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Abstract
Graphics research on Smoothed Particle Hydrodynamics (SPH) has produced fantastic visual results that are unique across the
board of research communities concerned with SPH simulations. Generally, the SPH formalism serves as a spatial discretization
technique, commonly used for the numerical simulation of continuum mechanical problems such as the simulation of fluids,
highly viscous materials, and deformable solids. Recent advances in the field have made it possible to efficiently simulate
massive scenes with highly complex boundary geometries on a single PC [Com16b, Com16a]. Moreover, novel techniques
allow to robustly handle interactions among various materials [Com18,Com17]. As of today, graphics-inspired pressure solvers,
neighborhood search algorithms, boundary formulations, and other contributions often serve as core components in commercial
software for animation purposes [Nex17] as well as in computer-aided engineering software [FIF16].
This tutorial covers various aspects of SPH simulations. Governing equations for mechanical phenomena and their SPH dis-
cretizations are discussed. Concepts and implementations of core components such as neighborhood search algorithms, pres-
sure solvers, and boundary handling techniques are presented. Implementation hints for the realization of SPH solvers for fluids,
elastic solids, and rigid bodies are given. The tutorial combines the introduction of theoretical concepts with the presentation
of actual implementations.

Keywords: Physically-based animation, Smoothed Particle Hydrodynamics, fluids, elastic solids, rigid bodies

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

The SPH concept is increasingly popular in a large variety of ap-
plication areas that range from entertainment technologies to en-
gineering. On the one hand, this popularity is based on the fact
that Lagrangian approaches in general – and SPH in particular –
can naturally handle scenarios that would be rather involved for
Eulerian approaches. A favorable example is a free-surface fluid
with geometrically complex and dynamic solid boundaries. Such
settings are especially relevant for special effects productions in
industry. The scenario, however, has the same relevance in engi-
neering, e.g., for the analysis of vehicles in water passages, for the
prediction of rain water evacuation on a vehicle with moving wipers
or for the design of gear boxes with optimized lubrication.

A second important aspect for the impressive advances in SPH
based techniques is the fact that various research communities con-

tribute to different aspects of SPH simulations. E.g., the simulation
community has a strong focus on the accuracy of SPH discretiza-
tions or on specific properties of the discretizations. Kernel func-
tions and the effect of the size of kernel support domain are inves-
tigated. Effects of the sampling quality onto SPH approximations
are analyzed, leading to concepts such as kernel gradient correc-
tion, particle shift, ambient pressure or density diffusion, just to
name a few. The computer science community – the graphics com-
munity in particular – focuses on efficient algorithms for neigh-
borhood searches, efficient pressure solvers, and flexible boundary
handling. Also, pre- and post-processing is a typical graphics topic,
e.g., boundary sampling and visualization. The graphics commu-
nity also experiments with combinations of different discretization
concepts. E.g., some projects have started to investigate combi-
nations of SPH and MLS discretizations which is less typical in
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the simulation community, where we currently see a strong focus
on SPH within Lagrangian approaches with exclusive SPH confer-
ences and SPH initiatives.

Still, simulation and computer science are different communi-
ties, but there is a growing acceptance of advances across commu-
nities. Graphics papers use state-of-the-art kernel functions, rang-
ing from cubic spline to Wendland kernel types. The kernel gradient
correction is employed in a growing number of approaches. Vice
versa, the simulation community adopts efficient data structures for
neighborhood searches, concepts for non-uniformly boundary sam-
plings, and efficient pressure solvers.

This tutorial aims at a practical introduction of the SPH concept
and its application in the simulation of fluids, elastic solids, and
rigid solids. It starts with a description of the SPH concept and its
usage for the interpolation of field quantities and for the computa-
tion of spatial derivatives. Then, the governing equations for fluids
and solids are stated and the SPH concepts for the simulation of flu-
ids and solids are outlined. In the following, various aspects of SPH
simulations are explained in more detail. One of these aspects is the
neighborhood search that is required for all SPH computations, as
the interpolation of a quantity or a spatial derivative is always com-
puted as a sum over adjacent particles. Another important aspect
is incompressibility which is not only relevant for fluids, but also,
e.g., in the case of elastic solids. Next, boundary handling concepts
are explained, e.g., the interaction for fluid particles at solid walls,
at free surfaces, i.e., at the interface between fluid and air, or the
interaction of particles from different fluids, i.e., multiphase fluids.
Other topics are viscosity, surface tension, and vorticity. Further,
the SPH simulation of elastic solids and SPH-based contact han-
dling between rigid bodies is described. Moreover, the techniques
for the usage of SPH discretizations in data driven fluid simulations
are presented. Finally, SPlisHSPlasH, an open-source library for
the physically-based SPH simulation of fluids and solids, is intro-
duced. The most important quantities that will be used throughout
this tutorial are summarized in Tab. 1.

2. Foundations

In this section, we introduce the fundamental concept of SPH for
the phenomenological simulation of fluids and solids. The section
is primarily based on the excellent work of Price [Pri12] and Mon-
aghan [Mon05] but, moreover, includes important theoretical and
practical insights that we have gained over the years working on
SPH based techniques.

We first show how the SPH formalism discretizes spatial quan-
tities using a set of particles equipped with a kernel function. Sec-
ondly, we discuss the approximation quality that can be expected
and provide practical examples to illustrate the consequences for
physics-based simulations targeting computer graphics applica-
tions. Thirdly, we show how 1st- and 2nd-order differential oper-
ators are discretized and present specialized variants of the discrete
operators tailored to specific circumstances. Finally, we give a brief
introduction of the conservation law of linear momentum and the
concept of stress in order to derive the governing equations for
fluids and elastic solids and present a simple approach to simu-
late weakly compressible fluids using the knowledge that we have
gained up to this point.

Variable Description Unit

d Spatial dimension –
A Auxiliary function –
t Time s
ρ Volumetric mass density kgm−3

p Pressure Pa
m Mass kg
Ψ Pseudo-mass kg
µ Dynamic viscosity Pas
ν Kinematic viscosity m2 s−1

h Smoothing length m
~ Kernel support radius m
h̃ Particle size m
σ Kernel normalization factor m−3

x Position vector of material particle m
r Distance vector between two material particles m
u Displacement of a material particle m
v Velocity vector of material particle ms−1

a Acceleration vector of material particle ms−2

ω Angular velocity vector of material particle rads−1

f Body force Nm−3

F Force N
τ Body torque Nmm−3

τ Torque Nm
Θ Microinertia m2 s−1

T Cauchy stress tensor Nm−2

P 1st Piola-Kirchhoff stress tensor Nm−2

J Deformation gradient –
ε Strain tensor –
E Strain rate tensor s−1

Table 1: Table of notation.

2.1. SPH Discretization

The concept of SPH can be generally understood as a method for
the discretization of spatial field quantities and spatial differential
operators, e.g., gradient, divergence, curl, etc. In order to under-
stand the basic idea, we first have to introduce the Dirac-δ distri-
bution and the corresponding Dirac-δ identity. δ is a generalized
function defined as

δ(r) =

∞ if r = 0

0 otherwise
(1)

and satisfies
∫

δ(r)dv = 1.

To provide a physical intuition of what this distribution de-
scribes, consider the following example. In physics the mass of a
body is usually defined as the spatial integral in the volumetric mass
density, i.e., m =:

∫
ρ(x)dv. However, if an idealized point mass is

considered, the concept of a density function loses its meaning as
the point mass has no spatial extents. In this case the density can
not be described as a function, anymore, but collapses to the Dirac-
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Figure 1: Gaussian bell function (normal distribution) N (0,σ2)
with varying variance σ

2. For σ
2→ 0 the function approaches the

Dirac-δ distribution. The arrow indicates a function value of ∞.
The function family has non-compact support.

δ distribution scaled using the point mass. Another intuition of in-
terpreting the Dirac-δ distribution is to understand it as the limit of
the Gaussian normal distribution as the variance approaches zero
(see Fig. 1).

Now that we have understood the Dirac-δ distribution, we can
apply the Dirac-δ identity as the basis for the discretization. The
identity states that the convolution of a continuous compactly sup-
ported function A(x) with the Dirac-δ distribution is identical to A
itself, i.e.,

A(x) = (A∗δ)(x) =
∫

A
(
x′
)
δ
(
x−x′

)
dv′ , (2)

where dv′ denotes the (volume) integration variable corresponding
to x′.

2.2. Continuous Approximation

We will later approximate the integral of Eq. (2) using a sum for nu-
merical quadrature. Since δ(r) is, however, neither a function nor
can be discretized, we first make a continuous approximation to the
Dirac-δ distribution as a preparation to the discrete approximation
of the integral. A natural choice to approximate δ is to use a nor-
malized Gaussian since δ is equal to the normal distribution with
zero variance. Consequently, convolving a field quantity A with a
Gaussian effectively smoothes A. We will later see that the Gaus-
sian is, however, not an optimal choice due to its non-compact sup-
port domain and will therefore consider more general smoothing
functions W : Rd ×R+→ R which we will refer to as kernel func-
tions or smoothing kernels. Formally the continuous approximation
to A(x) with W(r,h) is

A(x)≈ (A∗W)(x)

=
∫

A
(
x′
)
W
(
x−x′,h

)
dv′ ,

(3)

where h denotes the kernel’s smoothing length. The smoothing
length controls the amount of smoothing and consequently how
strongly the value of A at position x is influenced by the values
in its close proximity. This means the smoothing effect increases
with growing smoothing lengths. The following properties are fur-
thermore desired:∫

Rd
W
(
r′,h

)
dv′ = 1 (normalization condition)

lim
h′→0

W
(
r,h′

)
= δ(r) (Dirac-δ condition)

W(r,h)≥ 0 (positivity condition)

W(r,h) =W(−r,h) (symmetry condition)

W(r,h) = 0 for ‖r‖ ≥ ~, (compact support condition)

∀ r ∈ Rd ,h ∈ R+, where ~ denotes the support radius of the kernel
function. Moreover, the kernel should be at least twice continuously
differentiable to enable a consistent discretization of 2nd-order par-
tial differential equations (PDEs). It is essential to use a kernel that
satisfies the first two conditions (normalization and Dirac-δ), in or-
der to ensure that the approximation in Eq. (3) remains valid. The
positivity condition is not strongly required (there are also kernels
that do not have this property). However, in the context of physical
simulations kernels that take negative values may lead to physi-
cally inconsistent estimates of field quantities, e.g., negative mass
density estimates, and should therefore be avoided. We will later
see that the symmetry condition ensures 1st-order consistency of
the continuous approximation. Finally, ensuring that the kernel is
compactly supported is a purely practical consideration that will
come into play after discretizing the continuous integral and will
be discussed later. To keep this tutorial practical, we refrain from
discussing how to construct SPH kernels and would like to refer the
reader to the review of Liu and Liu [LL10] for a discussion on ker-
nel construction and an overview over a range of smoothing kernels
suitable for SPH.

A typical choice for the smoothing kernel is the cubic spline ker-
nel

W(r,h) = σd


6(q3−q2)+1 for 0≤ q≤ 1

2

2(1−q)3 for 1
2 < q≤ 1

0 otherwise ,

(4)

with q = 1
h‖r‖. The kernel normalization factors for the respective

dimensions d = 1,2,3 are σ1 =
4

3h , σ2 =
40

7πh2 , and σ3 =
8

πh3 . Please
note that there exist different formulations of the cubic spline ker-
nel throughout SPH literature that are differently parametrized with
respect to h. This kernel fulfills all of the discussed kernel proper-
ties and has the particular advantage that its smoothing length is
identical to the kernel support radius, i.e., h = ~, which helps to
avoid confusions in the implementation. For a graphical illustra-
tion please see Fig. 2. The plots demonstrate that the kernel is C2-
continuous. Therefore, derivatives of order > 1 are not really useful
in practice due to the lack of smoothness. That is, however, not a
major issue as there are more sophisticated approximations for 2nd-
order derivatives solely based on the kernel gradient. Otherwise, if
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Figure 2: Graph of the cubic spline kernel (see Eq. (4)) and its
derivatives.

desired, kernels of higher regularity can be found in the literature,
e.g., in the work of [LL10].

Let us consider the field A : Rd → R. In order to investigate the
accuracy of the continuous approximation, a Taylor series expan-

sion of A in x′ about x can be applied, i.e.,

(A∗W)(x) =
∫ [

A(x)+ ∇A|x · (x
′−x) +

1
2
(x′−x) · ∇∇A|x (x

′−x) +

O((x′−x)2)

]
W
(
x−x′,h

)
dv′

(5)

= A(x)
∫

W
(
x−x′

)
dv′+

∇A|x ·
∫
(x−x′)W

(
x−x′

)
dv′+

O((x−x′)2) .

(6)

It is trivial to see that the approximation of (A∗W) to A is 1st-order
accurate if the integral in the first term of Eq. (6) becomes 1, and if
the integral in the second term vanishes. The first condition is au-
tomatically fulfilled if the kernel is normalized (cf., normalization
condition). The second condition is met if the kernel is symmetric
(cf., symmetry condition). Consequently, given a normalized, sym-
metric kernel we can expect that the approximation is (at least) able
to exactly reproduce functions up to 1st-order.

2.3. Discretization

The remaining step to realize the SPH discretization is to replace
the analytic integral in Eq. (3) by a sum over discrete sampling
points as follows:

(A∗W)(xi) =
∫ A

(
x′
)

ρ(x′)
W
(
x−x′,h

)
ρ
(
x′
)

dv′︸ ︷︷ ︸
dm′

(7)

≈ ∑
j∈F

A j
m j

ρ j
W
(
xi−x j,h

)
=: 〈A(xi)〉 , (8)

where F is the set containing all point samples and where all field
quantities indexed using a subscript denote the field evaluated at the
respective position, i.e., A j = A

(
x j
)
. For improved readability, we

will drop the second argument of the kernel function and use the
abbreviation Wi j = W

(
xi−x j,h

)
in the remainder of this tutorial.

The physical interpretation of this is that we keep track of a number
of points that "carry" field quantities. In this particular case, each
point j has a certain location x j and carries a mass sample m j and
a field sample A j. It is not mandatory that the particle keeps track
of its density ρ j as this field can be reconstructed from its location
and mass as explained later. Due to the analogy to physical particles
the term smoothed particle has been coined in the pioneering work
of Gingold and Monaghan [GM77]. Nevertheless, we would like
to stress the fact that a set of SPH particles must not be misunder-
stood as discrete physical particles but simply as a spatial function
discretization.

Analogously to the brief error analysis for the continuous ap-
proximation, a Taylor series expansion of 〈A〉 in x j about xi reveals
the accuracy of the discretization

〈A(xi)〉= Ai ∑
j

m j

ρ j
Wi j +

∇A|xi
·∑

j

m j

ρ j
(x j−xi)Wi j +O((x j−xi)

2).
(9)
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Due to the discretization the resulting approximation is only 1st-
order accurate if

∑
j

m j

ρ j
Wi j = 1 and ∑

j

m j

ρ j
(x j−xi)Wi j = 0 . (10)

Even presuming that a normalized symmetric kernel is used, the
conditions are highly dependent on the sampling pattern leading to
the fact that not even a 0th-order consistent discretization can be
guaranteed. In practice, however, the approximation is sufficiently
accurate to approximate physical field functions to obtain realistic
simulations. If desired, 0th-order consistency can be easily restored
by normalizing the SPH approximation with ∑ j

m j
ρ j

Wi j or even 1st-
order consistency can be restored by the cost of a small matrix in-
version (see [Pri12]).

To give the reader a notion of the quality of the discrete approx-
imation of functions, we have discretized a linear and a quadratic
polynomial as well as a trigonometric function using a fairly coarse
SPH discretization equipped with the cubic spline kernel. The sam-
pling pattern is illustrated in Fig. 3 while the the function and ap-
proximation graphs are depicted in Fig. 4. In this example we have

s

Figure 3: Point sampling of rectangular domain. Test functions are
discretized using SPH. Function values are sampled along the red
path parametrized by s.

used the cubic spline kernel with a smoothing length of h = 0.3m
and particle masses mi = 18kg. In order to find a suitable smooth-
ing length given a dense (but not overlapping) sampling, we heuris-
tically set the smoothing length to four times the particle radius,
i.e., h = 2h̃. We, also recommend this heuristic to estimate a good
smoothing length in practice. In three-dimensional discretizations
this leads to a number of approx. 30−40 particles in a fully popu-
lated neighborhood.

Although no consistency can be strongly guaranteed in the ab-
sence of certain particle configurations that strongly fulfill the con-
ditions in Eq. (10), the graphs demonstrate that even a coarse sam-
pling results in a discretization with good accuracy away from the
boundary of the particle set. The phenomenon of decreasing ap-
proximation quality in the close proximity of the domain bound-
ary can be simply explained by the lack of sampling points outside
the domain and is usually referred to as boundary deficiency. In
the course of this tutorial practical solutions to this particular prob-
lem will be discussed. We would also like to assure the reader that
even without further considerations to recover the consistency or-
der, SPH based approaches are able to produce robust and highly-
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Figure 4: Comparison between analytic test functions and accord-
ing SPH discretization using the sampling pattern illustrated in
Fig. 3.

realistic results as demonstrated in countless publications that have
been published within recent decades.

2.4. Mass Density Estimation

As previously mentioned, it is not required that the particles "carry"
the mass density field as it can be reconstructed. Evaluating the
density field at position xi using the SPH discretization in Eq. (8)
results in

ρi = ∑
j

m jWi j (11)

and is therefore solely dependent on the sample position and the
mass field. Alternatively, the density can be tracked by discretizing
the mass density field using the SPH sampling and by numerical
integration of the continuity equation which describes the density
evolution, i.e., ρ̇ =−ρ(∇·v). However, as also discussed by Ran-
dles and Libersky [RL96], this approach is less robust and leads
to accumulating errors in the density field due to the errors of the
underlying numerical integration of the continuity equation.

Note that the density can be reconstructed at any position by
Eq. (11) but the reconstructed density is typically underestimated
at the free surface due to particle deficiency (cf., Fig. 5). This must
be considered when implementing a pressure solver as discussed
in-depth in Section 4.
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Figure 5: Particle deficiency problem. The green particle has a full
neighborhood while the red particle at the free surface has no neigh-
bors in the air. Therefore, its density is underestimated by Eq. (11).

2.5. Discretization of Differential Operators

Besides the discretization of field quantities, it is usually necessary
to discretize spatial differential operators in order to numerically
solve physical conservation laws. In the remainder of this tutorial,
we will assume that the smoothing length h is constant in space
(and time). Based on the discrete SPH approximation in Eq. (8) the
gradient of the underlying field can be approximated straightfor-
wardly using

∇Ai = ∑
j

A j
m j

ρ j
∇Wi j. (12)

Given discrete representations of higher-dimensional functions,
e.g., A : Rd → Rn, even more complex first-order spatial differ-
ential operators can be directly discretized, e.g.,

∇Ai ≈∑
j

m j

ρ j
A j⊗∇Wi j (13)

∇·Ai ≈∑
j

m j

ρ j
A j ·∇Wi j (14)

∇×Ai ≈−∑
j

m j

ρ j
A j×∇Wi j , (15)

where a⊗b= abT denotes the dyadic product. Unfortunately, these
"direct" derivatives lead to a poor approximation quality and unsta-
ble simulations. For this reason many discrete differential operators
have emerged over time.

In this tutorial, we will cover the two most widely used formula-
tions for first order derivatives, i.e., the difference formula and the
symmetric formula.

Difference Formula

Analyzing the error in the gradient based on Taylor series expan-
sion (similar to the one carried out in Eq. (9)) reveals that the gradi-
ent estimate is only 0th-order (1st-order) accurate if the first (both)
of the following constraints are fulfilled:

〈∇1〉= ∑
j

m j

ρ j
∇iWi j = 0 and ∑

j

m j

ρ j
(x j−xi)⊗∇iWi j = 1 .

(16)
In order to recover 0th-order accuracy we can simply subtract the
first error term of the Taylor series resulting in the improved ap-

proximation

∇Ai ≈ 〈∇Ai〉−Ai〈1〉= ∑
j

m j

ρ j
(A j−Ai)∇iWi j . (17)

In the rest of this thesis we will refer to this gradient estimate
as difference formula. The same formula can be straightforwardly
applied to the higher-dimensional first-order differential operators
presented in Eqs. (13) to (15). This gradient estimate finally results
in a more accurate discretization but keep in mind that we still ex-
pect a linear error. However, linear accuracy is sometimes required
and can be restored at the cost of solving a small linear equation
system per evaluation, i.e.,

∇Ai ≈ Li

(
∑

j

m j

ρ j
(A j−Ai)∇iWi j

)

Li =

(
∑

j

m j

ρ j
∇iWi j⊗ (x j−xi)

)−1

.

(18)

Symmetric Formula

Motivated from classical mechanics for hydrodynamical systems,
a discrete formula for the pressure force/gradient, starting from the
discrete Lagrangian and the density estimate, can be derived. This
results in the following approximation

∇Ai ≈ ρ

(
Ai

ρ2
i
〈∇ρ〉+ 〈∇

(
Ai

ρi

)
〉

)

= ρi ∑
j

m j

(
Ai

ρ2
i
+

A j

ρ2
j

)
∇iWi j .

(19)

Please note, that we did not include the lengthy derivation as this
is out of the scope of this tutorial but kindly refer the reader to the
report of Price [Pri12].

Since this formula does not satisfy the constraints in Eq. (16),
it is clear that it is not able to exactly reproduce constant or linear
gradient functions. However, the massive advantage of this is that
discrete physical forces using this particular gradient estimate ex-
actly conserve linear and angular momentum which is an essential
criterion for robust simulations.

Deriving the criterion using Taylor series expansion of Eq. (19)
reveals that the constant error of the symmetric gradient is governed
by how much

∑
j

m j

(
1
ρ2

i
+

1
ρ2

j

)
∇iWi j ≈ 0 (20)

deviates from 0. As noted by Price [Pri12], the symmetric formu-
lation "cares" about the particle ordering and the discrete physical
forces will try to reorder the particle configuration until Eq. (20) is
fulfilled. This is in contrast to forces formulated using the differ-
ence formula.

To summarize, the difference formula does indeed lead to a more
accurate gradient estimate than the symmetric formula. In the con-
text of physical forces the higher accuracy comes at the cost of a
loss in momentum conservation and can therefore lead to unstable
simulations. For the stated reasons, we recommend to use gradient
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estimates of the symmetric type when quantities are discretized that
directly affect particle trajectories, e.g., physical forces, impulses,
and to use the difference formula when 1st-order differentials are
estimated for indirect use, e.g., the velocity divergence during pres-
sure solves.

2.5.1. Discretization of Laplace Operator

Similar to the direct 1st-order derivatives (Eqs. (13)-(15)) the
Laplace operator can be directly discretized, i.e.,

∇2Ai ≈∑
j

m j

ρ j
A j∇2

i Wi j . (21)

This, however, leads again to a very poor estimate of the 2nd-order
differential. A improved discrete operator for the Laplacian was
presented by Brookshaw [Bro85]:

∇2Ai ≈−∑
j

m j

ρ j
Ai j

2‖∇iWi j‖
‖ri j‖

. (22)

The main idea leading to this particular formulation is to effectively
use solely a 1st-order derivative of the kernel function and to realize
the second derivative using a finite-difference-like operation, i.e.,
dividing by the particle distance.

2nd-order derivatives of vectorial field quantities are realized
analogously resulting in

∇2Ai =−∑
j

m j

ρ j
Ai j

2‖∇iWi j‖
‖ri j‖

(23)

∇(∇·Ai) = ∑
j

m j

ρ j

[
(d +2)(Ai j · r̃i j)r̃i j−Ai j

] ‖∇iWi j‖
‖ri j‖

, (24)

where d and r̃ = ri j
‖ri j‖ denote the spatial dimension and the normal-

ized distance vector between particles i and j, respectively. A prob-
lem of the discrete Laplace operator defined in Eq. (23) in the con-
text of physics simulations is that forces derived using this operator,
e.g., viscosity forces, are not momentum conserving. Fortunately,
we get the following expression by adding together Eqs. (23) and
(24):

∑
j

m j

ρ j
(Ai j · r̃i j)r̃i j

‖∇iWi j‖
‖ri j‖

≈ ∇(∇·Ai)

d +2
− ∇2Ai

2(d +2)
. (25)

This identity has the important consequence that in the case of a
divergence-free vector field, i.e., ∇ ·A = 0, the Laplace operator
can be discretized using

∇2Ai ≈ 2(d +2)∑
j

m j

ρ j

Ai j · ri j

‖ri j‖2 ∇iWi j , (26)

resulting in forces composed of terms that solely act along the "line
of sight" between two interacting particles i and j. This particu-
lar choice has the advantage that derived physical forces recover
momentum conservation [Pri12]. Therefore, we recommend to use
Eq. (26) as discrete Laplace operator for divergence-free vector
fields. In order to improve readability, we will drop the differentia-
tion index for differential operators in the remainder of this tutorial.
We will use the convention that the spatial operators always differ-
entiate with respect to the variable according to the first index such
that e.g.,∇Wi j ≡∇iWi j.

2.6. Governing Equations for Fluids and Solids

In order to simulate the dynamic behavior of fluids and solids, a
mathematical model that describes physical phenomena and mo-
tion of the matter is required. In computer graphics related research,
we are generally interested in the appearance of objects and flu-
ids in motion on humanly perceivable scales which is dominantly
governed by the matter’s macroscopic behavior. An important class
of mathematical models that describe the macroscopic mechanical
behavior of fluids and solids is based on continuum theory. Un-
fortunately, we can not cover an introduction to continuum me-
chanics as this is out of the scope of this tutorial. For a thorough
introduction we would like to refer the reader to the works of Abe-
yaratne [Abe12] and Lai et al. [LKR09]. Nevertheless, we would
like to informally describe the basic idea of continuum theoretical
models in the following.

Physics teaches us that all matter is formed out of discrete par-
ticles such as atoms, molecules, etc. Therefore, we know that the
distribution of mass within matter is not continuous but can rather
be interpreted as a system of discrete mass points. Nonetheless, the
vast majority of macroscopic mechanical phenomena can be ac-
curately described when the corresponding matter is idealized as a
continuum, i.e., a region of continuously distributed mass. This ide-
alization then implies that a portion of matter can always be divided
into smaller portions independent of the size of the regions. This in
turn confirms the theoretical existence of a material particle, i.e.,
a portion of matter contained in an infinitesimal volume. Contin-
uum theory then aims to model macroscopic physical phenomena
and neglects effects that can be observed on microscales. In the
following, we will summarize the most important local conserva-
tion laws required for the numerical simulation of (in)compressible
fluids and solids.

Continuity Equation

The continuity equation describes the evolution of an object’s mass
density ρ over time, i.e.,

Dρ

Dt
=−ρ(∇·v) , (27)

where D(·)
Dt denotes the material derivative. This relation is espe-

cially important when incompressible materials are modelled. In
this particular case the constraint

Dρ

Dt
= 0 ⇔ ∇·v = 0 (28)

has to be fulfilled at every material point and at all times within the
described matter.

A note on the material derivative: The material derivative de-
scribes the time rate of change of a field quantity at a material
point. It is important to understand that the explicit form of the
material derivative is dependent on the type of coordinates that are
used to the describe the system. Eulerian coordinates describe a
field quantity at spatially fixed points in space, observing the mo-
tion of the continuum as time passes. This type of coordinates is
usually employed for mesh-based simulation techniques for fluids.
In contrast, Lagrangian coordinates "track" the individual mate-
rial particles as they move through space and time. Lagrangian co-
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ordinates are commonly employed for the particle based simula-
tion of fluids, such as SPH, or the mesh-based simulation of elastic
solids. Given the same field quantity once described in Eulerian
coordinates AE(t,x) and Lagrangian coordinates AL(t) the material
derivative has the following explicit forms

DAE

Dt
=

∂AE

∂t
+v ·∇xAE and

DAL

Dt
=

∂AL

∂t
. (29)

The second term of the material derivative for Eulerian coordinates
is referred to as convection term or self-advection term. As opposed
to some people’s beliefs, the convection term is non-existent when
a quantity is described in Lagrangian coordinates. In the remain-
der of this tutorial, we will exclusively describe quantities using
Lagrangian coordinates.

2.6.1. Conservation Law of Linear Momentum

The conservation law of linear momentum can be interpreted as a
generalization of Newton’s second law of motion for continua and
is also often called the equation of motion. It states that the rate of
change of momentum of a material particle is equal to the sum of
all internal and external volume forces acting on the particle, i.e.,

ρ
D2x
Dt2 =∇·T+ fext , (30)

where T denotes the stress tensor and fext body forces – we un-
derstand a body force as a force per unit volume. This equation is
independent of the material of the underlying matter as the mate-
rial’s behavior is "encoded" in the stress tensor and described using
so-called constitutive laws.

Navier-Stokes Equation A typical constitutive relation for incom-
pressible flow is

T =−p1+µ(∇v+∇vT ) , (31)

where p and µ denote the pressure and dynamic viscosity of the
fluid. If the incompressibility is intended to be strongly enforced,
the pressure p can be interpreted as a Lagrange multiplier that has
to be chosen such that the Eq. (28) is fulfilled. If strong enforce-
ment of incompressibility is not required, the constitutive relation
can be instead completed by a so-called state equation that relates
geometric compression (changes in mass density) with the pres-
sure, i.e., p = p(ρ) (see Section 4.4). A simple example for a state
equation is a variation of the ideal gas equation that linearly penal-
izes deviations from a rest density ρ

0 scaled by a positive stiffness
factor k resulting in p(ρ) = k

(
ρ

ρ0 −1
)

.

By plugging Eq. (31) into Eq. (30) we arrive at the incompress-
ible Navier-Stokes equation

ρ
Dv
Dt

=−∇p+µ∇2v+ fext . (32)

Elasticity The stress tensor of elastic solids is solely dependent on
the geometric deformation of an object, e.g., T = T(J) , where J
denotes the deformation gradient which will be later introduced in
Section 10. Obviously, the constitutive model can be augmented
accordingly, if viscoelastic, plastic, thermoelastic, or other defor-
mation inducing phenomena have to be modeled.

2.7. Mixed Initial-Boundary Value Problem

The previously introduced linear momentum conservation law
(Eq. (30)) in combination with a constitutive relation, e.g., Eq. (31),
is a PDE in time and space that describes the motion of any object
composed of the material modeled by the constitutive law. In or-
der to model a specific problem and to ensure a unique solution,
initial conditions, i.e., the initial shape and velocity of the object
at every point, and boundary conditions constraining the position
and/or velocity field have to be specified. As there is, in general, no
known analytic solution to the mixed initial-boundary value prob-
lem in arbitrary scenarios, numerical solving is inevitable and re-
quires discretization of the assiociated differential operators. In the
previous sections, we have seen several discrete differential opera-
tors based on the SPH formalism that can be employed to discretize
the spatial differential operators. After spatial discretization, we are
left with a system of ordinary differential equations (this method-
ology is often called method of lines) that is typically discretized
using standard time integration schemes such as the implicit or ex-
plicit Euler method, Runge-Kutta schemes, etc. In the remainder of
this tutorial, we will see several variations of these discretizations
tailored to specific problems in physics based simulation.

2.8. Operator Splitting

Before we will discuss a simple example of a complete simulation
loop, the concept of operator splitting is introduced. Its importance
is emphasized by the fact that the vast majority of today’s SPH
based simulators follow the concept. The basic idea is to decom-
pose the underlying PDE, e.g., the Navier-Stokes equation in the
case of fluids, into several sequential subproblems and to employ
individual techniques for solving each subproblem. This simplifies
the complexity of the overall problem and sometimes also decou-
ples field variables such as velocity and pressure in the numeri-
cal solver. It moreover allows us to use stable implicit updates for
stiff subproblems while cheap explicit updates for the remaining
terms can be used. A potential operator split for the incompress-
ible Navier-Stokes equation (Eq. (32)) for low-viscous fluids with
strong enforcement of the incompressibility constraint (Eq. (28))
might look as described in the following. Given the current geom-
etry of the continuum x(t) and its velocity field v(t) at time t, we
split the problem into a sequence of subproblems in order to obtain
x(t +∆t) and v(t +∆t):

1. Update v by solving Dv
Dt = ν∇2v+ 1

ρ
fext,

2. determine∇p by enforcing Dρ

Dt = 0,
3. update v by solving Dv

Dt =− 1
ρ
∇p and

4. update x by solving Dx
Dt = v,

where ν = µ
ρ

denotes the kinematic viscosity. In this way, the
"weaker" forces could be handled using explicit time integration
while we can solve for the pressure gradients using a more sophisti-
cated implicit solver in order to keep the simulation robust for large
time steps. It should further be noticed that the individual steps are
not performed in parallel but the updated fields (in this case v and
∇p) are fed forward into the next substep resulting in a somewhat
implicit handling which has demonstrated to improve stability in
practice as also discussed by Bridson [Bri15] for grid-based fluid
simulation.
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2.9. Time Integration

As previously described, an SPH discretization of the underlying
PDE leaves us with a system of ordinary differential equations
(ODEs) in time following the method of lines. This, of course,
requires us to discretize the ODE in time. Due the operator split-
ting approach, as introduced in the previous section, each indi-
vidual subproblem has to be numerically integrated in time. The-
oretically, a different time integration scheme can be employed
for each individual step. In, practice most methods mainly rely on
simple and efficient explicit time integration schemes. The, by far,
most frequently used scheme is the semi-implicit Euler scheme, as
e.g., employted in [BK17, IAAT12, SB12, ICS∗14]). The integra-
tion scheme is often also referred to as symplectic Euler or Euler-
Cromer scheme. Sometimes it is useful to solve some of the indi-
vidual substeps using implicit time integration schemes to ensure
stability in the case of "stiff" forces. A typical example where this
strategy is employed is in the case of simulating highly viscous flu-
ids. Here, the viscosity force is often integrated implicitly using the
implicit Euler scheme as discussed in Section 6.

Naturally, we aim for the best performance of our simulator and,
therefore, try to use a very large time step width ∆t†. However,
we also understand that choosing an overly large time step width
results in decreased accuracy of the numerical approximation and
may lead to a less stable simulation which might ultimately result in
a breakdown of the simulation. In the context of computer graph-
ics research, we care most about carrying out a robust and stable
simulation in a resource-efficient manner while the numerical ac-
curacy is often of subordinate importance. This does not mean that
we do not care about accuracy at all, as the realism of the resulting
animations often improves with better accuracy of the numerical
approximation. We are simply putting a higher priority on main-
taining a robust and stable simulation under extreme conditions and
in highly complex scenarios than on achieving the highest possible
accuracy.

In order to find a "good" time step width ∆t that is as large as pos-
sible to achieve high performance but sufficiently small to maintain
stability, the vast majority of approaches adaptively estimate the
time step using a heuristic based on the Courant-Friedrichs-Lewy
(CFL) condition. The CFL condition is a necessary condition for
the convergence of numerical solvers for differential equations and,
as a result, provides an upper bound for the time step width, i.e.,

∆t ≤ λ
h̃

‖vmax‖ , (33)

where h̃, vmax, and λ denote the particle size, the velocity at which
the fastest particle travels and a user-defined scaling parameter, re-
spectively. The intuition behind this condition is that all particles
are only allowed to move less than the particle diameter per time
step for λ= 1. As this is only a necessary but no generally sufficient
condition, the scaling parameter is heuristically chosen to keep the
simulation stable, i.e., λ≈ 0.4 [Mon92]. This can not strongly guar-
antee stability but experience from practice has shown that the con-

† We will later see that larger time step widths not always result in bet-
ter performance. This is especially true when iterative pressure solvers are
employed (see Sec. 4).

dition typically leads to stable simulations [SP09, ICS∗14, BK17].
Although obvious from Eq. (33), we would like to stress the fact
that the maximally allowed time step decreases with higher veloci-
ties and spatial resolution. We would further like to point out that it
is in practice useful to specify global bounds, i.e., a lower and upper
bound, for the time step as we want to produce a certain number of
frames per second and want to avoid that the simulation comes to
halt if a single particle moves with very high velocity.

2.10. Example: Simple Fluid Simulator

Based on the knowledge that we have acquired up to this point, we
are now able to implement a simple state-equation based simulator
for weakly compressible fluids with operator splitting using SPH
and symplectic Euler integration.

for all particle i do
Reconstruct density ρi at xi with Eq. (11)

for all particle i do
Compute Fviscosity

i = miν∇2vi, e.g., using Eq. (23)
v∗i = vi +

∆t
mi
(Fviscosity

i +Fext
i )

for all particle i do
Compute Fpressure

i =− 1
ρ
∇p using state eq. and Eq. (19)

for all particle i do
vi(t +∆t) = v∗i + ∆t

mi
Fpressure

i
xi(t +∆t) = xi +∆tvi(t +∆t)

Algorithm 1: Simulation loop for SPH simulation of weakly com-
pressible fluids.

The few lines in Algorithm 1 are already enough to implement
a simple fluid solver. However, the algorithm does, unfortunately,
not handle boundary conditions. A practical workaround to model
boundaries in the discrete model is to sample the boundary geome-
try with static (non-moving) fluid particles. The pressure forces will
then "push away" particles that attempt to penetrate the boundary. A
more consistent handling of boundary conditions will be discussed
in Section 5.

3. Neighborhood Search

A major insight that we can gain from Algorithm 1 is that eval-
uating the individual force terms is rather inefficient. It requires
to compute the previously defined discrete differential operators
which in turn require to compute a sum over all particles result-
ing in a runtime complexity of O(n2), where n is the number of
particles. If we, however, use a smoothing kernel that fulfills the
compact support condition, most terms of the sums vanish since
the kernel function and its derivatives for particles that are further
away from i than the kernel support radius ~ vanish. Assuming that
we have a list of neighbors for each particle i that lie within a ra-
dius of ~ around i, the algorithmic complexity reduces to O(mn),
where m is the maximum number of neighboring particles. In prac-
tice, m is usually bounded by a constant such that we can expect
linear runtime complexity, i.e., O(n).

The problem of finding the neighbor list is commonly referred to
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Figure 6: Uniform grid approach to efficiently find neighboring par-
ticles. Particles that are closer to the orange particle than the kernel
support radius ~ must lie within the one ring of the cell containing
the orange particle if the grid size is ≥ ~.

as the fixed-radius near neighbor problem and is widely addressed
in the computational geometry literature. The naïve approach, i.e.,
brute-force, has a computational complexity ofO(n2) and is there-
fore not optimal. In this section, we will present an algorithm to
approach the problem in a computationally more efficient way, i.e.,
compact hashing [IABT11]. The basic idea of the approach is to
place a uniform grid over the domain spanned by the particles with
a grid cell size equal to the kernel support radius ~. Assuming
that a particle is located in the grid cell represented by the tuple
c= (i, j,k), where i, j, and k denote row, column, and depth column
of the cell in the grid. Then, it is obvious that we only have to query
for potentially neighboring particles in the cell c itself and its one-
ring, i.e., (i−1, j−1,k−1), (i−1, j−1,k), (i−1, j−1,k+1), . . . ,
(i+ 1, j + 1,k+ 1). The strategy then results in an algorithm with
a computational complexity of O(n) for construction and O(1) to
find the neighbors of a single particle implyingO(n) to find the set
of all the neighbors of all of the particles. Obviously, the grid-based
approach can easily be generalized to higher dimensions. Please see
Fig. 6 for a graphical illustration.

3.1. Compact Hashing

As discussed before, the uniform grid based approach results in
a good computational runtime complexity. However, there is still
potential for optimizations in terms of memory consumption, cache
efficiency, and parallel processing. In this regard, the concept of
compact hashing was proposed by Ihmsen et al. [IABT11] and will
be explained in the following. An open source C++ implementation
of a variant of this approach can be found online [Kos19].

A particular disadvantage of spatial grids is that memory for all
cells in the grid has to be allocated although only a small number
of cells might be occupied by particles. Due to the curse of dimen-
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Figure 7: Hash table of size m pointing to secondary data struc-
ture (of n non-empty cells) to realize compact hashing. Each array
to store the particle index lists in the secondary structure preallo-
cates k entries to minimize the number of memory allocations in
the course of the simulation.

sionality the memory requirements increase quickly with increas-
ing domain size. It would be more memory efficient to only store
the populated cells and, hence, employ a sparse representation of
the grid. Therefore, Ihmsen et al. suggest to store the grid cells in
a hash map by hashing the index tuple c = (i, j,k) to a scalar index
following [THM∗03]:

hash(c) = [(p1 i) XOR (p2 j) XOR (p3 k)] mod m, (34)

where p1 = 73856093, p2 = 19349663, and p3 = 83492791 are
large prime numbers and where m is the hash table size. Please
note, that it generally cannot be avoided that several spatial cells
are mapped to the same hash value (hash collision). The effect of
overpopulated entries in the hash table might lead to a slow-down
of the neighborhood query. However, as suggested by Teschner et
al. [THM∗03] the number of hash collisions can be reduced by
increasing the hash table size, i.e., trading memory for speed. As
noted by Ihmsen et al. the hash table is usually sparsely filled when
used in conjuction with SPH discretizations. Therefore, we would
like to avoid to unnecessarily preallocate a large amount of mem-
ory. Moreover, the cache-hit rate of this approach can not expected
to be optimal as the cells that are spatially close are not necessarily
close in memory.

In order to reduce the frequency of allocations, Ihmsen et al.
suggest to only store a handle per hash table entry that points to
a secondary data structure – a contiguous array of the populated
cells (see Fig. 7). Each item of the secondary structure stores a list
of the particle indices contained in the respective cell. In this way
memory for a used cell is only allocated if it contains particles and
the memory can be (optionally) deallocated if the cell gets empty.
Each storage for the index arrays in the secondary data structure
can be further preallocated with the maximally expected number
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of particles in a cell. To summarize, the memory consumption now
scales linear with the number of particles and not with the volume
of the simulation domain.

As it lies in the nature of spatial hash tables to scatter data ac-
cording to spatially close cells, the indirection to the secondary data
structure allows us to optimize for spatial locality in memory. To
realize this, Ihmsen et al. suggest to sort the non-empty cells ac-
cording to a space-filling Z-curve. The cache hit-rate can further be
optimized by analogously sorting the per-particle data in the same
way. However, performing the actual sort (O(n logn)) causes com-
putational overhead and since the particles are constantly moving
throughout space during the simulation, it is advised to update the
Z-sort in fixed intervals, e.g., after every 1000th time step. This is
justified as the order is expected to be roughly maintained over a
small number of time steps due to temporal coherence.

Finally, several operations such as the hash table construction,
updates and neighborhood queries can be (partially) parallelized to
further optimize performance. For further details on the approach,
we would like to refer the reader to the according original pa-
per [IABT11].

4. Pressure Solvers

Incompressibility is an essential aspect in realistic fluid simula-
tions. The fluid volume should not noticeably oscillate or generally
grow or shrink over time. Fluid solvers preserve the fluid volume by
computing a pressure acceleration − 1

ρ
∇p where the pressure p is

proportional to the volume deviation. Then, the term− 1
ρ
∇p accel-

erates particles from high pressure, i.e., regions with large volume
deviations, to low pressure, i.e., regions with small volume devi-
ations. If there would be no volume deviation everywhere in the
fluid, the pressure would be zero and the pressure gradient and the
pressure acceleration would also be zero.

Solver implementations typically distinguish pressure acceler-
ation ap = − 1

ρ
∇p and all other non-pressure accelerations anonp

which improves the intuition of the incompressibility concept.
First, a predicted velocity is computed with, e.g., v∗ = v(t) +
∆tanonp(t). Then, pressure is computed from the volume deviation
after advecting the fluid with v∗. Finally, the respective pressure
acceleration would be applied as, e.g., v(t +∆t) = v∗+∆tap(t) to
minimize the volume deviation. This final velocity update is often
referred to as pressure projection which is related to the fact that
the velocity change ∆tap(t) should be minimal. I.e., the pressure
acceleration should change the velocity field as little as possible.

Conceptually, pressure is proportional to the volume deviation.
However, there exist various alternatives to actually compute the
pressure. First, the volume deviation can be explicitly computed
from the density or the velocity divergence can be used to compute
a differential update of the volume deviation. Second, pressure can
be computed locally with a state equation or it can be computed
globally by solving a Pressure Poisson Equation (PPE). The first
aspect determines whether the fluid volume oscillates or continu-
ously changes, while the second aspect influences the solver per-
formance.

4.1. Explicit Volume Deviation

The volume deviation is typically deduced from the density devi-
ation. Although SPH solvers can easily handle both formulations,
it is probably due to historical reasons that the density formula-
tion is preferred over the volume formulation. The SPH density at
a particle i is computed with ρi = ∑ j m jWi j and the deviation to
the rest density ρ

0 is considered for the pressure computation. Note
that the density deviation is often clamped, e.g., max(ρi − ρ

0,0)

or max
(

ρi
ρ0 −1,0

)
, as a simple solution to the particle deficiency

problem at the free surface (see Fig. 5).

4.2. Differential Volume Deviation

The continuity equation relates the time derivative of the density
to the velocity divergence: Dρ

Dt = −ρ∇ · v. This fact can be used
to predict a particle density from its previous density and, e.g., the
predicted velocity: ρ

∗
i = ρi(t)−∆tρi(t)∇ · v∗i . Here, ρ

∗
i is a pre-

diction of the particle density after advecting the particles with v∗i
for time ∆t. If it is assumed that the current density equals the rest
density, the predicted density is computed as ρ

∗
i = ρ

0−∆tρ0∇·v∗i
which means that ρ

∗
i −ρ

0 =−∆tρ0∇·v∗i can be used as a measure
for the density deviation. It can be seen that minimizing the den-
sity deviation is related to minimizing the velocity divergence. The
term −∆tρ0∇· v∗i is a density change at a particle if the particles
are advected with v∗i for time ∆t.

4.3. Discussion – Explicit vs. Differential Volume Deviation

Both forms imply challenges. If pressure accelerations are derived
from the explicit form of the volume deviation, the fluid volume
oscillates due to an over-correction of the pressure acceleration.
These oscillations have to minimized. At least, they should not be
perceivable. Using the differential form to compute the volume de-
viation results in a drift of the fluid volume, typically a volume
loss. The differential form assumes that the current density is cor-
rect. It minimizes density changes between simulation steps, but
potentially existing density deviations are not detected or corrected.
Here, the challenge is to minimize the volume drift. Although vol-
ume drift often occurs in Eulerian pressure solvers and volume os-
cillations often occur in Lagrangian solvers, both issues are not re-
lated to the Eulerian or Lagrangian perspective. If an SPH solver
was using the differential form to compute the density deviation, it
would suffer from volume drift. If a Eulerian solver, e.g., FLIP, was
using the explicit form for the density computation, it would suffer
from oscillations.

4.4. State Equation SPH (SESPH)

State equations are used to compute pressure from density devi-
ations. The density deviation can be computed explicitly or from
a differential form. The deviation can be represented as a quo-
tient or a difference of actual and rest density. One or more stiff-
ness constants are involved. Some examples are: pi = k

(
ρi
ρ0 −1

)
,

pi = k(ρi−ρ
0) or pi = k1

((
ρi
ρ0

)k2
−1
)

. As ρi < ρ
0 is not consid-

ered to solve the particle deficiency problem at the free surface, the

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



D. Koschier, J. Bender, B. Solenthaler & M. Teschner / SPH Techniques for the Physics Based Simulation of Fluids and Solids

computed pressure is always non-negative. SPH fluid simulations
that use a state equation to compute pressure are often referred to as
compressible or weakly compressible. In contrast, fluid implemen-
tations that solve a PPE to compute pressure are known as incom-
pressible. These terms basically indicate that it is more challenging
to minimize compression with a state equation than with a PPE.

It might look confusing that arbitrary pressure values can be
computed for a given density ρi > ρ

0 dependent on the state equa-
tion and the stiffness constant(s). Here, it is interesting to note that
the parameters do not govern the pressure, but the compressibility
of the SPH fluid. This can be seen in a simple example with a fluid
at rest under gravity. In this case, the pressure acceleration at all
particles cancels gravity, i.e., g− 1

ρi
∇pi = 0. Discretizing the pres-

sure gradient with SPH yields g = ∑ j m j

(
pi
ρ2

i
+

p j

ρ2
j

)
∇W i j. Using,

e.g., pi = k(ρi−ρ
0), yields g = k ∑ j m j

(
ρi−ρ

0

ρ2
i

+ ρi−ρ
0

ρ2
j

)
∇W i j. It

can be seen that a variation of the stiffness constant k is related to
a variation in the density deviation ρi−ρ

0. This relation, however,
is not simply k(ρi−ρ

0) = const since the erroneous particle sam-
pling for ρi 6= ρ

0 influences the SPH discretization of the pressure
gradient. But generally, the stiffness constant in the state equation
governs the density deviation. Larger values result in smaller devi-
ations and require smaller time steps. Smaller values lead to larger
density deviations, i.e., less realistic simulations. Also, the bound-
ary handling fails if the tolerated density deviation is too large.

4.5. Pressure Poisson Equation (PPE)

The general idea of the pressure computation is to end up with pres-
sure accelerations that cause velocity changes that in turn cause dis-
placements such that all particles are uncompressed, i.e., have their
rest density or rest volume. PPE solvers or projection schemes solve
a linear system to compute the respective pressure field.

4.5.1. Derivation

We consider the predicted velocity after all non-pressure acceler-
ations: v∗ = v(t)+∆tanonp(t). If the particles would be advected
with this velocity, we can use the continuity equation to estimate
a predicted density ρ

∗ = ρ(t)− ∆tρ(t)∇ · v∗. Now, the goal of
the pressure computation is a pressure acceleration − 1

ρ(t)∇p(t)

that corresponds to a velocity change −∆t 1
ρ(t)∇p(t) whose diver-

gence −∇ ·
(

∆t 1
ρ(t)∇p(t)

)
corresponds to a density change per

time−ρ(t)∇·
(

∆t 1
ρ(t)∇p(t)

)
that cancels the predicted density de-

viation per time ρ
0−ρ
∗

∆t , i.e., ρ
0−ρ
∗

∆t −ρ(t)∇·
(

∆t 1
ρ(t)∇p(t)

)
= 0.

This is one form of a PPE, typically written as

∆t∇2 p(t) =
ρ

0−ρ
∗

∆t
. (35)

Note that ∇·∇p(t) = ∇2 p(t). In this equation, the pressure p is
unknown. We have one equation per particle, resulting in a sys-
tem with n equations and n unknown pressure values for n parti-
cles. Various similar PPE forms can be derived more formally, e.g.,
starting with the continuity equation at time t +∆t: −ρ(t +∆t)∇·

v(t +∆t) = Dρ(t+∆t)
Dt . The time derivative of the density is approx-

imated with Dρ(t+∆t)
Dt =

ρ(t+∆t)−ρ(t)
∆t . The velocity is written as

v(t +∆t)= v∗−∆t 1
ρ(t+∆t)∇p(t +∆t) using an implicit update with

the pressure acceleration at time t + ∆t. Imposing the constraint

ρ(t +∆t) = ρ
0, we get −ρ

0∇· v∗+∇· (∆t∇p(t +∆t)) = ρ
0−ρ(t)

∆t
and finally

∆t∇2 p(t +∆t) =
ρ

0− (ρ(t)−∆tρ0∇·v∗)
∆t

. (36)

If compared carefully, there are very minor differences between
Eqs. (35) and (36) in the computation of the predicted density and
the pressure acceleration. As ρ(t)≈ ρ

0, however, these differences
are negligible. The biggest difference would actually be the SPH
discretizations of the Laplacian. Eq. (35) works with the particle
neighborhood at time t, while Eq. (36) requires the neighborhood
at time t +∆t. As this would require an additional neighbor search
per simulation step, it is generally ignored.

Eqs. (35) and (36) make use of the density invariance as source
term in the PPE. Motivated by the continuity equation, the di-
vergence of the predicted velocity could be used alternatively.
To derive the respective form, we start with ∆t 1

ρ(t)∇p(t) = v∗−
v(t +∆t). Taking the divergence and imposing the constraint that
the velocity field at t + ∆t should be divergence free, i.e., ∇ ·
v(t +∆t) = 0, we get∇·

(
∆t 1

ρ(t)∇p(t)
)
=∇·v∗ and

∆t∇2 p(t) = ρ(t)∇·v∗. (37)

We search for pressure p such that the pressure acceleration
− 1

ρ(t)∇p(t) corresponds to a velocity change−∆t 1
ρ(t)∇p(t) whose

divergence −∇·
(

∆t 1
ρ(t)∇p(t)

)
cancels the divergence of the pre-

dicted velocity, i.e., −∇·
(

∆t 1
ρ(t)∇p(t)

)
+∇·v∗ = 0.

SPH fluid solvers can easily employ any of the PPE forms. If the
density invariance is taken as source term, density oscillations oc-
cur and have to be minimized. If the predicted velocity divergence
is taken as source term, the fluid volume tends to drift. Volume or
density oscillations are not a general SPH issue, but related to the
pressure computation. In the same way, volume drift is not, e.g., a
FLIP issue, but only due to the typically used velocity divergence
as source term in the PPE.

4.6. Discretization with Implicit Incompressible SPH (IISPH)

There exist various alternative discretizations with benefits and
drawbacks. Here, we discuss one option referred to as IISPH which
has been proposed in [ICS∗14]. We consider a slightly rewritten
form of the PPE in Eq. (35) for particle i:

∆t2∇2 pi = ρ
0−ρ

∗
i . (38)

If a quantity is considered at time t, e.g., pressure, the time index is
omitted. Using SPH, the source term is computed as

ρ
0−ρ

∗
i = ρ

0−ρi−∆t ∑
j

m j
(
v∗i −v∗j

)
·∇Wi j (39)

with v∗i = vi +∆tanonp
i . The computation of the Laplacian is real-

ized as the computation of the divergence of the velocity change
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due to the pressure acceleration, i.e.,

∆t2∇2 pi =−∆tρi∇·
(
∆tap

i
)

= ∆t2
∑

j
m j

(
ap

i −ap
j

)
·∇Wi j (40)

with pressure acceleration

ap
i =−

1
ρi
∇pi =−∑

j
m j

(
pi

ρ2
i
+

p j

ρ2
j

)
∇Wi j. (41)

Using Eqs. (39) and (40), we can compute the left-hand and right-
hand side of Eq. (38) at each particle using SPH sums over adjacent
particles. The IISPH discretization of Eq. (38) is

∆t2
∑

j
m j

(
ap

i −ap
j

)
·∇Wi j = ρ

0−ρ
∗
i . (42)

Introducing the velocity change due to pressure acceleration vp
i =

∆tap
i , Eq. (42) can be written as

∆t ∑
j

m j

(
vp

i −vp
j

)
·∇Wi j = ∆tρi ∇·vp

i = ρ
0−ρ

∗
i . (43)

It can be seen that we search for pressure values such that the pres-
sure acceleration causes a velocity change vp

i such that the diver-
gence of vp

i causes a density change that corrects from the predicted
density ρ

∗
i to the rest density ρ

0, i.e., ρ
∗
i +∆tρi ∇·vp

i = ρ
0.

4.6.1. IISPH Solver

System Eq. (42) is considered at all particles. We have n equa-
tions with n unknown pressure values pi. Each equation does not
only contain an unknown pressure value pi, but also unknown pres-
sure values at neighbors of i and - due to Eq. (41) - also unknown
pressures at neighbors of neighbors of i. The set of Eq. (42) at all
particles forms a system Ap = s and Eq. (42) at particle i can be
written as (Ap)i = si:

(Ap)i = ∆t2
∑

j
m j

(
ap

i −ap
j

)
·∇Wi j (44)

si = ρ
0−ρ

∗
i . (45)

A is not a diagonal matrix, but at least sparse. In row i, matrix ele-
ments aii and also elements ai j are non-zero with j being a neighbor
or a neighbor of a neighbor of i.

Extracting the matrix elements ai j would not be impossible, but
rather tedious and error-prone. Fortunately, element extraction is
not required to solve the system as solver implementations typi-
cally just require the computation of (Ap)i. The term (Ap)i can
be computed by first evaluating ap

i with Eq. (41), followed by the
computation of ∆t2∇2 pi using Eq. (40). An explicit notion of the
elements of A is typically not required as, e.g., for Conjugate Gra-
dients. Some solvers, e.g., Jacobi, require the diagonal elements aii.

Relaxed Jacobi scheme In the following, we discuss the imple-
mentation of a Jacobi variant to solve Ap = s. The method starts
with an initialization of the pressure vector, e.g., p(0) = 0. Then,
the weighted / damped / relaxed Jacobi scheme iteratively updates

all pressure values using

p(l+1)
i = (1−ω)p(l)i +

ω

aii

(
si−∑

j 6=i
ai j p(l)j

)
(46)

with l indicating the iteration and ω being a relaxation coefficient.
The relaxation coefficient is typically set to ω = 0.5 in IISPH im-
plementations. Smaller values reduce the convergence, larger val-
ues are unstable. The update in Eq. (46) seems to indicate that the
diagonal elements aii, but also elements ai j for neighboring parti-
cles are required in an implementation. Interestingly, the update in
Eq. (46) can be rewritten as

p(l+1)
i = (1−ω)p(l)i +

ω

aii

(
si− (Ap(l))i +aii p

(l)
i

)
= p(l)i +

ω

aii

(
si− (Ap(l))i

)
. (47)

This update requires the computation of the term (Ap(l))i which
can be computed from Eqs. (40) and (41) without notion of the
elements ai j. As IISPH only considers non-negative pressure, the
actual update is

p(l+1)
i = max

(
p(l)i +

ω

aii

(
si− (Ap(l))i

)
,0
)
. (48)

Pressure clamping The clamping has been proposed in [ICS∗14]
where simulation artifacts are discussed in case of negative pressure
values. Negative pressure values are sometimes briefly discussed,
but rarely carefully analyzed. Theoretically, arbitrary constant off-
sets to all pressure values do not change the pressure gradient.
Shifting a pressure range from [0, pmax] to, e.g., [−100, pmax−100]
or [100, pmax + 100] by adding constant offsets to all values does
not change the pressure gradient. SPH discretizations, however, be-
have differently for negative and positive pressure values. Reasons
have not been investigated yet, but one could speculate that negative
and positive pressures result in different pressure gradients in case
of incomplete neighborhoods where missing contributions are im-
plicitly assumed to have zero pressure. In IISPH simulations, min-
imum pressure is generally zero being consistent with the implicit
assumption of zero pressure for missing samples at free surfaces.

Diagonal element The update in Eq. (48) requires the diagonal
element aii. The element can be calculated by accumulating all co-
efficients of pi after inserting Eq. (41) into Eq. (40). Here, it is
important to keep in mind that i is one of the neighbors of each
neighbor of i. Finally, the diagonal element is

aii =−∆t2
∑

j
m j

(
∑

j

m j

ρ2
j
∇W i j

)
·∇W i j

−∆t2
∑

j
m j

(
mi

ρ2
i
∇W i j

)
·∇W i j. (49)

Stop criterion There is no agreement on when to stop the Jacobi
iterations in Eq. (48). The iterations could be stopped after a fixed
number. Alternatively, a predicted density deviation is often con-
sidered. This is motivated by the fact that (Ap(l))i is a predicted
density change at particle i due to the pressure field at iteration
l. I.e., ρ

err,∗
i = ((Ap(l))i− si)/ρ

0 = ((Ap(l))i + ρ
∗
i − ρ

0)/ρ
0 is a
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predicted relative density error at particle i, if pressure accelera-
tions according to the pressure field p(l) would be applied. Typ-
ically, the average of all ρ

err,∗
i is taken as a stop criterion, e.g.,

ρ
avg_err,∗
i = 1

n ∑i |ρ
err,∗
i |. In [ICS∗14], it is proposed to stop if, e.g.,

ρ
avg_err,∗
i < 0.1%, i.e., the oscillation of the overall fluid volume is

below 0.1%. In addition to the predicted average density error, the
maximum of the predicted density errors could also be taken as a
stop criterion.

Implementation Alg. 2 shows the implementation of IISPH.
Source term si and diagonal element aii are computed once. In iter-
ation l, the pressure Laplacian (Ap(l))i = ∆t2∇2 pi is computed in
two steps. First, the pressure acceleration (ap

i )
(l) is computed and

stored at the particles. Then, the divergence of the velocity change
due to the pressure acceleration, i.e., (Ap(l))i, is computed. Neigh-
borhood search, the computation of the predicted velocity v∗i and
the advection of particles are omitted in Alg. 2.

for all particle i do
compute diagonal element aii with Eq. (49)
compute source term si with Eq. (39)
initialize pressure p(0)i = 0

l = 0
repeat

for all particle i do
compute pressure acceleration (ap

i )
(l) with Eq. (41)

for all particle i do
compute Laplacian (Ap(l))i with Eq. (40)
update pressure p(l+1)

i with Eq. (48)

l = l +1
until ρ

avg_err,∗
i < 0.1%

Algorithm 2: Pressure computation with the IISPH PPE solver.

4.7. Predictive–Corrective Incompressible SPH (PCISPH)

In the following a pressure solver based on a predictor-corrector
approach is introduced [SP09].

Motivation The density ρi(t +∆t) can be estimated with

ρi(t +∆t) =∑
j

m jWi j +∆t ∑
j

m j(vi−v j) ·∇W i j

+∆t ∑
j

m j(∆tanonp
i −∆tanonp

j ) ·∇W i j

+∆t ∑
j

m j(∆tap
i −∆tap

j) ·∇W i j. (50)

Again, the time index is omitted for quantities at time t. Using the
predicted density

ρ
∗
i =∑

j
m jWi j +∆t ∑

j
m j(vi−v j) ·∇W i j

+∆t ∑
j

m j(∆tanonp
i −∆tanonp

j ) ·∇W i j (51)

and the constraint ρi(t +∆t) = ρ
0, we can write

ρ
0 = ρ

∗
i +∆t ∑

j
m j(∆tap

i −∆tap
j) ·∇W i j. (52)

When using the symmetric SPH formulation for the pressure accel-
eration, the terms ap

i and ap
j are computed from unknown pressure

values at particle i, at neighbors of i and at neighbors of neigh-
bors of i. Now, PCISPH introduces approximations and simpli-
fications to end up with only one unknown pressure value pi in
Eq. (52) [SP09]. Then, each pressure value pi can be computed
from one equation. Solving a linear system is avoided.

Simplifications The pressure acceleration is discretized with the
symmetric formulation. It is assumed that the pressure p j at neigh-
boring particles equals the pressure pi at particle i. Further, m j =mi

for all neighbors and ρi = ρ j ≈ ρ
0. Then, the pressure acceleration

can be written as

ap
i =−∑

j
m j

(
pi

ρ2
i
+

p j

ρ2
j

)
∇W i j (53)

≈−mi
2pi

(ρ0)2 ∑
j
∇W i j. (54)

Using this approximation, Eq. (52) can be written as

ρ
0 = ρ

∗
i +2∆t2 m2

i
(ρ0)2 ∑

j

(
−pi ∑

j
∇W i j + p j ∑

k
∇W jk

)
·∇W i j.

(55)

Using pi ≈ p j and approximating ∑k∇W jk ≈∇W ji, the equation
can further be simplified to

ρ
0 = ρ

∗
i + pi

2∆t2m2
i

(ρ0)2 ∑
j

(
−∑

j
∇W i j +∇W ji

)
·∇W i j

= ρ
∗
i − pi

2∆t2m2
i

(ρ0)2

(
∑

j
∇W i j ·∑

j
∇W i j +∑

j
(∇W i j ·∇W i j)

)
︸ ︷︷ ︸

− 1
kPCI

.

(56)

In PCISPH, the coefficient kPCI is considered for a template par-
ticle with perfect sampling, i.e., ∑ j∇W i j ·∑ j∇W i j +∑ j(∇W i j ·
∇W i j) = const. Finally, we have the following equation per parti-
cle:

pi = kPCI(ρ0−ρ
∗
i ) (57)

with

kPCI =−0.5(ρ0)2

∆t2m2
i
· 1

∑ j∇W i j ·∑ j∇W i j +∑ j(∇W i j ·∇W i j)

(58)

for a template particle i with perfect sampling. This is a state equa-
tion, where the stiffness constant is not user-defined, but motivated
by the fact that Eq. (50) should be satisfied, i.e., the pressure should
induce pressure accelerations such that the particles have their rest
density at time t +∆t.
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Iterative refinement The locally optimized state equation is one
important property of the PCISPH concept. A second significant
characteristics is the iterative refinement of the pressure field.
While this sounds expensive, it is motivated by large time steps
compared to simple state-equation solvers. PCISPH computes a
first estimate of the pressure p(1)i with Eq. (57). This predicted
pressure field is used to compute (ap

i )
(1) with Eq. (53). Then, the

pressure field is iteratively refined by

p(l+1)
i =p(l)i

+ kPCI(ρ0−ρ
∗
i −∆t ∑

j
m j(∆t(ap

i )
(l)−∆t(ap

j)
(l)) ·∇W i j)

(59)

in iteration l. The term

(ρ
p
i )

(l) = ∆t ∑
j

m j(∆t(ap
i )

(l)−∆t(ap
j)
(l)) ·∇W i j (60)

is one option to predict the density change due to the pressure accel-
erations. If this density change does not cancel the predicted den-
sity deviation ρ

0−ρ
∗
i , the predicted pressure is corrected. Similarly

to IISPH, the process is stopped if (ρ0−ρ
∗
i +(ρ

p
i )

(l))/ρ
0 is suffi-

ciently small, e.g., smaller than 0.1%. The original PCISPH depic-
tion proposes to compute ρ

p
i from particle displacements due to the

pressure accelerations, i.e.,

(ρ
p
i )

(l) = mi

(
(∆xi)

(l) ·∑
j
∇W i j−∑

j
∇W i j · (∆x j)

(l)

)
. (61)

If (∆xi)
(l) = ∆t2(ap

i )
(l) and mi = m j, Eqs. (60) and (61) are identi-

cal. We prefer Eq. (60) as it will also be used in the discussion of
the relation between PCISPH and IISPH.

Implementation Alg. 3 shows the implementation of PCISPH.
The stiffness constant kPCI is computed once at the beginning of
the simulation. The same coefficient is used for all particles. The
pressure field is predicted with the state equation in Eq. (57). The
effect of the respective pressure acceleration onto the density is es-
timated. Remaining deviations from the rest density are used to
compute pressure corrections with Eq. (59). Neighbor search and
the advection of the particles are omitted in Alg. 3.

4.8. Relations between SESPH, IISPH and PCISPH

The PCISPH pressure solver updates the pressure with

p(l+1)
i =p(l)i

+ kPCI(ρ0−ρ
∗
i −∆t ∑

j
m j(∆t(ap

i )
(l)−∆t(ap

j)
(l)) ·∇W i j)

(62)

which simplifies to the state equation

p(1)i = kPCI(ρ0−ρ
∗
i ) (63)

for the first update if the pressure is initialized with p(0)i = 0. The
same applies to IISPH. The solver updates pressure with

p(l+1)
i = p(l)i +

ω

aii

(
si− (Ap(l))i

)
(64)

compute stiffness constant kPCI with Eq. (58)
for all particle i do

compute predicted density ρ
∗
i with Eq. (51)

initialize pressure p(1)i with Eq. (57)

l = 1
repeat

for all particle i do
compute pressure acceleration (ap

i )
(l) with Eq. (53)

for all particle i do
compute density change (ρ

p
i )

(l) with Eq. (60)

update pressure p(l+1)
i with Eq. (59)

l = l +1
until ρ

avg_err,∗
i < 0.1%

Algorithm 3: Pressure computation with the PCISPH solver.

which simplifies to the state equation

p(1)i =
ω

aii
si =

ω

aii
(ρ0−ρ

∗
i ) (65)

for the first update if the pressure is initialized with p(0)i = 0. I.e.,
if IISPH or PCISPH stop after one pressure update, they are state-
equation solvers.

Another remarkable aspect are the stiffness constants in PCISPH
(Eqs. (62) and (63)) and IISPH (Eqs. (64) and (65) ). The PCISPH
stiffness constant is

kPCI =−0.5(ρ0)2

∆t2m2
i
· 1

∑ j∇W i j ·∑ j∇W i j +∑ j(∇W i j ·∇W i j)
.

(66)

The IISPH constant is ω

aii
with ω = 0.5 and

aii =−∆t2
∑

j
m j

(
∑

j

m j

ρ2
j
∇W i j

)
·∇W i j

−∆t2
∑

j
m j

(
mi

ρ2
i
∇W i j

)
·∇W i j. (67)

Applying the same assumptions as for PCISPH, i.e., ρi = ρ
0 and

mi = m j, the diagonal element simplifies to

aii =−
∆t2m2

i
(ρ0)2

(
∑

j
∇W i j ·∑

j
∇W i j +∑

j
(∇W i j ·∇W i j)

)
. (68)

Thus,

kPCI =
ω

aii
. (69)

Further,

∆t ∑
j

m j(∆t(ap
i )

(l)−∆t(ap
j)
(l)) ·∇W i j) = (Ap(l))i (70)

which means that the pressure update with Eq. (62) in the PCISPH
solver is equal to the pressure update with Eq. (64) in the IISPH
solver. There might be insignificant differences in the computations
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of ρ
∗
i and (Ap)i between PCISPH and IISPH, but both solvers are

essentially equal.

Ihmsen et al. [ICS∗14] report significant performance differ-
ences between PCISPH and IISPH. These differences are possibly
due to the fact that PCISPH computes one global stiffness constant
kPCI for a template particle, while IISPH computes aii for each par-
ticle. In particular, ∑ j∇W i j ·∑ j∇W i j +∑ j(∇W i j · ∇W i j) is as-
sumed to be constant in PCISPH, while it is computed per parti-
cle in IISPH. The respective difference affects the performance. If
kPCI < ω

aii
, the convergence of PCISPH is worse than with IISPH.

If kPCI > ω

aii
, PCISPH could be unstable. Such potential insta-

bilities are difficult to deal with and might result in the require-
ment of significantly smaller time steps compared to IISPH. There
are also other smaller differences between PCISPH and IISPH.
E.g., PCISPH computes ρ

∗
i from advected samples without updated

neighborhood, while IISPH uses the velocity divergence to estimate
ρ
∗
i . Such differences, however, are probably less relevant for stabil-

ity or convergence differences.

4.9. PPE Variants

In addition to PCISPH, there exist various other pressure solvers
that are closely related to a PPE solver, e.g., Local Poisson SPH
[HLL∗12], Constraint Fluids (CF) [BLS12] and Position-based
Fluids (PBF) [MM13]. It is beyond the scope of these course notes
to provide a detailed analysis of the aforementioned solvers, but
the close relation can be derived from three aspects. First, CF and
PBF compute constraint values at particles: Ci =

ρi
ρ0 −1. The mag-

nitudes of these constraints are equal to pressure values computed
with a state equation pi = k

(
ρi
ρ0 −1

)
with stiffness constant k = 1.

Second, CF and PBF compute forces or position changes that are
proportional to the negative of the constraint gradient. As constraint
and pressure are closely related, constraint gradient and pressure
gradient are related as well. Third, CF and PBF iteratively update
their solution like a Jacobi solver.

In addition to these variants there exist publications that analyze
the discretizations of the pressure Laplacian and the source term in
the PPE. The general idea is always the same, i.e., to compute pres-
sure such that the resulting pressure accelerations minimize density
deviations or the divergence of the velocity field. Nevertheless, the
computed velocity field depends on the employed discretizations.
E.g., Fürstenau et al. [FAW17] compare three discretizations of the
pressure Laplacian. They consider the following form of the PPE
with velocity divergence as source term:

∇·
(

1
ρi
∇pi

)
=
∇·v∗i

∆t
. (71)

Three variants to compute the pressure Laplacian are analyzed. The
first variant is

∇·
(

1
ρi
∇pi

)
=

mi

ρi
∑

j

ρi +ρ j

ρiρ j

(p j− pi)(xi−x j)

(xi−x j)2 + ε
·∇W i j, (72)

referred to as finite difference scheme, where ε is a small constant
which is added to avoid singularities. The second variant is

∇·
(

1
ρi
∇pi

)
=

mi

ρi
∑

j

(
∇p j

ρ j
− ∇pi

ρi

)
·∇W i j, (73)

referred to as double summation scheme. This approximation is
used, e.g., in IISPH [ICS∗14]. It computes the divergence of the
pressure accelerations. The third variant is

∇·
(

1
ρi
∇pi

)
=

mi

ρi
∑

j

ρi +ρ j

2ρiρ j
(p j− pi)∇2W i j, (74)

referred to as second derivative scheme. All these options can be
used to compute the left-hand side of the PPE that contains the
pressure Laplacian. If the PPE is solved with a Jacobi method, the
required diagonal element aii varies accordingly.

The three discretizations result in different solutions for the ve-
locity field. It is difficult to come up with general conclusions, as
all discretizations have benefits and drawbacks. E.g., the double-
summation approach used in IISPH seems to have an improved
solver convergence compared to the finite-difference scheme and
the second-derivative scheme. On the other hand, the computed ve-
locity field suffers from high-frequency noise. This noise, however,
is rather low and it depends on the application whether this is an
issue or not. In typical free-surface scenario, this noise is not an is-
sue and the double-summation discretization is just faster than the
other two options as less solver iterations are required for a speci-
fied tolerated density deviation.

Another degree-of-freedom is the form of the source term. As
already shown and discussed in Section 4.5.1, the source term can
either represent the divergence of the predicted velocity or the de-
viation of the predicted density to the rest density. The predicted
velocity is the velocity after applying all non-pressure accelera-
tions. The predicted density is the estimated density after advecting
all samples with the predicted velocity. The equivalence of both
formulations follows from the continuity equation. The PPE with
density invariance as source term is

∆t2∇2 pi = ρ
0−ρ

∗
i (75)

with source term

si = ρ
0−ρ

∗
i . (76)

The PPE with velocity divergence as source term is

∆t2∇2 pi = ∆tρi∇·v∗i (77)

with source term

si = ∆tρi∇·v∗i . (78)

The properties of both variants have been analyzed in [CBG∗18].
As already discussed, the density invariance results in an oscil-
lating density deviation over time, while the velocity divergence
causes a continuous drift of the density, typically a growing density
over time. Another interesting aspect that is discussed in [CBG∗18]
is the artificial viscosity. Using the density invariance as source
term causes more artificial viscosity than using the velocity di-
vergence. Further, the velocity-divergence source term causes less
high-frequency or short-range noise in the velocity field.

Considering all properties has an interesting conclusion. What
about solving two PPEs, one with the density invariance as source
term and one with the velocity divergence as source term? We
would get two velocity changes due to pressure accelerations. Ac-
cording to the properties of the source terms, it can make sense to
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advect the particles with the velocity from the PPE with density
invariance as source term. This avoids the density drift. The ve-
locity from the PPE with velocity divergence, however, could be
used for the final velocities at the particles as these velocities have
less artificial viscosity and less noise. This has been actually done
by Bender and Koschier [BK15] who proposed to solve two PPEs
with different source terms and to use one solution to compute the
advected particle positions and one solution as the final velocity
field. Solving two PPEs is obviously more expensive than a simple
IISPH solver. However, each PPE solve typically requires very few
iterations, i.e., less than ten, and both PPEs share the same matrix
which can be exploited to get an efficient solver as shown in the
next section.

4.10. Divergence-Free SPH (DFSPH)

DFSPH [BK17] is a variant of the idea to solve two PPEs with dif-
ferent source terms. The original DFSPH solver does not compute
pressure, but some stiffness parameter κi per particle i. According
to the work of Band et al. [BGPT18], however, this stiffness param-
eter is closely related to pressure with pi = κiρi. In the following
we introduce DFSPH using a pressure formulation and replace the
stiffness parameter in order to get a formulation which is closer to
the ones of PCISPH and IISPH. In this way it is easier to see the
similarities and the differences.

DFSPH conceptually solves two PPEs, one with density invari-
ance as source term, the other one with velocity divergence as
source term. Instead of using one solution for the position update
and one solution as the final velocity field, DFSPH combines both
solutions to compute the final velocity field which is used to ad-
vect the particles. This combination is motivated by the fact that a
first PPE solve with density invariance computes particle positions
of an incompressible fluid state, but not necessarily a divergence-
free velocity field. That’s why, a second PPE solve with velocity
divergence computes a divergence-free velocity field.

Divergence-Free Solver If we solve the PPE with velocity diver-
gence as source term (see Eq. (77)), we can derive the following
equation for the corresponding pressure value pv

i of a particle i:

pv
i =

1
∆t

Dρi

Dt
· ρ

2
i

‖∑ j m j∇W i j‖2 +∑ j ‖m j∇W i j‖2︸ ︷︷ ︸
kDFSPH

i

, (79)

where the time derivative of the density is determined as

Dρi

Dt
= ∑

j
m j(vi−v j) ·∇W i j. (80)

Note that this formulation is similar to the pressure computation of
PCISPH (see Eqs. (57) and (58)). But in contrast to PCISPH the
source term is the velocity divergence and not the density devia-
tion. Moreover, DFSPH does not use a global factor kPCI that is
determined for a template particle but computes the actual factor
kDFSPH

i for each particle i in each time step.

Algorithm 4 shows the divergence-free solver. In each iteration
first the divergence is updated for all particles. Then the pressure
values are determined and the predicted velocity is updated accord-
ingly.

1: while
((

Dρ

Dt

)avg
> η

div
)
∨ (iter < 1) do

2: for all particles i do
3: Dρi

Dt =−ρi∇·v∗i
4: for all particles i do
5: pv

i =
1
∆t

Dρi
Dt kDFSPH

i , pv
j =

1
∆t

Dρ j
Dt kDFSPH

j

6: v∗i := v∗i −∆t ∑ j m j

(
pv

i
ρ2

i
+

pv
j

ρ2
j

)
∇W i j

Algorithm 4: Divergence-free solver

Constant Density Solver The constant density solver uses the
PPE with density deviation as source term (see Eq. (75)). For this
PPE we get a pressure of

pi =
1

∆t2 (ρ
∗
i −ρ0)k

DFSPH
i , (81)

where the predicted density is determined by

ρ
∗
i = ρi +∆t

Dρi

Dt
= ρi +∆t ∑

j
m j(v∗i −v∗j ) ·∇W i j. (82)

Note that the factor kDFSPH
i is used for both, the divergence-free

and the constant density solver. Therefore, it has to be computed
only once per simulation step. Algorithm 5 demonstrates an imple-
mentation of the constant density solver.

1: while (ρavg−ρ0 > η)∨ (iter < 2) do
2: for all particles i do
3: compute ρ

∗
i

4: for all particles i do
5: pi =

ρ
∗
i −ρ0
∆t2 kDFSPH

i , p j =
ρ
∗
j −ρ0

∆t2 kDFSPH
j

6: v∗i := v∗i −∆t ∑ j m j

(
pi
ρ2

i
+

p j

ρ2
j

)
∇W i j

Algorithm 5: Constant density solver

DFSPH Simulation Step Algorithm 6 shows a simulation step
with DFSPH and how both solvers are integrated in the time step.
Note that the neighborhoods, the particle densities and the factor
kDFSPH

i are computed once at the beginning of the simulation for
the initial state and then updated once per time step. The algorithm
first computes predicted velocities by integrating all non-pressure
accelerations. Then the density deviation is corrected using the con-
stant density solver which yields new particle positions. Hence,
the neighborhoods, the density values and the factors must be up-
dated. After correcting the density deviation the velocity field is
typically not divergence-free. This is corrected in the last step by
the divergence-free solver which gives us the final velocities. Note
that the order of the steps is a bit different than the order of other
solvers but in this way it is guaranteed that the density deviations
and the divergence error are both corrected at the end of a time
step. Moreover, in this way we have to update the factor kDFSPH

i
only once per time step but are able to use it twice: for the constant
density solver and for the divergence-free solver.

DFSPH solves two PPEs which is more expensive than solving
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1: for all particles i do
2: compute non-pressure accelerations anonp

i

3: adapt time step size ∆t according to CFL condition
4: for all particles i do
5: predict velocity v∗i = vi +∆tanonp

i

6: correct density error using algorithm 5
7: for all particles i do
8: update position xt+∆t

i = xi +∆tv∗i
9: update neighborhoods

10: for all particles i do
11: update density ρi
12: update factor kDFSPH

i using Eq. (79)
13: correct divergence error using algorithm 4
14: for all particles i do
15: update velocity vt+∆t

i = v∗i

Algorithm 6: Simulation step with DFSPH

just one like PCISPH or IISPH. However, the second solve is not
that expensive since the costly computation of the factor kDFSPH

i has
to be performed only once per step. Experiments have shown that
solving both PPEs leads to a better stability which enables larger
time steps and therefore a faster simulation [BK17]. The perfor-
mance can be further improved by using a warm start. More details
about this can be found in [BK17].

4.11. The Best Pressure Solver

Iterative PPE solvers are more expensive to compute than EOS
solvers. Their utility, however, is motivated by the fact that PPE
solvers work with significantly larger time steps compared to EOS
solvers. Solenthaler and Pajarola [SP09] show an improved overall
performance of PCISPH compared to the EOS solver in [BT07].
Ihmsen et al. [ICS∗14] show an improved performance of IISPH
compared to PCISPH and Bender and Koschier [BK17] show a per-
formance gain of DFSPH compared to IISPH. So, DFSPH has the
best overall performance of all discussed PPE variants.

Although PPE solvers work with big time steps, they do not
reach their best overall performance for the largest possible time
step as discussed in [ICS∗14] and [IOS∗14]. Although the number
of neighborhood searches decreases for larger time steps, the solver
iterations increase for larger time steps.

The reported performance gains of PPE solvers compared to
EOS solvers have been estimated for so-called complex scenar-
ios. The term complex refers basically to the height of a simulated
fluid body under gravity. The higher the simulated fluid column,
the more complex the scenario, the bigger the performance gain of
a PPE solver. If a scenario is simple, e.g., one layer of fluid particles
on a planar boundary, EOS solvers are faster. The overall number
of particles does not necessarily influence the solver performance.
An EOS solver is more efficient than a PPE solver for one billion
fluid particles in one layer on a plane, while a PPE solver is more
efficient than an EOS solver for one hundred particles on top of
each other in one column under gravity.

Independent from whether there is a performance gain of a PPE

solver, they are more simple to handle than EOS solvers. In an EOS
solver, the stiffness constant has to be found to realize a desired
density deviation and the time step has to be found to get a stable
simulation. In a PPE solver, the desired density deviation is ex-
plicitly specified. The time step is also easier to estimate as it is
typically rather larger, corresponding to CFL numbers close to one.

5. Boundary Handling

In order to complete the discretization of a mixed initial-boundary
value problem (see Section 2) the boundary of the simulation do-
main has to be discretized and the corresponding boundary con-
ditions must be enforced. In recent years, a wide variety of ap-
proaches to represent boundary geometries and to enforce bound-
ary conditions has been presented. The approaches can be roughly
categorized into particle-based approaches, e.g., [AIA∗12,IAGT10,
BT07, BGPT18, BGI∗18, GPB∗19], and implicit approaches, e.g.,
[KB17, HKK07a, HKK07b, BLS12].

The particle based strategy is probably the most popular repre-
sentation type. The main idea is to sample the boundary geometry
using an additional set of so-called boundary particles equipped
with a (sometimes specialized) kernel function. The advantages
here are that the representation is consistent with the discretiza-
tion of the fluid or solid. Modeling, either explicit/implicit bound-
ary forces for weak satisfaction of boundary conditions or algo-
rithms to strongly satisfy the constraints is probably more straight-
forward than using implicit or mesh-based techniques. Most meth-
ods, however, have the constraint that the particle size used to sam-
ple the boundary has to be the same as the particle size of the con-
tinuum discretization. The disadvantages are that even the repre-
sentation of simple geometries, such as a plane, requires a large
number of boundary particles that have to be accounted for dur-
ing the neighborhood search and in the evaluation of field quan-
tities, e.g., Eq. (11). Moreover, determining "good" samplings is
generally non-trivial. Too sparse samplings might not sufficiently
cover the surface of the boundary leading to the issue of SPH par-
ticles penetrating the boundary. Too dense samplings lead to an in-
creased computational effort and to higher memory requirements.
Also a somewhat "bumpy" sampling might lead to a bias in the
particle trajectories as the discretized surfaces’ smoothness suffers
from sampling noise leading to unwanted perturbations in the sim-
ulation (cf., [KB17]) if no additional considerations are made, such
as proposed by Band et al. [BGPT18].

Implicit boundaries use an implicit function – typically a signed
distance field (SDF) – to represent the boundary geometry. Advan-
tages of this type of approaches are that the boundary representa-
tion is decoupled from the particle size. As a result, more flexible
data structures, e.g., adaptive octrees with higher-order approxima-
tions [KDBB17], can be used to memory-efficiently and accurately
represent the boundary geometry. This circumstance also avoids
the problem of noisy boundary samplings, the resulting bias, and
unwanted perturbations in the particle trajectories. Typical disad-
vantages are, that implicit representations do not directly integrate
with particle based continuum discretizations. In order to couple
both discretization types, special considerations have to be made
and the corresponding implementation is rather involved.

In the remainder of this section, we will discuss approaches to
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Figure 8: Idea of the particle-based boundary handling. The bound-
ary is represented with particles xib . These particles are considered
in the computation of density ρi , pressure pi, and pressure force
Fp

i of nearby fluid particles xi. If a fluid particle moves closer to
the boundary, its density increases. If a fluid particle is too close,
its density is larger than the rest density, i.e., ρi > ρ

0, which causes
pressure pi > 0 which in turn causes a pressure force Fp

i 6= 0 that
accelerates the fluid particle away from boundary particles. Please
note that ib denote boundary neighbors of a fluid particle i. Accord-
ingly, i f refer to indices of fluid neighbors of a fluid particle i.

handle non-penetration of rigid boundaries using particle sampling
approaches. We gradually develop a formulation starting with a
simple dense, uniform multilayer sampling of the boundary and
show how the method can be simplified to a uniform single layer
sampling and consequently even to a robust and consistent for-
mulation using non-uniformly sampled boundaries. We moreover
discuss how the fluid-boundary coupling can be improved using
pressure mirroring or pressure extrapolation and how these tech-
niques can be incorporated into the previously discussed pressure
solvers. For implicit or mesh-based boundary handling techniques
we would like to refer the reader to the corresponding literature,
e.g., [KB17,HKK07a,HKK07b,BLS12,MFK∗15,FLR∗13,FM15]

5.1. Particle-based Boundary Handling

In this concept, the boundary is represented with particles and these
boundary particles are incorporated into the computation of density
ρi, pressure pi, and Fp

i at nearby fluid particles xi. This is illustrated
in Fig. 8. There are two main aspects to discuss. First: The bound-
ary can be sampled in different ways. E.g., , the boundary can be
sampled with particles of uniform size corresponding to the size of
a fluid particle. Or the boundary can be sampled with particles of
non-uniform size. Also, the boundary can be sampled with several
layers of boundary particles as indicated in Fig. 8 or the boundary
can be sampled with just one layer of particles. The second aspect
is the actual computation of density ρi , pressure pi, and pressure
force Fp

i of nearby fluid particles xi. Such computations require in-
formation from boundary samples, e.g., pressure. Such pressure at
boundary samples can be estimated in different ways. Here, typical
examples are pressure mirroring, i.e., it is assumed that the pres-
sure at the boundary particles equals the pressure at adjacent fluid
particles. Alternatively, pressure can be extrapolated from the fluid
into the boundary. While the pressure extrapolation is theoretically
the correct choice, this concept is challenging to realize due to the
fact that the computation of the pressure gradient at a fluid particle
close to the boundary is error-prone. In the following, we discuss
different combinations of the aforementioned variants.

Fluid

Solid

Figure 9: Sample-based boundary representation with several lay-
ers. The usage of several boundary layers avoids incomplete neigh-
borhoods for fluid particles xi close to the boundary.

5.1.1. Different Types of Boundary Samplings

Several layers with boundary samples of uniform size: If a fluid
particle xi is close to a boundary, it generally has fluid neighbors
xi f and boundary neighbors xib as illustrated in Fig. 9. All these
neighbors contribute to the density computation, i.e.,

ρi = ∑
i f

mi f Wii f +∑
ib

mibWiib . (83)

All samples xi, xi f , xib have the same size and we take the boundary
samples as static fluid samples resulting in the same rest density ρ

0

for all fluid and boundary particles. This also means that all masses
are equal: mi =mi f =mib . Thus, the density computation could also
be written as ρi = mi(∑i f

Wii f +∑ib Wiib). If the boundary samples
belong to a rigid body, it is not perfectly intuitive to represent its
boundary with particles that have mass and rest density of a fluid
particle. This issue results from the fact that SPH formulations of-
ten prefer to weight the contribution of a particle i with mi

ρi
instead

of using its volume Vi =
mi
ρi

. Now, in the boundary handling, one ac-
tually works with the volume of boundary particles. Nevertheless,
this volume is often represented with some rest density - typically
the fluid rest density - and the respective mass.

If the density ρi in Eq. (83) is larger than the rest density ρ
0, a

pressure pi is computed at fluid particles. We have seen that pi can
be computed from a state equation, e.g., pi = k

(
ρi
ρ0 −1

)
or from

solving a PPE.

Now, the pressure force at the fluid particle can be computed as

Fp
i =−mimi ∑

i f

(
pi

ρ2
i
+

pi f

ρ2
i f

)
∇W ii f

−mimi ∑
ib

(
pi

ρ2
i
+

pib
ρ2

ib

)
∇W iib . (84)

It can be seen in Eq. (84) that we basically compute a pressure
force component with respect to fluid neighbors and a pressure
force component with respect to boundary neighbors. Using sev-
eral layers of boundary particles guarantees that the neighborhood
of a fluid particle is completely sampled, even if this particle is very
close to the boundary. Fully filled neighborhoods keep the errors
due to missing samples in Eqs. (83) and (84) small.

The computation in Eq. (84) requires positions, densities and
pressures of adjacent fluid and boundary particles. While these
quantities are known for fluid particles, density and pressure at
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Figure 10: Working with equal pressure pi at a fluid particle i and
at its adjacent boundary samples results in a repulsion force in case
of pi > 0.

boundary samples are still unknown. As the boundary samples have
a fixed volume and their mass is set with respect to the rest density
of the fluid, it is appropriate to set the density of a boundary particle
to the rest density of the fluid, i.e., ρib = ρ

0. Regarding the pressure
pib , we have already briefly mentioned pressure mirroring and pres-
sure extrapolation. Here, the simplest idea is to mirror the pressure
from a fluid particle to an adjacent boundary particle, i.e., pib = pi.
These assumptions result in an adapted form of Eq. (84) for the
pressure force where all required quantities at fluid and boundary
neighbors are known:

Fp
i =−mimi ∑

i f

(
pi

ρ2
i
+

pi f

ρ2
i f

)
∇W ii f

−mimi ∑
ib

(
pi

ρ2
i
+

pi

(ρ0)2

)
∇W iib . (85)

Working with equal pressure at a fluid sample and at its neighbor-
ing boundary samples theoretically corresponds to a pressure gra-
dient of zero which in turn results in a pressure acceleration of zero.
In practice, however, the SPH derivative approximation always re-
sults in the desired gradient with the respective repulsion force. If
the neighborhood of a fluid particle is completely filled, as shown
in Fig. 9, the true gradient is slightly underestimated by SPH. This
leads to a small, practically not relevant amount of penetration of
the fluid into the boundary. In the other case, where a single fluid
particle without fluid neighbors is close to the boundary as depicted
in Fig. 10, the contributions from missing fluid neighbors are im-
plicitly assumed to be zero. Having a fluid neighbor with zero pres-
sure or not having this fluid neighbor has the same effect on the
SPH approximation.

For a single fluid particle at a boundary, Eq. (85) simplifies to

Fp
i =−pi

2m2
i

ρ2
i

∑ib∇W iib for ρi = ρ
0. The term −∑ib∇W iib can be

interpreted as the surface normal of the boundary close to position
xi. The pressure force at particle xi corresponds to this vector scaled
with the fluid particle pressure pi. So, if the density of the fluid
particle is larger than its rest density, we get a positive pressure and
a repulsion force from the boundary into normal direction.

In summary, computing the fluid density ρi with Eq. (83), the
pressure pi with a state equation or a PPE, and the pressure force
with Eq. (85) realizes a boundary handling with pressure mirror-
ing in case of a uniformly sampled boundary with several layers.

Fluid

Solid

Missing 
samples

Figure 11: One layer of uniform boundary samples is easier to gen-
erate than several layers. The boundary layer is used to naturally
detect the proximity of a fluid sample to a boundary. Due to the
size of the kernel support, however, more than one layer of samples
might be required in SPH computations. The contributions of these
missing samples can be analytically estimated.

The boundary handling works for fluid particles with a complete or
incomplete neighborhood.

One layer of uniform boundary samples: It can be difficult to
generate multiple layers of uniform boundary samples for arbitrar-
ily shaped geometries. Also, if the relative position of a fluid sam-
ple to the boundary can be determined, it is not necessarily required
to explicitly represent the boundary particles. Instead, their contri-
butions can analytically be estimated. Fig. 11 shows a setting with
one layer of uniform boundary samples. These samples are used to
estimate that a fluid particle is close to a boundary. For the com-
putation of SPH approximations, however, more than one layer of
samples might be required as indicated in Fig. 11.

For a given position xi of a fluid particle close to a one-layer
boundary, the density can be written as

ρi = mi ∑
i f

Wii f +mi ∑
ib

Wiib +mi ∑
im

Wiim . (86)

The index im refers to missing samples in the neighborhood of par-
ticle i. While it is a natural way to encode the contributions of miss-
ing samples as an offset, these contributions are typically encoded
as a correcting factor of the contributions from boundary samples
instead, i.e.,

ρi = mi ∑
i f

Wii f + γ1mi ∑
ib

Wiib . (87)

Correcting coefficients for contributions from missing boundary
samples have been proposed in [AIA∗12]. They are commonly
used. Benefits and drawbacks to correcting offsets as in Eq. (86)
are unclear and have not been analyzed yet.

The correcting coefficient γ1 in Eq. (87) depends on various as-
pects, e.g., kernel function, kernel support, dimensionality. In par-
ticular, however, it depends on the position of a fluid particle rela-
tive to the boundary. In practice, the correcting coefficient is deter-
mined for a template particle in a perfect sampling pattern as shown
in Fig. 11. If the neighborhood of a fluid particle at the bound-
ary is fully filled, the kernel sum over all neighbors gives one over
the particle volume according to the general kernel properties, i.e.,
∑i f

Wii f +∑ib Wiib =
1
Vi

. If there are samples missing, this equation
does not hold and we introduce the correcting coefficient γ1 to ob-
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tain the desired result:

∑
i f

Wii f + γ1 ∑
ib

Wiib =
1
Vi
. (88)

Solving this equation gives the desired value for the correcting co-
efficient:

γ1 =

1
Vi
−∑i f

Wii f

∑ib Wiib
. (89)

The corrected density computation is the basis for the pressure
computation which is typically not affected by missing boundary
samples. A state equation just works with the density of the fluid
particle itself. A PPE typically uses the densities of adjacent fluid
particles. So, boundary samples are not required in the pressure
computation.

In the subsequent computation of the pressure forces, however,
the missing samples have to be accounted for. Similar to the density
computation, a correcting coefficient γ2 is introduced:

Fp
i =−mimi ∑

i f

(
pi

ρ2
i
+

pi f

ρ2
i f

)
∇W ii f − γ2 pi

2m2
i

ρ2
i

∑
ib
∇W iib . (90)

This coefficient is derived from a property of the kernel gradi-
ent. If the neighborhood of a particle is perfectly sampled, the
sum of the kernel gradient over the neighbors is zero: ∑i f

∇W ii f +

∑ib∇W iib = 0. In case of missing boundary samples, the sum is not
zero and a correcting coefficient for the boundary contributions is
introduced to meet the constraint:

∑
i f

∇W ii f + γ2 ∑
ib
∇W iib = 0. (91)

Solving this equation results in

γ2 =
∑i f
∇W ii f ·∑ib∇W iib

∑ib∇W iib ·∑ib∇W iib
. (92)

Similar to the coefficient γ1, γ2 also depends on dimenionality, ker-
nel function and support. It also depends on the position xi of fluid
particle i relative to the boundary. In practice, however, the coeffi-
cient is determined for a template setting with perfect sampling as
depicted in Fig. 11.

In summary: One-layer boundary representations are more sim-
ple to generate than multi-layer boundaries. The contributions of
missing samples in the computation of the density and the pressure
force at a fluid particle close to the boundary can be approximated
with correcting coefficients.

One layer of non-uniform boundary samples: The next step to
an even more flexible boundary representation is to work with sam-
ples of arbitrary size as proposed in [AIA∗12] and illustrated in
Fig. 12. This sampling is motivated by the fact that its generation
is really simple. Particles can be arbitrarily placed on a boundary
geometry, as long as each boundary particle is equal or smaller than
a fluid particle. Even more than one boundary particle at the same
position can be handled. This extreme case is certainly not optimal
in terms of performance, but the boundary handling works.

The basic idea of the boundary handling with non-uniform
boundary samples is the consideration of the actual contribution,

Fluid

Solid

Missing 
samples

Figure 12: The boundary geometry is sampled with one layer of
particles of non-uniform size. The sampling should be sufficiently
dense, i.e., each boundary particle should be equal or smaller than
a fluid particle. Otherwise, leakage could occur.

Perfect sampling Perfect sampling with
missing samples

Arbitrary sampling with
missing samples

Figure 13: Derivation of the mass mib of a boundary sample of ar-
bitrary size. The artificial mass is computed from the volume of the
sample and the rest density of the fluid. The left image shows the
volume for a filled neighborhood and uniform sample size. The vol-
ume is h̃3. It can also be computed as one over the sum of the kernel
values from neighboring particles. In the middle image, we have re-
moved all samples except the samples in a plane which represents
the boundary. We still know that the size of xib should be h̃3, but
the kernel sum would not provide the correct result. That’s why the
correcting coefficient γ1 is introduced to get the expected result h̃3.
I.e., γ1 accounts for missing neighbors in the volume computation.
The volume computation V 0

ib = γ1
∑ibb

Wibibb
also works for arbitrary

sample sizes within the plane as shown in the image on the right.
The artificial mass of a boundary sample is finally computed from
its volume and the rest density of a fluid particle.

i.e., the actual volume of each boundary sample. The density of a
fluid particle near the boundary is computed with

ρi = mi ∑
i f

Wii f +∑
ib

mibWiib , (93)

where mib represents the contribution of boundary sample ib. If a
boundary sample is bigger, its contribution is bigger and this con-
tribution is encoded in the mass mib . The contribution, i.e., the ar-
tificial mass of a boundary sample is deduced from its volume and
the rest density of the fluid as explained in Fig. 13. So, the mass mib
of a boundary sample is computed as

mib = ρ
0 γ1

∑ibb
Wibibb

. (94)

The correcting coefficient γ1 actually accounts for missing contri-
butions in two cases. It cancels missing contributions in the compu-
tation of the mass mib of a boundary sample. In parallel, it accounts
for missing contributions in the density computation of a nearby
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fluid particle using Eq. 93. The pressure force is now computed
with

Fp
i =−mimi ∑

i f

(
pi

ρ2
i
+

pi f

ρ2
i f

)
∇W ii f − γ2 pi

2mi

ρ2
i

∑
ib

mib∇W iib ,

(95)

which is very similar to the pressure force for uniform samples. The
only difference is the consideration of the individual masses mib of
the boundary particles instead of the standard mass mi for samples
of uniform size. The correcting factor γ2 is

γ2 =
∑i f
∇W ii f ·∑ib∇W iib

∑ib∇W iib ·∑ib∇W iib
. (96)

The same factor has already been used, motivated, and derived in
the case of a one-layer boundary with uniform samples.

6. Viscosity

Modeling and simulating viscosity is often vital for physics simula-
tions as the phenomenon is responsible for various visually appeal-
ing effects, such as buckling and coiling but also general energy
dissipation. In recent years, various methods for the realistic sim-
ulation of low viscous fluids like water as well as highly viscous
fluids like honey, mud, or dough were proposed. Fig. 14 shows dif-
ferent examples of highly viscous materials.

In this section we first introduce the term for the viscous force in
the Navier-Stokes equations. Then we discuss important methods
for the simulation of low viscous flow and highly viscous materials.
We present explicit approaches which are typically used for low
viscous fluids and we discuss implicit methods for highly viscous
materials.

6.1. Viscous Force

In the Navier-Stokes equations for incompressible fluids, the vis-
cosity term is determined by a material parameter µ and the Lapla-
cian of the velocity field ∇2v (see Eq. (32)). Before we discuss
different approaches to compute this viscosity term, we first want
to show how this term is derived.

The stress tensor of a Newtonian fluid is defined as

T =−p1+2µE, (97)

where E is the strain rate tensor which is determined as

E =
1
2
(∇v+(∇v)T ). (98)

When substituting the stress tensor in the conservation law of lin-
ear momentum (see Eq. (30)) and considering the incompressibility
constraint ∇ · v = 0 (see Eq. (28)), we end up with the Navier-
Stokes equations

ρ
Dv
Dt

=−∇p+µ∇·∇v︸ ︷︷ ︸
∇2v

+µ∇· (∇v)T︸ ︷︷ ︸
∇(∇·v)=0

+fext, (99)

where the right term of the strain rate tensor vanishes and the final
viscosity force is determined as

fvisco = µ∇2v. (100)

Recent viscosity solvers either use a strain rate based formulation
to compute viscous forces or they directly determine the Laplacian
of the velocity field. While the Laplacian formulation ensures that
the right term of the strain rate tensor vanishes by definition, ap-
proaches based on the strain rate have to enforce a divergence-free
velocity field, otherwise ∇ · (∇v)T 6= 0 which leads to undesired
bulk viscosity [Lau11,PICT15]. In the following we introduce both
approaches and discuss the advantages and disadvantages.

6.2. Explicit Viscosity

In the Navier-Stokes equations for incompressible fluids the vis-
cous force is defined by the Laplacian of the velocity field (see
Eq. (100)). The standard SPH discretization of this Laplacian is de-
termined as

∇2vi = ∑
j

m j

ρ j
v j∇2W i j. (101)

However, this formulation has two major disadvantages. First, it
is sensitive to particle disorder [Mon05, Pri12]. Second, typically
Gaussian-like kernel functions are used in SPH and their second
derivatives changes the sign inside the support radius (see Fig. 2).

Different approaches were proposed to avoid this problem. First,
instead of computing the second derivative directly, it can also be
determined taking two first SPH derivatives [FMH∗94, WBF∗96,
TDF∗15]. However, this method increases the computation time
and memory consumption and introduces additional smoothing.
Another approach, which was introduced by Brookshaw [Bro85],
is to determine one derivative using SPH and the second one using
finite differences. This method is very popular and has been used
for scalar quantities [Mon92, CM99, IOS∗14] and for vector quan-
tities [ER03, JSD04,Mon05,Pri12,WKBB18]. In the following we
will discuss this approach in more detail.

In order to approximate the Laplacian of the velocity field we
combine an SPH derivative with a finite difference derivative which
yields the following equation [Mon05]:

∇2vi = 2(d +2)∑
j

m j

ρ j

vi j ·xi j

‖xi j‖2 +0.01h2∇W i j, (102)

where xi j = xi− x j, vi j = vi− v j and d is the number of spatial
dimensions. Note that a term 0.01h2 is introduced in the denom-
inator to avoid singularities. The approximation of the Laplacian
in Eq. (102) has some nice features. First, it is Galilean invariant.
Moreover, it vanishes for rigid body rotation. This is an important
property since there is no friction if all particles rotate uniformly.
Finally, the introduced formulation conserves linear and angular
momentum [Mon92].

Instead of computing the Laplacian of the velocity field in or-
der to simulate viscosity, in some works XSPH is used as artificial
viscosity model (e.g., [SB12]). XSPH determines the smoothed ve-
locity v̂i of a particle i as

v̂i = vi +α∑
j

m j

ρ j
(v j−vi)Wi j, (103)

where 0 ≤ α < 1 is a user-defined parameter. The core idea of
smoothing the velocity field in this way is to reduce the particle dis-
order by reducing the velocity difference between a particle and its
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Figure 14: Different examples for the simulation of viscous behavior. Left: The simulation of highly viscous fluids enables realistic buckling
effects [WKBB18]. Center: A viscous dough interacts with a fast moving solid [PICT15]. Right: A melting Eiffel tower is simulated (the
model is courtesy of Pranav Panchal) [PT16].

neighborhood. The advantage of this formulation is that no kernel
derivative is required. The disadvantage is that α is not physically
meaningful.

6.3. Implicit Viscosity

Simulating the behavior of highly viscous materials implies that the
viscosity coefficient is large. However, in this case explicit viscos-
ity solvers tend to get unstable. Therefore, it is recommended to use
an implicit method in order to simulate highly viscous fluids. In this
subsection we introduce some of the most important implicit vis-
cosity solvers [TDF∗15,PICT15,PT16,WKBB18]. We first present
the concepts of these solvers in chronological order and then com-
pare the different approaches.

Takahashi et al. [TDF∗15] As discussed in the previous subsec-
tion, one way to compute the second derivative of the velocity field
is to take two first SPH derivatives. This approach is used by Taka-
hashi et al. to formulate an implicit integration scheme for the vis-
cosity term in the Navier-Stokes equations. The implicit integration
enables a stable simulation of highly viscous fluids. In each simula-
tion step Takahashi et al. first determine the strain rate Ei for each
particle i using Eq. (98). Following the Navier-Stokes equations
(see Eq. (99)) the authors then compute the divergence of the strain
rate as

∇·
(
∇vi +(∇vi)

T
)
= ∑

j
m j

(
2Ei

ρ2
i
+

2E j

ρ2
j

)
∇W i j. (104)

Using this formulation the implicit integration scheme can be de-
rived as

v(t +∆t) = v∗+ ∆t
ρ

µ∇·
(
∇v(t +∆t)+(∇v(t +∆t))T

)
, (105)

where v∗ is the predicted velocity which is determined by integrat-
ing all non-pressure forces except viscosity. Takahashi et al. substi-
tute Eq. (104) in Eq. (105) and solve the resulting formula to get
the new velocities of the particles. The advantage of this implicit
scheme is that highly viscous fluids can be simulated in a stable
way while the viscosity is independent of the temporal and spatial
resolution. However, in this formulation all second-ring neighbors
of a particle have to be considered in order to compute one first-
order SPH derivative after the other. This leads to many non-zero
elements in the system matrix which decreases the performance
significantly.

Peer et al. [PICT15, PT16] Instead of using a classical implicit
time integration scheme, Peer et al. propose to decompose and
modify the velocity gradient ∇v. The goal of the authors is to
modify only the shear rate in order to simulate a viscous behav-
ior. Hence, they exploit the fact that the velocity gradient can be
decomposed as

∇v = R+V+S, (106)

where R = 1
2 (∇v− (∇v)T ) is the spin rate tensor, V = 1

3 (∇· v)1
the expansion rate tensor and S = E−V the traceless shear rate
tensor. This decomposition enables to modify the traceless shear
rate tensor without influencing the other components of the velocity
gradient. Therefore, the authors define a target velocity gradient

∇vtarget = R+V+ξS (107)

which reduces the shear rate by a user-defined factor 0 ≤ ξ ≤ 1.
This modified velocity gradient can be used to determine new par-
ticle velocities by a Taylor approximation of first order

vi(t +∆t) =
1
ρi

∑
j

m j

(
v j(t +∆t)+

∇vtarget
i +∇vtarget

j

2
xi j

)
Wi j.

(108)
This yields a linear system Av(t+∆t) = b, where the matrix entries
and the right hand side vector are defined as

Ai j =−m jWi j, (109)

Aii = ρi−miWii, (110)

bi = ∑
j

m j
∇vtarget

i +∇vtarget
j

2
xi jWi j. (111)

This system can be decomposed to get three smaller linear sys-
tems for the x-, y- and z-component of the velocity. Finally, the
authors propose to solve the three systems using a conjugate gradi-
ent method.

Later, Peer and Teschner [PT16] extended this method by sim-
ulating vorticity diffusion in order to improve the rotational mo-
tion. The diffusion process in a viscous fluid is described by Dω

Dt =

ν∇2
ω. The authors determine ω = (ωx,ωy,ωz)

T from the spin rate
tensor as

R =
1
2

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (112)
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Analogous to Eq. (107) the vorticity is reduced by solving the sys-
tem

∇2
ω

target
i = ξ∇2

ω. (113)

The resulting vector ω
target
i is used to determine a target spin rate

tensor Rtarget
i which is substituted in Eq. (107) before reconstruct-

ing the velocity field using Eq. (108).

The proposed methods are very efficient and enable a stable sim-
ulation of highly viscous materials. However, these methods have
also some disadvantages. The reconstruction of the velocity field
using SPH is problematic as discussed in [BGFAO17] and intro-
duces a significant damping. When simulating highly viscous flu-
ids, this damping effect is not that crucial but this approach is not
recommended for the simulation of low viscous flow. Another dis-
advantage of the methods is that the viscosity parameter ξ is not
physically meaningful and depends on the temporal and spatial res-
olution.

Bender and Koschier [BK17] The authors of this work also
reduce the strain rate by introducing a user-defined coefficient
which is similar to the core idea of Peer et al. However, instead
of modifying the velocity gradient and reconstructing the veloc-
ity field, Bender and Koschier define a velocity constraint function
Ci(v) = Ei− γEi with the user-defined coefficient 0 ≤ γ ≤ 1. The
constraint is defined as six-dimensional vector function where the
vector contains the elements of the upper triangular part of the sym-
metric strain rate tensor. Finally, the constraint is enforced by first
solving the linear system(

1
ρi

∂Ei

∂vi

(
∂Ei

∂vi

)T

+∑
j

1
ρi

∂Ei

∂v j

(
∂Ei

∂v j

)T
)

µi = Ei− γEi (114)

for the Lagrange multiplier µ by Jacobi iterations. The final veloci-
ties are then determined as

vi(t +∆t) = v∗i +
1
mi

(
mi

ρi

(
∂Ei

∂vi

)T

µi +∑
j

m j

ρ j

(
∂E j

∂vi

)T

µ j

)
.

(115)
Details about the computation of ∂E/∂v can be found in [BK17].

The advantage of solving a constraint function instead of us-
ing the velocity field reconstruction approach of Peer et al. is that
also low viscous fluids can be simulated. The disadvantages of the
method are that solving six-dimensional constraints using Jacobi it-
erations is computationally expensive and the introduced viscosity
coefficient depends on the temporal and spatial resolution.

Weiler et al. [WKBB18] All implicit viscosity methods intro-
duced so far, use a formulation based on the strain rate tensor E.
The strain rate is determined by Eq. (98), where the velocity gra-
dient ∇v is computed using the following SPH discretization (see
Section 2.5):

∇vi =
1
ρi

∑
j

m j(v j−vi)∇W T
i j. (116)

Weiler et al. found out that this SPH discretization is negatively
affected by the particle deficiency problem at the free surface of a
fluid. For a rotational velocity field (see Fig. 15, left) the strain rate

0.0

3.9

2ms

1
s

Figure 15: When computing the strain rate tensor using
Eq. (116), errors occur at the free surface due to particle defi-
ciency [WKBB18]. Left: Velocity field of a rotational motion.
Right: The corresponding strain rate should be zero for all parti-
cles. However, the plot of the Frobenius norm of the tensors shows
an error at the free surface.

should be E = 0 since a rotation is a rigid body motion which does
not deform the body. However, when using the SPH discretiza-
tion in Eq. (116), the strain rate is not zero at the free surface (see
Fig. 15, right). In this experiment we can observe a significant error
at the boundary. The main problem is that the viscosity solver tries
to counteract this erroneous strain rate which leads to ghost forces.
These forces causes severe visual artifacts and a loss of angular
momentum which is discussed later in more detail.

To solve this problem, Weiler et al. developed an implicit viscos-
ity solver which directly determines the Laplacian of the velocity
field instead of using the strain rate. Their approach is based on the
implicit integration scheme

v(t +∆t) = v∗+ ∆t
ρ

µ∇2v(t +∆t). (117)

This is similar to the one of Takahashi et al. [TDF∗15] but uses the
Laplacian of the velocity field instead of the divergence of the strain
rate. To compute the Laplacian, the approximation in Eq. (102) is
used. Since this approximation vanishes for rigid body rotations
and conserves linear and angular momentum [Mon92], the pro-
posed approach solves the problems of the methods above.

Eq. (117) is a linear system which has to be solved to get the
unknown new velocities v(t +∆t). Using the SPH discretization of
the Laplacian in Eq. (102), we can rewrite this linear system as

(1−∆tA)v(t +∆t) = v∗, (118)

where the matrix A contains a 3× 3 block Ai j for each pair of
neighboring particles i and j:

Ai j =−2(d+2)
µmi j

ρiρ j

∇W i jxT
i j∥∥xi j

∥∥2
+0.01h2

, Aii =−∑
j

Ai j. (119)

Note that the average mass mi j = 0.5(mi + m j) is used in order
to obtain a symmetric system. The resulting system can be solved
efficiently by a matrix-free conjugate gradient method. The con-
vergence can be improved by a block Jacobi preconditioner where
the preconditioner matrix is block diagonal with the 3× 3 blocks
1−∆tAii. Moreover, starting the conjugate gradient solver with an
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initial guess of v∗+∆v using the velocity difference of the last step
∆v = v(t)−v∗(t−∆t) further improves the performance.

Weiler et al. propose to extend this viscosity formulation also
for the boundary in order to simulate materials that stick to solid
objects. In SPH often a particle-based surface representation of the
boundary is used. For such a surface representation the diagonal
matrix blocks in Eq. (119) and the right hand side of the system in
Eq. (118) have to be adapted as

Aii =−∑
j

Ai j +2(d +2)∑
k

µbmk

ρ2
i

∇W ikxT
ik

‖xik‖2 +0.01h2
, (120)

bi = v∗i −2(d +2)∆t ∑
k

µbmk

ρ2
i

vk ·xik

‖xik‖2 +0.01h2
∇W ik, (121)

where mk is the mass of the boundary particle k (see Section 5).
Note that a reaction force has to be applied to the boundary particles
to get a consistent two-way coupling [AIA∗12]. Using the proposed
extension sticky and separating boundaries can be simulated.

Comparison In this part we want to compare all implicit viscosity
solvers introduced above. All approaches except the one of Weiler
et al. [WKBB18] are based on a strain rate formulation. As dis-
cussed above and shown in Fig. 15, this leads to errors at the free
surface due to particle deficiency. In practice this can lead to ar-
tifacts at the surface (see Figs. 16a, 16b and 16c). Moreover, the
strain rate error at the free surface causes a significant loss of an-
gular momentum which leads to a damped rotational motion (see
Figs. 17a, 17b and 17c).

Weiler et al. analyzed these problems and proposed a new
method which computes the Laplacian of the velocity field instead
of using the divergence of the strain rate. Moreover, they use an
SPH approximation of the Laplacian that vanishes for rigid body
rotation and conserves linear and angular momentum. In this way
the problems at the free surface can be solved (see Figs. 16d and
17d).

While the methods of Peer et al. [PICT15, PT16] and Bender
and Koschier [BK17] use a viscosity parameter that depends on
the temporal and spatial resolution, Takahashi et al. [TDF∗15] and
Weiler et al. [WKBB18] solve this problem by using a consistent
implicit time integration.

Finally, when comparing the performance, the approach of Peer
et al. [PICT15] is the fastest method. This is due to the fact that
they can decompose their linear system in three smaller ones while
this cannot be done for the approach of Weiler et al. Bender and
Koschier use a Jacobi solver which converges slower and Takahashi
et al. have to consider the second-ring neighbors which results in
large computational overhead.

6.4. Conclusion

For the simulation of low viscous fluids an explicit viscosity for-
mulation should be used since explicit methods are computation-
ally less expensive. We recommend to compute the viscous force
in Eq. (100) by approximating the Laplacian of the velocity field
using Eq. (102). An alternative, which is computationally less ex-
pensive but also less accurate, is to use XSPH as artificial viscosity.

An implicit viscosity solver is recommended for the simula-
tion of highly viscous fluids due to stability reasons. As discussed
above, the implicit strain rate based formulations suffer from an er-
ror in the SPH approximation that causes visual artifacts and leads
to a loss of angular momentum. The method of Weiler et al. avoids
the problem and therefore generates more realistic results. Finally,
we think that it would be an interesting open problem for future re-
search to find a better SPH approximation of the strain rate without
problems at the free surface. Such an approximation would solve
the problems of the strain rate based formulations.

Note that all viscosity methods that were discussed in this
section are implemented in our open-source framework SPlisH-
SPlasH [Ben19b].

7. Surface Tension

Surface tension is an important physical phenomenon which is a
ubiquitous effect in daily life. For example, surface tension forces
keep liquid molecules together when pouring water into a glass.
The surface forces are the result of intermolecular attractive forces
at microscopic scales. The molecules attract each other inside of
a fluid while the molecules at the surface are pulled inwards.
Therefore, surface tension minimizes the surface area which causes
droplets of water to form a sphere when external forces are ex-
cluded. We typically speak of cohesion if molecules of the same
type attract each other while adhesion describes the attractive forces
between molecules of different types. Cohesion and adhesion are
important effects when simulating surface tension.

In recent years, various methods were proposed to simulate sur-
face tension effects in SPH-based fluid simulations (e.g., [BT07,
AAT13, HWZ∗14]). Fig. 18 shows SPH simulation examples of
surface tension. Typically we can differentiate between surface ten-
sion approaches that are inspired by a microscopic point of view
and approaches that compute the forces on a macroscopic level.
In the following, we will present one microscopic method and one
macroscopic method in order to introduce the core idea of both ap-
proaches.

7.1. Microscopic Approach

Surface tension is the result of attracting forces between molecules.
Methods that are based on a microscopic point of view aim to simu-
late the intermolecular cohesive forces. However, since the smallest
element in an SPH simulation is a particle, these forces are deter-
mined at the particle-level.

Becker and Teschner [BT07] propose to compute the particle ac-
celeration due to cohesion by

Dvi

Dt
=− α

mi
∑

j
m j
(
xi−x j

)
Wi j, (122)

where α is a coefficient to control the surface tension of the fluid.
This equation interpolates the position differences in the neighbor-
hood of a particle i and computes an acceleration to attract the
neighboring particles. Note that adhesion can also be simulated by
Eq. (122) when using a sum over all neighboring boundary parti-
cles.
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(a) Takahashi et al. [TDF∗15] (b) Peer & Teschner [PT16] (c) Bender & Koschier [BK17] (d) Weiler et al. [WKBB18]

Figure 16: The SPH approximation of the strain rate tensor is erroneous at the free surface due to particle deficiency which leads to artifacts
(a,b,c). The formulation of Weiler et al. avoids this strain rate computation by using the Laplacian of the velocity field which solves this
problem (d) [WKBB18].

(a) Takahashi et al. [TDF∗15] (b) Peer & Teschner [PT16] (c) Bender & Koschier [BK17] (d) Weiler et al. [WKBB18]

Figure 17: When simulating the rope coiling effect with the introduced implicit viscosity solvers, we can observe a loss of angular momentum
caused by errors in the SPH strain rate approximation (a,b,c). Using a formulation based on the Laplacian of the velocity field instead, solves
this problem and enables a uniform coiling (d) [WKBB18].

7.2. Macroscopic Approach

Cohesion Akinci et al. [AAT13] present a method based on a
macroscopic point of view. Instead of only considering cohesive
forces, also forces to minimize the surface area are determined.
Their method computes the cohesive force of a particle as

Fcohesion
i← j =−αmim j

xi−x j

‖xi−x j‖
W cohesion(‖xi−x j‖

)
, (123)

where i and j are neighboring particles and W cohesion is a special
cohesion kernel which is defined by

W cohesion(r) =
32
πh9


(h− r)3r3 2r > h∧ r ≤ h

2(h− r)3r3− h6

64 r > 0∧2r ≤ h

0 otherwise.

(124)

In contrast to the model of Becker and Teschner [BT07] the cohe-
sive forces can become positive and negative. In this way repulsion
forces for close particles are generated which prevents undesired
particle clustering at the free surface.

Additionally, Akinci et al. compute a force in order to minimize
the surface area. This additional force counteracts the surface cur-
vature which requires the computation of the surface normals. The
normals can be determined by a so-called color field. The idea is to
set the color of a particle to 1 while it is 0 everywhere else. Then

the gradient of the smoothed color field

ni = h∑
j

m j

ρ j
∇W i j (125)

yields a surface normal pointing into the fluid. Note that the factor
h is used to make the normal scale independent. The magnitude of
the resulting vector is close to zero in the interior of the fluid and
proportional to the curvature at the free surface. Hence, a symmet-
ric force that counteracts the curvature can be defined as

Fcurvature
i← j =−αmi(ni−n j). (126)

This force is used to minimize the surface area.

Finally, both forces are combined as

Fsurface tension
i← j = Ki j(Fcohesion

i +Fcurvature
i ), (127)

where Ki j =
2ρ0

ρi+ρ j
is a symmetric factor that amplifies the surface

tension forces at the free surface. At the surface ρi and ρ j are under-
estimated due to particle deficiency and Ki j > 1 while for a particle
with a full neighborhood Ki j ≈ 1.

Adhesion To simulate the attractive forces between fluid particles
and the boundary, an adhesion force is introduced as

Fadhesion
i←k =−βmimkW adhesion

ik
xi−xk
‖xi−xk‖

, (128)
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Figure 18: Different surface tension effects are realized by approximating intermolecular attractive forces in the fluid [AAT13].

where β is the adhesion coefficient and k denotes a neighboring
boundary particle. The computation of the mass mk of a boundary
particle is described in detail in Section 5. Akinci et al. propose to
use another specialized kernel function for the computation of the
adhesion forces which is defined as

W adhesion(r) =
0.007
h3.25

 4
√
− 4r2

h +6r−2h 2r > h∧ r ≤ h

0 otherwise.
(129)

Note that only fluid particles with a distance between h/2 and h are
attracted by the boundary.

8. Vorticity

One of the most visually appealing phenomena in dynamic fluids
is the evolution of chaotic structures due to turbulences. Turbulent
motions are largely caused by the interaction of many unsteady vor-
tices on various scales. A vortex is, moreover, defined as a local
spinning motion in the fluid – mathematically spoken the vorticity
is a vector field

ω =∇×v . (130)

In SPH fluid simulations turbulent details quickly get lost due
to numerical diffusion [dGWH∗15] or due to coarse sampling of
the velocity field [IOS∗14, CIPT14] which negatively influences
the visual liveliness of the flow. In order to facilitate the forma-
tion of vortices in the simulation and to counteract numerical dif-
fusion, a range of approaches has been proposed in the past. Most
of these approaches originate from research concerning Eulerian,
grid-based discretizations and can roughly be categorized into vor-
ticity confinement techniques, Lagrangian vortex methods, fluid
up-sampling, and more recently micropolar models. In this section
we will discuss a simple vorticity confinement approach following
Macklin and Müller [MM13] and an SPH discretization of a mi-
cropolar model that facilitates the formation of vortices as proposed
by Bender et al. [BKKW18].

8.1. Vorticity Confinement

As already discussed, SPH discretizations tend to overly dissipate
energy in turbulent flow. Therefore, Macklin and Müller [MM13]
employ a method based on vorticity confinement in order to coun-
teract the dissipation by amplifying existing vortices. The tech-
nique consists of three steps:

1. The vorticity ωi for each particle i is computed using a discrete
curl operator, e.g.,

ωi =∇×vi =−∑
j

m j

ρ j
vi j×∇iWi j . (131)

2. A corrective force is computed and applied that amplifies the
already existing vortical motion, i.e.,

Fvorticity
i = ε

vorticity(
η

‖η‖ ×ωi) (132)

η = ∑
j

m j

ρ j
‖ω j‖∇iWi j , (133)

where ε
vorticity denotes a small constant used to steer the amount

of amplification.
3. The velocity field is smoothed using XSPH (see Eq. (103)) in

order to enforce a coherent particle motion.

Algorithmically, this correction is applied just before the advection
of the SPH particle positions.

While this approach is very simple and effectively amplifies ex-
isting vortices it has some drawbacks. It is hard to choose the
control parameter ε

vorticity such that overamplification is avoided.
Moreover, the method can, in the best case, only conserve existing
vortices but does not facilitate the formation of new ones.

8.2. Micropolar Model

The most prominent mathematical model describing the dynam-
ics of Newtonian fluids is the Navier-Stokes model. As described
in Section 2 the model can be derived from the conservation law
of linear momentum (see Eq. (30)) and by presuming that the me-
chanical stress is composed of isotropic pressure and a diffusing
viscous term. An important assumption of the model is that the in-
finitesimally small particles which compose a fluid continuum are
not subject to rotational motion. This also implies that the law of
angular momentum conservation is identically fulfilled if and only
if the stress tensor is symmetric.

In this section we introduce the concept of micropolar fluids and
present a material model that generalizes the Navier-Stokes equa-
tions for the simulation of incompressible, inviscid turbulent flow
as proposed by Bender at al. [BKKW18]. Following the defini-
tion of Łukaszewicz [Łuk99], a micropolar fluid follows constitu-
tive laws modeled using a generally non-symmetric stress tensor.
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Moreover, the definition includes that the fluid consists of rigid,
spherical (and therefore rotationally invariant) particles. Based on
the non-symmetric stress measures, the micropolar model addition-
ally models rotating motions of the infinitesimal spherical parti-
cles using an angular velocity field. Due to the additional rotational
degrees of freedom, the generation of vortices is facilitated and a
wider range of potential dynamic effects are captured by the model.
Please note, that for this section we will neglect any dissipation
terms, such as viscosity, as the main goal is to generate undamped,
highly turbulent flows. For the complete model, we would like to
kindly refer the reader to the original paper [BKKW18].

Balance Law for Angular Momentum Conservation

Similar to the conservation law of linear momentum (see Eq. (30))
a balance law for angular momentum can be derived, i.e.,

ρΘ
Dω

Dt
= T×+ τ , (134)

with [T×]i = ∑ j ∑k εi jkTjk, where εi jk and τ denote the Levi-Civita
tensor and external body torque. Further, Θ represents a scalar,
isotropic microinertia coefficient. A physical interpretation for this
quantity is that each infinitesimal fluid particle has a certain inertial
resistance against rotational accelerations. Bender et al. suggest to
choose Θ = 2m2 s−1 based on experimentation. We would further
like to stress the fact that Θ is not at all related to the spatial extents
of an SPH particle as it is defined in the continuous setting.

Constitutive Model

It is essential to understand that the classical model actually also re-
spects angular momentum conservation (see Eq. (134)). It is in this
context, however, rarely explicitly mentioned as the balance law is
usually identically fulfilled based on two assumptions. Firstly, the
classical approach does not model external torques, i.e., τ≡ 0. Sec-
ondly, stress tensor T is usually chosen as a symmetric tensor and
such that T× ≡ 0 and, hence, Dω

Dt ≡ 0. For this reason, the balance
law of angular momentum is not particularly useful for symmetric
stress measures.

In order to account for the microstructured particles and to utilize
the balance law of angular momentum, Bender et al. propose to use
the following constitutive relation:

T =−p1−µt∇v+µtω
×, (135)

with
[
ω
×]= ∑i ε jikωi, where µt denotes the "transfer coefficient".

We will later discuss a physical interpretation of the term in the
final PDE that is controlled using µt . In order to ensure consistency
with the second law of thermodynamics µt ≥ 0 must be satisfied.
Please note that this constitutive model allows for a non-symmetric
stress resulting in the fact that we have to explicitly account for the
angular balance law in our simulation.

Equations of Motion

As the conservation laws and constitutive equation are now estab-
lished, we can finally derive the augmented equations of motion
that build the basis for the numerical simulation. By plugging the
constitutive relation (135) into the conservation laws (30) and (134)

and by applying the incompressibility condition (28), we arrive at
the following representation:

Dv
Dt

=− 1
ρ
∇p+νt∇×ω+

fext

ρ
(136)

Θ
Dω

Dt
= νt(∇×v−2ω)+

τ

ρ
, (137)

where νt denotes the kinematic transfer coefficient. Looking at
Eq. (136), we quickly notice that it is identical to the inviscid
Navier-Stokes equation (Euler equation) but augmented by the term
νt∇×ω. A complementary term also governed by the transfer co-
efficient resides in Eq. (137), i.e., νt(∇× v− 2ω). The terms ef-
fectively convert angular accelerations into linear accelerations and
vice versa. Physically, they can be interpreted as dissipation-free
friction or as a dissipation-free viscosity coupling linear and rota-
tional motion.

In order to realize the model in the implementation, it is required
to discretize Eqs. (136) and (137). This means that additional to a
discrete representation of x and v it is necessary to discretize the
vorticity ω. Please note, that due to the assumption in the micropo-
lar model, that the microstructure of the material particles is spher-
ical we do not have to discretize and track the rotational field (only
the angular velocity field) which makes the implementation less
complicated and delivers better performance. The transfer forces
and torques can then, following the splitting approach, simply be
applied in line with the non-pressure forces and integrated explic-
itly as they are considerably less stiff than the pressure forces. It is
further advised to "filter" the resulting velocity field using XSPH
(see Eq. (103)) in order to ensure coherent particle motion. Algo-
rithm 7 shows an exemplary pseudocode of the resulting method.

for all particle i do
Find neighbors

for all particle i do
Compute density ρi

for all particle i do
Compute non-pressure forces Fnon-pressure

i
Compute transfer forces Ftransfer

i = miνt∇×ωi
Compute transfer torque τtransfer

i = miνt(∇×vi−2ωi)

Compute time step size ∆t according to CFL
for all particle i do

v∗i = vi +
∆t
mi
(Fnon-pressure

i +Ftransfer
i +Fext

i )

for all particle i do
Enforce incompressibility using pressure solver
Update v∗i

for all particle i do
vi(t +∆t) = v∗i
xi(t +∆t) = xi +∆tvi(t +∆t)
ωi(t +∆t) = ωi(t)+ ∆t

miΘi
(τtransfer

i +τext
i )

Algorithm 7: Simulation loop for SPH simulation turbulent microp-
olar fluids.

Bender et al. [BKKW18] demonstrated the effect of the transfer
coefficient using an intuitive example (see Fig. 19). In the experi-
ment a fluid flowing in a narrow channel was simulated. Moreover,
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Figure 19: Simulation of 4.7M turbulent fluid particles with three
obstacles and increasing transfer coefficient νt . Top-down: νt =
0.2m2 s−1, νt = 0.3m2 s−1, νt = 0.4m2 s−1.

Figure 20: 1M fluid particles interact with a fast rotating propeller
resulting in highly turbulent flow.

three obstacles were placed in the channel to provoke turbulences
while the transfer coefficient was continuously increased. In the
top image we can see that that the flow is only moderately turbu-
lent for a transfer coefficient νt = 0.2m2 s−1. For larger values the
vorticity significantly increases (middle) and even tends to get un-
realistic for values greater than 0.4m2 s−1 (bottom). Furthermore,
they showcase the visual realism that can be achieved in turbulent
scenarios (see Fig. 20).

Discussion

Two methods to improve the behavior of the simulation in the pres-
ence of turbulences have been explained. In this paragraph, we
would like to discuss the similarities and differences between vor-
ticity confinement and the micropolar model.

Both methods build on the concept of obtaining/maintaining a
vorticity field (angular velocity field) ω following Eq. (130). How-

ever, the main idea of vorticity confinement is to merely identify
and amplify existing vortices. Moreover, the vorticity will always
be derived from the linear field. In contrast, the micropolar ap-
proach builds on the concept of angular momentum conservation
and on modeling a constitutive model for turbulences. In this more
sophisticated setting, the velocity field and the vorticity are dis-
cretized independently and strongly coupled via the transfer terms
in Eqs. (136) and (137). In this way there is a complex interaction
between both physical quantities that not only conserves existing
vortices better but also facilitates the formation of new vortices.
This effect can be exemplified using the lid-driven cavity exper-
iment carried out by Bender et al. [BKKW18] (see Fig. 21). In
this experiment the "lid" (top-side) of a two-dimensional domain
filled with water is accelerated with constant velocity. Given suit-
able model parameters, the velocity field is expected to stabilize in
a big central vortex and three minor vortices rotating in the opposite
direction. This result shows that vorticity confinement successfully
amplifies the vortical motion but is not able to form the additional
corner vortices. In contrast, the micropolar approach yields the ex-
pected result.

9. Multiphase Fluids

The simulation of multiple immiscible and miscible fluids greatly
enhance visual effects in graphics. In contrast to Eulerian ap-
proaches, the particle representation of SPH offers the advantage
that fluid interfaces are sharply defined. In this section, we first
present how the standard SPH equations can be adapted to model
density discontinuity across fluid interfaces, and introduce the re-
sulting adapted force equations. We then discuss models for cap-
turing complex mixing phenomena.

9.1. Fluid Interfaces

A simple approach to simulate multiple fluids with SPH is to as-
sign different labels to particles of different phases, and assign-
ing them with corresponding physical attributes such as masses
and rest densities [MSKG05]. Typically, each particle’s rest vol-
ume remains constant to ensure a uniform particle sampling, thus
ma
ρ0

a
= mb

ρ0
b

for two fluid types a and b. The momentum equation can
be solved with the single flow SPH formulation presented in the
previous sections, while simply using the physical attributes stored
on the particles. However, for high density ratios between phases,
this can lead to instability problems that are not time step related.
The desired density discontinuity across the interface is smoothed
due to the nature of SPH of summing up contributions from particle
neighbors. As a consequence, pressure and force fields are affected,
which manifests as spurious interface tension [Hoo98, AMS∗07]
between the phases. Larger density ratios between the fluids (>10x)
intensify the problems and severely degrade simulation stability re-
gardless of the time step size.

To capture the density discontinuity across the interface with
SPH, the number density δi = ∑ j Wi j was introduced and the
standard SPH equations were adapted accordingly [TM05, HA06,
SP08]. The density of a particle i is then computed as

ρ̃i = miδi. (138)
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Figure 21: Velocity fields of the lid-driven cavity benchmark. Standard SPH (left) and vorticity confinement (middle) are only able to
produce one large central vortex. In contrast, the micropolar approach yields (right) the expected result, i.e., one central vortex and three
smaller vortices in the corners which are rotating in the opposite direction.

Like this, the density of particle i is not influenced by the mass of
its neighbors j, while still receiving the geometric contribution Wi j
from j. The state equation of Sections 4.4 can then be changed such
that the pressure is computed with the adapted density as

p̃i = k1

((
ρ̃i

ρ0

)k2

−1

)
. (139)

Solenthaler et al. [SP08] derived adapted forces by substituting
ρ̃i and p̃i into the Navier-Stokes equations and applying the SPH
formalism. The resulting pressure force term is then given as
Fp = −∇p̃

δ
. By employing the quotient rule we then get ∇ p̃

δ
=

∇( p̃
δ
)+ p̃

δ2∇δ. After applying the SPH rule and replacing V by 1
ρ̃

,
the pressure force equation can be written as

Fp
i =−∑

j

(
p̃ j

δ j
2 +

p̃i

δi
2

)
∇Wi j. (140)

Similar derivations can be found in [TM05, HA06]. The viscosity
force (and other force terms) can be derived analogously and is
given as

Fv
i =

1
δi

∑
j

µi +µ j

2
1
δ j

(v j−vi)∇2Wi j. (141)

Note that the above equations are identical to the standard SPH
equations when applied to a single phase flow. For multiple flu-
ids, however, the adapted method eliminates any spurious tension
effects and notably increases stability. The method has been ex-
tended with an incompressibility condition and solid-fluid cou-
pling [AIA∗12, GPB∗19], an example is shown in Fig. 22. More-
over, the resolution at the interface has been increased using the
two-scale (or multi-scale) particle simulation method in [SG11,
HS13].

The above described problems can be circumvented by replac-
ing the summation density by the continuity equation that evolves
the density over time (Section 2.4) and hence does not suffer from
smoothing artifacts across fluid interfaces. However, this typically

Figure 22: Three solid buoys interacting with two IISPH fluids with
different densitites [GPB∗19].

requires higher-order time stepping schemes and careful consider-
ations of time step sizes to avoid accumulation of integration errors
over time and thus drift from true mass conservation [SP08,SB12].
The density summation equation was also used in combination with
the Shepard kernel to accurately preserve the discontinuity at the
interface [GAC∗09]. The method considers the volume distribution
and the rate of change of the volume estimated by the continuity
equation.

9.2. Complex Mixing Phenomena

Fluid mixing can be simulated by solving the diffusion equation
∂C
∂t = α∇2C, which evolves the concentration C over time. With

SPH, this equation can be written as [MSKG05]

∂Ci

∂t
= α∑

j
m j

C j−Ci

ρ j
∇2Wi j, (142)

where α defines the diffusion strength. Another SPH formulation
for computing the diffusion has been presented in [LLP11].

More complex mixing effects can be simulated by taking the
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flow motion and force distributions into account as demonstrated
in the SPH-based mixture model of Ren et al. [RLY∗14]. The con-
tinuity equation of the mixture model is defined as

Dρm

Dt
=

∂ρm

∂t
+∇· (ρmvm) = 0, (143)

where ρm is the rest density of the mixture and vm is the mixture
velocity, averaged over all phases. ρm and vm are computed using
the volume fraction αk of a phase k with rest density ρk, i.e., ρm =

∑k αkρk and vm = 1
ρm ∑k αkρkvm

. The momentum equation for the
mixture is given as

D(ρm,vm)

Dt
=−∇p+∇· (τm + τDm)+ρmg, (144)

where τm and τDm are the mixture’s viscous stress and diffusion
tensors, respectively.

In each simulation step, the drift velocity vmk = vk−vm is com-
puted, which represents the relative velocity of phase k to the mix-
ture. The equation can be rewritten using individual terms for slip
velocity due to body forces, pressure effects that cause fluid phases
to move from high to low pressure regions, and a Brownian diffu-
sion term that represents phase drifting from high to low concentra-
tion regions. The drift velocity is then used to calculate the diffu-
sion tensor τDm and change in volume fraction Dαk/Dt. The SPH
equations for the mixture model described above can be found in
the work of Ren et al. [RLY∗14]. They demonstrate complex mix-
ing effects including chemical reactions. The model uses WCSPH,
since a divergence-free velocity field cannot be directly integrated
since neither the mixture nor phase velocities are zero, even if the
material is incompressible.

Yan et al. [YJL∗16] extended the mixture model to handle the in-
teraction between fluid and solid phases, and demonstrated various
effects including dissolution of solids, flows in porous media, and
interaction with elastic materials. Another extension has been pre-
sented by Yang et al. [YCR∗15] where an energy-based model was
used. The approach integrates the Cahn-Hilliard equation that de-
scribes phase separation, expanding the capability of a multi-fluid
solver and enabling incompressible flows.

10. Deformable Solids

The simulation of deformable solids is an active research topic in
computer graphics. The most popular simulation approaches in this
area, like the finite element method (FEM) [KBT17, KKB18] and
Position-Based Dynamics (PBD) [BKCW14, BMM14, BMM17],
are mesh-based. However, also meshless methods were investigated
like the moving least squares (MLS) method [AW09]. In this sec-
tion we show that SPH is also an interesting meshless method to
simulate deformable solids. An advantage of an SPH-based simu-
lation of deformables is that this enables a simple coupling between
fluids and solids in a unified framework.

10.1. Linear Elasticity

In this subsection we first introduce a continuum mechanical for-
mulation for linear elasticity. In the next subsection we then show
how to discretize the resulting equations using SPH.

The deformation of a solid is defined by the function

Φ(X) = X+u = x (145)

which maps a point X in the reference configuration to its current
position x in the deformed configuration, where u = x−X is the
displacement vector. Differentiating this function with respect to
the reference position X gives us the deformation gradient

J =
∂Φ(X)

∂X
=

∂x
∂X

= 1+
∂u
∂X

. (146)

This quantity can be used to measure the strain of a deformed body.
In computer graphics often a linear strain measure is used to avoid
the solution of a non-linear system of equations. For the same rea-
son we introduce the linear infinitesimal strain tensor

ε(J) = 1
2
(J+JT )−1. (147)

The next step is to define a constitutive model for linear elastic-
ity. We follow the work of Sifakis [Sif12] and define it in terms of
the strain energy density:

Ψ(J) = µε : ε+
λ

2
tr2(ε), (148)

where µ and λ are the Lamé coefficients [Sif12]. The first Pi-
ola–Kirchhoff stress tensor is determined by differentiating the
strain energy density with respect to the deformation gradient

P(J) = ∂Ψ

∂J
. (149)

For our linear elasticity model this yields

P(J) = 2µε+λtr(ε)1. (150)

Note that the Lamé coefficients can be computed from Young’s
modulus k and Poisson’s ratio ν by

µ =
k

2(1+ν)
, λ =

kν

(1+ν)(1−2ν)
. (151)

This is often more intuitive since Young’s modulus is a measure
of stretch resistance while Poisson ratio is a measure of incom-
pressibility. Finally, the elastic body forces are determined as the
divergence of the stress tensor

f =∇·P. (152)

In the following subsection we will discuss how this continuous
elastic material model can be discretized using the SPH formula-
tion.

10.2. SPH Discretization

The deformation of an elastic body is determined with respect to its
reference configuration (see Eq. (145)). Typically the initial shape
of a body is used as reference configuration in an SPH simulation.
Since the topology of an elastic body does not change during the
simulation, we store the neighborhood of each particle i in the ref-
erence configuration. In the following this reference neighborhood
is denoted byN 0

i .
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Figure 23: Deformable solids simulated using an SPH formulation [PGBT17]. Left: An elastic bunny model is hit by a rigid capsule. Right:
A deformable hairball interacts with water.

Deformation Gradient A straightforward SPH discretization of
the deformation gradient is given by

Ji(x,X) = ∑
j∈N 0

i

V 0
j x ji∇W

(
Xi j
)T

, (153)

where x ji = x j−xi and Xi j = Xi−X j. Since this SPH approxima-
tion is determined in the reference configuration, the rest volume
V 0

j has to be used in the sum. However, this formulation fails to
capture rotational motion since it is not first-order consistent (see
Section 2.3).

Kernel Gradient Correction Bonet and Lok [BL99] have shown
that the gradient of the kernel has to fulfill the following condition
to ensure that the computation is first-order consistent and therefore
correctly captures rotational motion:

∑
j∈N 0

i

V 0
j X ji∇W

(
Xi j
)T

= 1. (154)

Now we can formulate a corrected kernel gradient which satisfies
the condition by construction:

∇̃W i
(
Xi j
)
= Li∇W

(
Xi j
)
, (155)

where Li is a correction matrix that is defined as

Li =

 ∑
j∈N 0

i

V 0
j ∇W

(
Xi j
)
XT

i j

−1

. (156)

Note that this correction matrix only depends on the rest volume
and the particle positions in the reference configuration. Therefore,
this matrix is precomputed at the beginning of the simulation. If the
matrix in Eq. (156) is singular and cannot be inverted, e.g., due to
a collinear or coplanar particle configuration, the Moore–Penrose
inverse is used instead.

Corotated Approach Using the corrected kernel gradient we get
a first-order consistent SPH formulation for the deformation gradi-
ent:

Ji(x,X) = ∑
j∈N 0

i

V 0
j x ji∇̃W

(
Xi j
)T

. (157)

The deformation gradient is used to compute the linear infinites-
imal strain tensor by Eq. (147). Note that we use a linear strain
measure since in an implicit formulation it is more efficient to
solve a linear system than a non-linear one. However, the linear
strain tensor is not invariant under rotations. In computer graphics
a common solution for this problem is to use a corotational ap-
proach [BIT09, KKB18]. The core idea of this approach is to ex-
tract the rotation and to compute the strain measure in an unrotated
frame. In the following we will show how the rotation can be ex-
tracted and introduce the computation of a corotated deformation
gradient.

The deformation gradient computed with the corrected kernel
gradient (see Eq. (157)) is able to capture the rotation correctly.
Hence, the per-particle rotation Ri can be directly extracted from
Ji, e.g., by using the efficient and stable method of Müller et
al. [MBCM16].

The extracted rotation matrix R is used to rotate the reference
configuration so that the resulting displacement vector u = x−RX
contains no rotation. Since we rotate the reference configuration,
we also have to rotate the corrected kernel gradient as it depends
on the reference positions. This yields the rotated corrected kernel
gradient

∗
∇W i

(
Xi j
)
= RiLi∇W

(
Xi j
)
. (158)

Putting all together gives us the corotated deformation gradient

J∗i (x,X) = 1+ ∑
j∈N 0

i

V 0
j
(
x ji−RiX ji

) ∗
∇W i

(
Xi j
)T

. (159)

Now we compute the strain tensor ε(J∗) using Eq. (147) and the
stress tensor P(J∗) using Eq. (150). Finally, the force is determined
as the divergence of the stress tensor. In our SPH formulation this
yields [Gan15]:

Fi
(
J∗
)
= ∑

j∈N 0
i

V 0
i V 0

j

(
Pi
(
J∗i
) ∗
∇W i

(
Xi j
)
−P j

(
J∗j
) ∗
∇W j

(
Xi j
))

.

(160)
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(a) reference configuration (b) deformed configuration

Figure 24: Due to numerical errors the transformed reference vector
JiX ji and the current deformed vector x ji are typically not equal in
an SPH simulation. The error is defined by the difference ei

ji =
JiX ji−x ji.

If we simply add these particle forces to our system, we get an
explicit approach for the simulation of deformable bodies. How-
ever, this approach is only conditionally stable and requires small
time steps when simulating stiff solids. To improve the stability we
will introduce an implicit approach in the next subsection.

10.3. Implicit Approach

The implicit method described in the following is based on the work
of Peer et al. [PGBT17]. Since the elastic forces depend linearly on
the particle positions, an implicit formulation of the time step is
straightforward

vt+∆t = vt +
∆t
m

F
(

Jt+∆t
)
, (161)

where Jt+∆t = J∗
(

xt+∆t ,X
)

is the deformation gradient at the end
of the time step. This means that we use the new particle positions
xt+∆t to determine the elastic forces at the end of the time step.

In this formulation we have unknown positions xt+∆t and un-
known velocities vt+∆t . In the next step we substitute the positions
by xt+∆t = xt +∆tvt+∆t to get a linear system for the new velocities.
Moreover, we split the computation of the force into

F
(

Jt+∆t
)
= F

(
Jt)+F

(
J∆t
)
, (162)

where Jt = J∗
(
xt ,X

)
is the deformation gradient at the beginning

of the time step and J∆t = J∗
(

∆tvt+∆t ,0
)

is the deformation gra-
dient that corresponds to the position change in one time step due
to the velocities vt+∆t . Now we can bring all terms that depend on
the unknown new velocities to the left hand side and the rest to the
right hand side:

vt+∆t − ∆t
m

F
(

J∗
(

∆tvt+∆t ,0
))

= vt +
∆t
m

F
(
J∗
(
xt ,X

))
. (163)

This yields a linear system for the velocities vt+∆t which can ef-
ficiently be solved using a matrix-free conjugate gradient method.
More details about the matrix-free solver can be found in the work
of Peer et al. [PGBT17].

10.4. Zero-Energy Mode Suppression

In SPH simulations zero-energy modes can occur which are sim-
ilar to hour glass modes in finite element methods [Gan15]. The
displacement field in the neighborhood of a particle i has to be de-
fined exactly by its corresponding deformation gradient Ji. This
means that if we transform the vector X ji from particle i to one
of its neighbors j in reference space using the deformation gradi-
ent JiX ji, this should give us the actual vector x ji in the deformed
configuration. Hence, the vector

ei
ji = JiX ji−x ji (164)

should be zero. However, this is typically not the case due to nu-
merical errors (see Fig. 24).

Ganzenmüller [Gan15] proposes to compute a penalty force to
minimize the error vector e ji:

FHG
i =−1

2
αk ∑

j∈N 0
i

V 0
i V 0

j
W
(
Xi j
)

‖Xi j‖2

(
ei

ji ·x ji

‖x ji‖
+

e j
i j ·xi j

‖xi j‖

)
x ji

‖x ji‖
,

(165)
where the coefficient α controls the amplitude of the zero-energy
mode suppression and k is the Young’s modulus. In this way the
system gets more stable and hourglass modes are suppressed.

11. Rigid Solids

Recently, it has been demonstrated that SPH can also be used to
realize a rigid body simulation with contact handling [GPB∗19].
In the following we will introduce the SPH formulation for rigid
bodies and show that this enables a strong two-way coupling of
fluids and rigid bodies (see Fig. 25).

The core idea of the SPH-based contact handling for rigid bodies
is similar to the concept of particle-based boundary handling (see
Section 5). Therefore, in the beginning of the simulation the sur-
face of each rigid body is sampled by particles. But instead of only
computing pressure forces between fluid and boundary particles,
we also determine artificial pressure forces between the particles
on the surfaces of the rigid bodies in order to resolve contacts. Due
to the unified particle representation of all bodies in the simulation,
the neighborhood search can be used to detect the collision of rigid
body particles. Hence, no additional collision detection method for
rigid bodies is required.

Such an SPH-based rigid body solver can easily be combined
with SPH discretizations of other materials. This enables a sim-
ple two-way coupling of fluids, rigid bodies, deformable solids and
highly viscous materials (see Fig. 26).

11.1. Rigid Body Solver

In the following we will discuss how to compute rigid-rigid contact
forces Frr. We want to compute these forces similar to the fluid-
rigid interface forces which were discussed in Section 5. Therefore,
we first introduce an artificial rest density ρ

0
r = 1 for each rigid

particle r. Note that the magnitude of the rest density can be chosen
arbitrarily since we are only interested in a density deviation. If
there is a contact, we get a density deviation of ρr − ρ

0
r > 0 for
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Figure 25: The SPH-based rigid body solver enables a strong two-way coupling between fluids and rigid bodies. In this scenario 43.8M fluid
particles interact with 50M static and 2.3M dynamic rigid body particles. Up to 90k simultaneous rigid-rigid contacts were resolved.

Figure 26: Two creatures run in highly viscous mud, break through a wall of rigid bodies and collide with a deformable tree. This complex
simulation shows the power of a unified SPH solver.

the corresponding particle r. In this case our goal is to determine
contact forces Frr such that ρr = ρ

0
r .

Now we will derive an implicit method to compute the unknown
contact forces. We start with the continuity equation

Dρr

Dt
=−ρr∇·vr, (166)

where ρr and vr are the density and the velocity of a rigid body
particle r, respectively. Then we use a backward difference time
discretization and introduce a constant density constraint ρ

t+∆t
r =

ρ
0
r to get

ρ
0
r −ρr

∆t
=−ρr∇·vt+∆t

r , (167)

where vt+∆t
r is the velocity of the rigid body particle r at time t+∆t.

This velocity vector can be written as

vt+∆t
r = vt+∆t

R +ω
t+∆t
R × rt+∆t

r , (168)

where vt+∆t
R and ω

t+∆t
R are the linear and angular velocity of the

rigid body R at time t+∆t, respectively, and rt+∆t
r is the vector from

the center of mass of the rigid body to the position of the particle r.
The new velocities are determined by an Euler integration step

vt+∆t
R = vR +∆t

1
mR

(
FR + ∑

k∈R
Frr

k

)
(169)

ω
t+∆t
R = ωR +∆tI−1

R

(
τR +(IRωR)×ωR + ∑

k∈R
rk×Frr

k

)
,

(170)

where IR is the inertia tensor of the rigid body. The vectors FR
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and τR contain all forces and torques acting on the body except
the unknown rigid-rigid contact forces Frr

k .R denotes the set of all
particles of rigid body R. Note that all quantities on the right hand
side are at time t. For improved readability we omitted the time
parameter for all quantities at the current time t.

In the next step we substitute Eqs. (168)-(170) in Eq. (167) to
get a linear system for the unknown rigid-rigid contact forces

ρ
0
r −ρr

∆t
=−ρr∇·

(
vR +

∆t
mR

FR

)
−ρr∇·

(
∆t
mR

∑
k∈R

Frr
k

)
−ρr∇·

((
ωR +∆tI−1

R (τR +(IRωR)×ωR)
)
× rt+∆t

r

)
−ρr∇·

(
∆t

(
I−1

R ∑
k∈R

rk×Frr
k

)
× rt+∆t

r

)
. (171)

To simplify this system we use the approximation rt+∆t
r = rr. More-

over, we introduce the velocity vector

vs
r = vR +

∆t
mR

FR +
(

ωR +∆tI−1
R (τR +(IRωR)×ωR)

)
× rr.

(172)
This vector determines the new velocity of a particle r after a time
step which considers all forces and torques except the unknown
contact forces. In this way we can write the right-hand side of our
linear system in a compact form:

sr =
ρ

0
r −ρr

∆t
+ρr∇·vs

r. (173)

The left-hand side contains all terms of Eq. (171) that depend on
the rigid-rigid contact forces Frr

k . The resulting linear system has
the form

−ρr∇·

(
∆t
mR

∑
k∈R

Frr
k +

(
∆tI−1

R ∑
k∈R

rk×Frr
k

)
× rk

)
= sr.

(174)
The left-hand side can further be simplified by introducing the ma-
trix

Krk =
1

mR
1− r̃rI−1

R r̃k, (175)

where r̃r is the cross product matrix of rr to get

−ρr∇·

(
∆t ∑

k∈R
KrkFrr

k

)
= sr. (176)

Note that the matrix Krk is well-known in the area of rigid body
solvers [Mir96, BET14].

Our goal is to resolve the contacts by a pressure force. Therefore,
we define

Frr
k =−Vk∇pk, (177)

where Vk is an artificial volume of particle k and pk is an unknown
pressure which is used to resolve the collision. This yields the final
linear system

ρr∇·

(
∆t ∑

k∈R
VkKrk∇pk

)
=

ρ
0
r −ρr

∆t
+ρr∇·vs

r. (178)

Solving the linear system gives us the unknown pressure values

for all rigid particles. Note that the linear system contains one equa-
tion for each rigid particle. However, if a particle r has no contact
to a particle of another rigid body, we can remove the correspond-
ing equation from the system and set pr = 0 as no contact must be
resolved in this case.

11.2. Implementation

In the following we describe how the quantities in the derived linear
system are computed.

The artificial rest volume of a rigid particle r is determined as

V 0
r =

0.7
∑k∈RWrk

. (179)

A detailed discussion about this computation can be found in the
work of Gissler et al. [GPB∗19]. Together with the artificial rest
density ρ

0
r = 1 the actual density of a rigid particle is computed

as ρr = ∑k V 0
r ρ

0
rWrk, where the sum considers the particles k of all

rigid bodies within the support radius of the kernel. Due to the sum
over the particles of neighboring rigid bodies, we get a density de-
viation of ρr−ρ

0
r > 0 in case of a contact. In this case we compute

the actual volume of a rigid particle r as Vr =
ρ

0
rV 0

r
ρr

.

The divergence on the right-hand side of the linear system is
determined as

∇·vs
r =

1
ρr

∑
k∈R

Vkρk
(
vs

k−vs
r
)
·∇W rk. (180)

Finally, we solve the linear system using a relaxed Jacobi solver
and update the pressure in iteration l +1 as

pl+1
r = pl

r +
β

RJ
r

br

(
sr−ρr∇·

(
∆t ∑

k∈R
VkKrk∇pl

k

))
, (181)

where br is the diagonal element of the linear system and β
RJ
r is the

relaxation coefficient which is set to β
RJ
r = 0.5

num_contacts .

11.3. Conclusion

The introduced SPH-based rigid body solver enables a strong cou-
pling between fluids and rigid bodies. As shown in Fig. 27 the
solver is able to accurately handle complex scenarios with thou-
sands of simultaneous contacts. It can be easily extended to sim-
ulate friction effects [GPB∗19]. Finally, together with the SPH-
based simulation of deformable solids (see Section 10), it can be
combined to a unified SPH solver which supports the coupling of
fluids, rigid bodies, deformable solids and highly viscous materials
(see Fig. 26).

12. Data Driven Fluid Simulation

Using machine learning for fluid simulations is a largely unex-
plored research area, but first results are promising and indicate the
potential of such data-driven approaches. In the Lagrangian con-
text, the seminal work of Ladický et al. [LJS∗15] employed Re-
gression forests to infer particle accelerations (and velocities) us-
ing handcrafted, SPH-based features. We discuss this work in more
detail below. Um et al. [UHT18] presented a method to augment
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Figure 27: Closeup of the water gate scene in Fig. 25. The single
chain elements are connected only by rigid-rigid contacts.

simulations with learned splashes from a high-resolution FLIP sim-
ulation, but included also an example where SPH training data was
used. Somewhat related to SPH, Schenk et al. [SF18] proposed a
differentiable PBF solver [MM13] for deep neural networks. They
have presented convolution layers for summing up contributions
from neighbors and for fluid-object interaction, which potentially
can be adapted to SPH fluids as well. Other work mainly focused
on Eulerian simulations, for example to substitute the pressure
projection step with a CNN [TSSP16], to synthesize flow simu-
lations from a set of reduced parameters [KAT∗19], to compute
smoke super-resolution with GAN networks [XFCT18], or to pre-
dict pressure field changes for multiple subsequent time-steps with
LSTM [WBT18].

12.1. Regression Fluid

In the following, we give an overview of the regression forest ap-
proach for SPH presented by Ladický et al. [LJS∗15]. The work
aimed at enabling real-time applications of millions of particles for
games and virtual reality applications. The main idea is to formu-
late an SPH solver as a regression problem, where the acceleration
(or velocity) of each particle at time t +∆t is efficiently estimated
given the state at time t.

As input to the regressor, a feature vector Φxi is evaluated for
each particle. The features are designed such that they represent
the individual forces and constraints of the Navier-Stokes equa-
tions: the used features model pressure, incompressibility, viscos-
ity and surface tension. In order to evaluate features without using

Figure 28: The regression forest approach for SPH [LJS∗15] en-
ables real-time simulations of over a million particles. At runtime,
additional external forces can be added to mimic different material
properties without retraining the model.

an explicit neighbor search step, context-based integral features are
computed that are defined as flat-kernel sums of rectangular regions
surrounding a particle. The different box sizes allow to capture the
behavior of both close and distant particles, and the features can
be evaluated in constant time and are robust to small deviations.
More details on the computation of context-based integral features
can be found in [LJS∗15]. Three different ways were considered
for the learning strategy:

1. Learning naïve prediction: The first approach directly learns
particle accelerations a, given the evaluated features at state t. The
regression problem is formulated as

ai(t) := Reg(Φxi), (182)

where Reg(.) is the learned regression function. Velocities and po-
sitions are then integrated with

vi(t +∆t) = vi(t)+ai(t)∆t (183)

xi(t +∆t) = xi(t)+
vi(t)+vi(t +∆t)

2
∆t. (184)

This formulation mimics standard SPH and hence does not consider
incompressibility.

2. Learning prediction with hindsight: The second strategy first
computes external forces, advects particles, and applies collision
handling. Then, this intermediate state with particle positions x∗i is
used to compute integral features. The regression learns a corrective
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acceleration and is defined as

ai(t) := Reg(Φx∗i ), (185)

followed by advection as in Eqs. (183) and (184). Unlike the naïve
approach, the regressor is able to predict compressions and hence to
counteract those with a corrective acceleration. Conceptually, this
approach mimics PCISPH [SP09].

3. Learning correction: The third approach starts similarly as the
second one, but instead of learning accelerations, corrective veloc-
ities are computed. The regression problem is defined as

∆vcorr
i := Reg(Φx∗i ), (186)

and positions and velocities are updated with

vi(t +∆t) = v∗i (t)+∆vcorr
i (187)

xi(t +∆t) = x∗i (t)+
∆vcorr

i
2

∆t. (188)

This approach counteracts compressions as well, and conceptually
mimics PBF [MM13]. Unlike PBF, the regressor takes into account
information from a larger neighborhood, and hence does not require
several iterations to converge.

For training the regression forest, 165 scenes consisting of 1-
6 million particles and moving obstacles (sphere, box, cylinder)
were randomly generated and computed for 6 seconds. The training
time was 4 days on 12 CPUs, and the size of the resulting model
was about 40 MB. With the regression fluid approach it is possible
to simulate 1 to 1.5 million particles in real-time, and hence this
approach represents an attractive alternative to traditional solvers
for games and virtual reality applications (Fig. 28).

With the naïve prediction, strong compression artifacts are vis-
ible. The system cannot self-correct in the next frames since the
model has never seen such distorted states during the training. Both
prediction with hindsight and learning corrections can handle in-
compressibility well, however the third approach seems to lead to
smaller errors compared to the ground truth data. Additionally, with
the second and third approaches, external forces can be added with-
out retraining the model. This allows adding surface tension, fric-
tion, or drag effects at runtime to mimic different material prop-
erties as illustrated in Fig. 28. The disadvantage of the regression
fluids approach - and in fact of all machine learning based strate-
gies - is that learning methods are not capable to extrapolate the
model far outside the training data (e.g., when domain size or fluid
resolution change).

13. SPlisHSPlasH

In this section we want to introduce SPlisHSPlasH [Ben19b] which
is an SPH-based open-source library for the physically-based sim-
ulation of fluids (see Fig. 29). The SPlisHSPlasH framework con-
tains a reference implementation of many of the methods intro-
duced in this tutorial and several simulations shown in the figures
were performed using this library. Therefore, we think that our
open-source framework perfectly supplements these course notes.

In the current version SPlisHSPlasH implements six of the most
popular explicit and implicit pressure solvers [BT07,SP09,MM13,

ICS∗14, BK15, WKB16] which enable the simulation of incom-
pressible fluids with several million particles. Moreover, the ex-
plicit [SB12, Mon92] and implicit viscosity methods [TDF∗15,
PICT15, PT16, BK17, WKBB18] introduced in Section 6 are im-
plemented. Hence, the library supports the simulation of low vis-
cous flow and highly viscous materials. Surface tension effects
(see Section 7) can also be simulated using SPlisHSPlasH. The
framework currently implements microscopic and macroscopic ap-
proaches [BT07, AAT13, HWZ∗14]. To simulate turbulent fluids,
SPlisHSPlasH implements vorticity confinement [MM13] and the
micropolar model [BKKW17] which were discussed in Section 8.

Aside from forces which act within the same phase, SPlisH-
SPlasH also supports multiphase simulations [SP08] and provides
functionality to couple different materials. The interaction between
air phase and fluid phase is realized using drag forces [MMCK14,
GBP∗17]. The framework implements the approach of Akinci et
al. [AIA∗12] to simulate the coupling between rigid bodies and
fluids. The required surface sampling of the bodies is performed
automatically using a Poisson disk sampling. For the simulation
of dynamic rigid bodies SPlisHSPlasH uses the open-source Po-
sitionBasedDynamics library [Ben19a]. This library simulates the
rigid bodies using a position-based approach [DCB14]. Collisions
between the bodies are efficiently detected using signed distance
fields [KDBB17] while the contacts are resolved using a projected
Gauss-Seidel method [BET14]. Finally, SPlisHSPlasH implements
different methods for the simulation of deformable solids [BIT09,
PGBT17] using an SPH formulation (see Section 10). Since an SPH
formulation is used, the two-way coupling between solids and flu-
ids is simply handled by the implemented multiphase method.

SPlisHSPlasH uses a neighborhood search based on the com-
pact hashing approach of Ihmsen et al. [IABT11]. This approach is
discussed in more detail in Section 3. The neighborhood search is
implemented in our open-source library CompactNSearch [Kos19].

The SPlisHSPlasH framework has many more features like emit-
ters, adaptive time-stepping or the support of different kernel func-
tions. Moreover, the library has some useful tools like volume sam-
pling of closed geometries or the export of particle data for Maya
or Houdini. New simulation scenarios can be created easily using a
JSON-based scene file format. Finally, due to a modular concept it
is simple to extend the library and to integrate own SPH methods.
Therefore, we think that SPlisHSPlasH is a good starting point for
all beginners in the area of SPH-based simulations.

14. Conclusion

This tutorial introduced state-of-the-art SPH techniques for the
physics based simulation of fluids and solids in graphics and pre-
sented practical guidelines for implementations. Various concepts
that are particularly relevant for graphics applications were dis-
cussed. We showed that with the recent improvements SPH mod-
els have matured and ultimately emerged as a competitive alter-
native to Eulerian fluid simulations or hybrid approaches. Particu-
lar challenges of SPH concerning neighborhood search algorithms,
pressure solvers, or versatile fluid-solid interaction techniques have
been overcome. With the improved robustness and efficiency, mil-
lions of particles can today be simulated on a single desktop com-
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Figure 29: Screenshots of the SPlisHSPlasH fluid simulation framework. Left: Two-way coupling of dynamic rigid bodies and a color-coded
fluid. Center: Two-phase double dam break simulation. Right: Highly viscous bunny collides with a static dragon model.

puter. Accordingly, the Lagrangian SPH method reaches an un-
precedented level of visual quality, where fine-scale surface effects
and flow details are reliably captured.

The SPH community – in graphics as well as in other research
disciplines – is very active and the field advances quickly. Each
community contributes to different aspects of SPH simulations, and
the research often finds applications across disciplines. For graph-
ics applications, it was especially important to efficiently enforce
incompressibility on unstructured particles and hence to eliminate
the severe time step restrictions of standard SPH techniques. We
have presented a practical introduction to various SPH concepts
that enforce volume conservation and/or divergence-free velocity
fields. A current difficulty is that these approaches render time step-
ping more challenging, since the largest possible time step does not
necessarily result in the best overall performance. Future work is
certainly necessary to establish a CFL condition for these methods,
as well as to overcome the current main performance bottleneck
which is still the time step restriction especially when using mil-
lions of particles.

Using large particle numbers is one of the key components
for high visual quality and production level results. Such high-
resolution simulations pose new challenges and existing concepts
might need to be revisited. Especially speed, flexibility and con-
trollability are core aspects, for which solutions are still largely
missing. This problem, however, affects not only the SPH field but
the entire fluid community in graphics likewise, and has triggered
research on pre- and post-processing methods or data-driven ap-
proaches.

Our tutorial introduced the SPH-based open-source library
SPlisHSPlasH that contains reference implementations of many
concepts that we discussed. This implementation is an excellent
starting point for students, researchers and practitioners, and may
serve as a valuable tool for future research.
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