively. 

To achieve good convergence on the solution, we typically use 40 to 80 Jacobi itera-
tions. Changing the number of Jacobi iterations will affect the accuracy of the simula-
tion. It is not a good idea to go below 20 iterations, because the error is noticeable.
Using more iterations results in more detailed vortices and more overall accuracy, but it
requires more computation time. After the Jacobi iterations are finished, we bind the 
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Listing 38-3. The Divergence Fragment Program

void divergence(half2 coords  : WPOS,   // grid coordinates

out half4 div : COLOR,  // divergence

uniform half halfrdx,   // 0.5 / gridscale

uniform samplerRECT w)  // vector field

{

half4 wL = h4texRECT(w, coords - half2(1, 0));

half4 wR = h4texRECT(w, coords + half2(1, 0));

half4 wB = h4texRECT(w, coords - half2(0, 1));

half4 wT = h4texRECT(w, coords + half2(0, 1));

div = halfrdx * ((wR.x - wL.x) + (wT.y - wB.y));

}

pressure field texture to the parameter p in the following program, which computes the
gradient of p according to the definition in Table 38-1 and subtracts it from the inter-
mediate velocity field texture in parameter w. See Listing 38-4.

Listing 38-4. The Gradient Subtraction Fragment Program

void gradient(half2 coords   : WPOS,   // grid coordinates

out half4 uNew : COLOR,  // new velocity

uniform half halfrdx,    // 0.5 / gridscale

uniform samplerRECT p,   // pressure

uniform samplerRECT w)   // velocity

{

half pL = h1texRECT(p, coords - half2(1, 0));

half pR = h1texRECT(p, coords + half2(1, 0));

half pB = h1texRECT(p, coords - half2(0, 1));

half pT = h1texRECT(p, coords + half2(0, 1));

uNew = h4texRECT(w, coords);

uNew.xy -= halfrdx * half2(pR - pL, pT - pB);

}

Boundary Conditions
In Section 38.2.4, we determined that our “fluid in a box” requires no-slip (zero) velocity
boundary conditions and pure Neumann pressure boundary conditions. In Section
38.3.2 we learned that we can implement boundary conditions by reserving the one-pixel
perimeter of our grid for storing boundary values. We update these values by drawing line
primitives over the border, using a fragment program that sets the values appropriately.
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First we should look at how our grid discretization affects the computation of boundary
conditions. The no-slip condition dictates that velocity equals zero on the boundaries,
and the pure Neumann pressure condition requires the normal pressure derivative to be
zero at the boundaries. The boundary is defined to lie on the edge between the bound-
ary cell and its nearest interior cell, but grid values are defined at cell centers. Therefore,
we must compute boundary values such that the average of the two cells adjacent to
any edge satisfies the boundary condition. 

For the velocity boundary on the left side, for example, we have:

where N is the grid resolution. In order to satisfy this equation, we must set u0, j equal
to –u1, j. The pressure equation works out similarly. Using the forward difference ap-
proximation of the derivative, we get:

On solving this equation for p0, j,we see that we need to set each pressure boundary
value to the value just inside the boundary.

We can use a simple fragment program for both the pressure and the velocity bound-
aries, as shown in Listing 38-5.

Listing 38-5. The Boundary Condition Fragment Program

void boundary(half2 coords : WPOS,    // grid coordinates

half2 offset : TEX1,    // boundary offset

out half4 bv : COLOR,   // output value

uniform half scale,     // scale parameter

uniform samplerRECT x)  // state field

{

bv = scale * h4texRECT(x, coords + offset);

}

Figure 38-6 demonstrates how this program works. The x parameter represents the
texture (velocity or pressure field) from which we read interior values. The offset
parameter contains the correct offset to the interior cells adjacent to the current bound-
ary. The coords parameter contains the position in texture coordinates of the frag-
ment being processed, so adding offset to it addresses a neighboring texel. At each

p p

x
j j1 0 0, , .

−
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δ
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2
0 0, , , , ,j j j N

+
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boundary, we set offset to adjust our texture coordinates to the texel just inside the
boundary. For the left boundary, we set it to (1, 0), so that it addresses the texel just to
the right; for the bottom boundary, we use (0, 1); and so on. The scale parameter can
be used to scale the value we copy to the boundary. For velocity boundaries, scale is
set to −1, and for pressure it is set to 1, so that we correctly implement Equations 17
and 18, respectively.

38.4 Applications
In this section we explore a variety of applications of the GPU simulation techniques
discussed in this chapter.

Figure 38-6. Boundary Conditions on an M×N Grid
The arrows indicate how offsets are used to copy values from just inside the boundaries to the
boundary cells.
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38.4.1 Simulating Liquids and Gases
The most direct use of the simulation techniques is to simulate a continuous volume of
a liquid or gas. As it stands, the simulation represents only the velocity of the fluid,
which is not very interesting. It is more interesting if we put something else in the fluid.
The demonstration application does this by maintaining an additional scalar field. This
field represents the concentration of dye carried by the fluid. (Because it is an RGB
texture, it is really three scalar fields: one for each of three dye colors.) Quantities like
this are known as passive scalars because they are only carried along by the fluid; they do
not affect how it flows. 

If d is the concentration of dye, then the evolution of the dye field is governed by the
following equation:

To simulate how the dye is carried by the fluid, we apply the advection operator to the
scalar field, just as we do for the velocity. If we also want to account for the diffusion of
the dye in the fluid, we add a diffusion term:

where γ is the coefficient of the diffusion of dye in water (or whatever liquid we assume
the fluid is). To implement dye diffusion, we use Jacobi iteration, just as we did for
viscous diffusion of velocity. Note that the demonstration application does not actually
perform diffusion of the dye, because numerical error in the advection term causes it to
diffuse anyway. We added another term to Equation 20, S. This term represents any
sources of dye. The application implements this term by adding dye anywhere we click. 

38.4.2 Buoyancy and Convection
Temperature is an important factor in the flow of many fluids. Convection currents are
caused by the changes in density associated with temperature changes. These currents
affect our weather, our oceans and lakes, and even our coffee. To simulate these effects,
we need to add buoyancy to our simulation.

The simplest way to incorporate buoyancy is to add a new scalar field for temperature,
T, to the simulation. We can then insert an additional buoyancy operator that adds
force where the local temperature is higher than a given ambient temperature, T0:

∂
∂

= − ⋅ ∇( ) + ∇ +
d
t

d d Su γ 2 , (20)

∂
∂

= − ⋅ ∇( )d
t

du . (19)
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In this equation, ĵ is the vertical direction and σ is a constant scale factor. This force
can be implemented in a simple fragment program that evaluates Equation 21 at each
fragment, scales the result by the time step, and adds it to the current velocity.

Smoke and Clouds
We now have almost everything we need to simulate smoke. What we have presented
so far is similar to the smoke simulation technique introduced by Fedkiw et al. 2001.
In addition to calculating the velocity and pressure fields, a smoke simulation must
maintain scalar fields for smoke density, d, and temperature, T. The smoke density is
advected by the velocity field, just like the dye we described earlier. The buoyant force
is modified to account for the gravitational pull on dense smoke:

where κ is a constant mass scale factor.

By adding a source of smoke density and temperature (possibly representing a smoke-
stack or the tip of a cigarette) at a given location on the grid, we simulate smoke. The
paper by Fedkiw et al. describes two other differences from our basic simulation. They
use a staggered grid to improve accuracy, and they add a vorticity confinement force to
increase the amount of swirling motion in the smoke. Both extensions are discussed in
the next section.

As demonstrated in Harris et al. 2003, a more complex simulation can be used to simu-
late clouds on the GPU. A sequence of stills from a 2D GPU cloud simulation is
shown in Figure 38-7. The cloud simulator combines fluid simulation with a thermo-
dynamic simulation (including buoyancy), as well as a simulation of water condensa-
tion and evaporation. A 128×128 cloud simulation runs at over 80 iterations per
second on an NVIDIA GeForce FX 5950 Ultra GPU.

38.5 Extensions
The fluid simulation presented in this chapter is a building block that can serve as the
basis for more complex simulations. There are many ways to extend this basic simula-
tion. To get you started, we describe some useful extensions.

f d T Tbuoy = − + −( )( )κ σ 0
ˆ ,j (22)

f T Tbuoy = −( )σ 0
ˆ.j (21)
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38.5.1 Vorticity Confinement
The motion of smoke, air and other low-viscosity fluids typically contains rotational
flows at a variety of scales. This rotational flow is vorticity. As Fedkiw et al. explained,
numerical dissipation caused by simulation on a coarse grid damps out these interesting
features (Fedkiw et al. 2001). Therefore, they used vorticity confinement to restore these
fine-scale motions. Vorticity confinement works by first computing the vorticity, 
ω = ∇ × u. From the vorticity we compute a normalized vorticity vector field:

Here, The vectors in this vector field point from areas of lower vorticity to
areas of higher vorticity. From these vectors we compute a force that can be used to
restore an approximation of the dissipated vorticity:

η ω= ∇ .

Ψ η
η

= .
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Figure 38-7. Cloud Simulation
A sequence of frames (20 iterations apart) from a two-dimensional cloud simulation running on a
GPU.



Here ε is a user-controlled scale parameter. The “curl” operator, ∇ ×, can be derived
using the definitions of the gradient and the cross-product operator. The accompanying
source code implements vorticity confinement.

38.5.2 Three Dimensions
All the simulations presented in this chapter are two-dimensional. There is nothing
preventing us from extending them to 3D. The equations remain essentially the same,
but we must extend them to incorporate a 3D velocity, u = (u, v, w). The fragment
programs must be rewritten to account for this; samples from four neighbors in two
dimensions become samples from six neighbors in three dimensions. 

The biggest change is in how the vector and scalar fields are represented. One option is
to use 3D textures. This is a problem on hardware that does not support 3D floating-
point textures. In this situation, we can tile the slabs of a 3D texture in a grid stored in
a 2D texture (for example, a 32×32×32 grid would tile onto a 256×128 2D texture,
with eight tiles in one dimension and four in the other). This technique, called flat 3D
textures, is presented in detail in Harris et al. 2003.

38.5.3 Staggered Grid
In our simulation we represent velocity, pressure, and any other quantities at cell cen-
ters. This is just one way to discretize the continuous domain on which we represent
our fluid. This approach is known as a collocated, or cell-centered, discretization. An-
other way is to use a staggered grid. In a staggered grid, we represent scalar quantities
(such as pressure) at cell centers and vector quantities (such as velocity) at the bound-
aries between cells. Specifically, on a two-dimensional grid, we represent the horizontal
velocity, u, at the right edge of each cell and the vertical velocity, v, at the top edge of
each cell. The staggered grid discretization increases the accuracy of many calculations.
It can also reduce numerical oscillations that may arise when forces such as buoyancy
are applied on a cell-centered grid. Details of the implementation of fluid simulation
on a staggered grid can be found in Griebel et al. 1998. 

fvc x= ×( )ε δΨ ω .
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38.5.4 Arbitrary Boundaries
So far we have assumed that our fluid exists in a rectangular box with flat, solid sides. If
boundaries of arbitrary shape and location are important, you need to extend the simu-
lation.

Incorporating arbitrary boundaries requires applying the boundary conditions (dis-
cussed in Section 38.3.3) at arbitrary locations. This means that at each cell, we must
determine in which direction the boundaries lie in order to compute the correct
boundary values. This simulation requires more decisions to be made at each cell, lead-
ing to a slower and more complicated simulation. However, many interesting effects
can be created this way, such as smoke flowing around obstacles. Moving boundaries
can even be incorporated, as in Fedkiw et al. 2001. We refer you to that paper as well as
Griebel et al. 1998 for implementation details.

38.5.5 Free Surface Flow
Another assumption we made is that our fluid is continuous—the only boundaries we
represent are the solid boundaries of the box. So we cannot simulate things like the
ocean surface, where there is an interface between the water and air. This type of inter-
face is called a free surface. Extending our simulation to incorporate a free surface re-
quires tracking the location of the surface as it moves through cells. Methods for
implementing free surface flow can be found in Griebel et al. 1998.

38.6 Conclusion
The power and programmability now available in GPUs enables fast simulation of a
wide variety of phenomena. Underlying many of these phenomena is the dynamics of
fluid motion. 

After reading this chapter, you should have a fundamental understanding of the mathe-
matics and technology you need to implement basic fluid simulations on the GPU.
From these initial ideas you can experiment with your own simulation concepts and
incorporate fluid simulation into graphics applications. We hope these techniques be-
come powerful new tools in your repertoire.
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