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Abstract

This paper presents a parallel framework for simulating fluids with the Smoothed Particle Hydrodynamics (SPH)

method. For low computational costs per simulation step, efficient parallel neighborhood queries are proposed

and compared. To further minimize the computing time for entire simulation sequences, strategies for maximiz-

ing the time step and the respective consequences for parallel implementations are investigated. The presented

experiments illustrate that the parallel framework can efficiently compute large numbers of time steps for large

scenarios. In the context of neighborhood queries, the paper presents optimizations for two efficient instances of

uniform grids, i. e. spatial hashing and index sort. For implementations on parallel architectures with shared mem-

ory, the paper discusses techniques with improved cache-hit rate and reduced memory transfer. The performance

of the parallel implementations of both optimized data structures is compared. The proposed solutions focus on

systems with multiple CPUs. Benefits and challenges of potential GPU implementations are only briefly discussed.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism: —Animation

1. Introduction

Physically-based animation techniques are used to produce
realistic visual effects for movies, advertisement and com-
puter games. While the animation of fluids is becoming in-
creasingly popular in this context, it is also one of the most
computation-intensive problems. This paper focuses on the
efficient simulation of fluids with Smoothed Particle Hydro-
dynamics (SPH) using multiple CPUs in parallel.

In SPH, the dynamics of a material is governed by the
local influence of neighboring particles. In fluids, the set of
neighboring particles dynamically changes over time. There-
fore, the efficient querying and processing of particle neigh-
bors is crucial for the performance of the simulation. The
neighborhood problem for SPH fluids is similar to, e. g.,
collision detection or intersection tests in ray tracing. How-
ever, neighborhood queries in SPH are also characterized by
unique properties that motivate our investigation of efficient
acceleration data structures in this context.

For instance, adjacent cells in the employed spatial data
structure have to be accessed efficiently. Further, an effi-
cient data structure should employ the temporal coherence
of a fluid between two subsequent simulation steps, but over

larger time periods, it should preserve or restore spatial lo-
cality. As the acceleration structure has to be updated in each
simulation step, query as well as construction times have
to be optimized. Therefore, acceleration structures used in
static applications, e. g. kd-trees or perfect hashing, might be
too expensive to construct. Querying has to be efficient, as
the set of neighboring particles has to be processed multiple
times in an SPH algorithm for computing various attributes.

On average, a particle is interacting with 30 neighbors.
Storing the neighbor set for fast reuse is, thus, a natural
choice. However, for systems with a low-memory limit, this
quickly limits the maximum complexity of the scene. In fact,
recent SPH implementations on the GPU [HKK07b, ZSP08,
GSSP10] do not store interacting particles, but recompute
neighbor sets when needed. Consequently, the performance
of these systems scales with the number of neighborhood
queries in each simulation step. Therefore, either the gas
equation [MCG03] or the Tait equation [Mon94, BT07] are
employed, as these equations are fast to compute and the
influencing particle sets are processed only twice per sim-
ulation step. However, the state equations suffer from visi-
ble compression artifacts, if the time step is not sufficiently
small.
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The predictive-corrective incompressible SPH method
(PCISPH) [SP09] is more expensive to compute, but it can
handle significantly larger time steps. In this method, incom-
pressibility is enforced by iteratively predicting and correct-
ing the density fluctuation. Due to the iteration scheme, the
neighbor set is processed at least seven times per simulation
step, which might limit the performance of current GPU im-
plementations.

Our contribution. We present an efficient system for
computing SPH fluid simulations on multi-core CPUs. Since
the query and processing of particle pairs (neighbor search)
is crucial for the performance, we focus on parallel spatial
acceleration structures. We propose compact hashing and Z-
index sort as optimizations of the commonly used spatial
hashing and index sort schemes.

A low memory transfer is evident for a good performance
of parallel systems. We employ techniques that lower the la-
tency when accessing particles and their interacting neigh-
bors. Temporal coherence is exploited in order to reduce
grid construction times for both acceleration structures. We
show that the performance of the proposed compact hashing
is competitive with Z-index sort, while compact hashing is
more appropriate for large scale fluid simulations in arbitrary
domains.

In the context of SPH, the performance of compact hash-
ing and Z-index sort is thoroughly analyzed. Both proposed
schemes are compared with three existing variants of uni-
form grids, i. e. basic uniform grid, spatial hashing and index
sort.

We further analyze the two types of SPH algorithms
used in Computer Graphics, namely state equation based
algorithms (SESPH) and the predictive-corrective SPH al-
gorithm (PCISPH). We discuss the performance aspects of
these algorithms. We finally show simulations with up to 12
million fluid particles using compact hashing and PCISPH.

2. Related work

In this work, we focus on an efficient fluid solver using
the Smoothed Particle Hydrodynamcis method. While SPH
is applied to model gas [SF95], hair [HMT01] and de-
formable objects [DC96,SSP07,BIT09], its main application
in Computer Graphics is the simulation of liquids [MCG03].
In this field, research focuses on the simulation of vari-
ous effects like interaction of miscible and immiscible flu-
ids [MSKG05, SP08], phase transitions [KAG∗05, SSP07],
user-defined fluid animations [TKPR06] or the simulation
and visualization of rivers [KW06].

Recent research is also concerned with performance as-
pects of SPH. Adams et al. [APKG07] use an adaptive sam-
pling with varying particle radii. The number of particles in-
side a volume is reduced which significantly improves the
performance for densely sampled fluids. However, in order

to efficiently find interacting particles with different influ-
ence radii, a kd-tree is used which has to be rebuilt in ev-
ery time step. According to the presented timings, the neigh-
borhood search marks the performance bottleneck for this
method.

There exist various approaches that address the imple-
mentation of SPH on highly parallel architectures, especially
on the GPU. While SPH computations are easy to paral-
lelize, the implementation of an efficient parallelized neigh-
borhood search is not straightforward. In [AIY∗04], e. g., the
GPU is only used for computing the SPH update but not for
the neighborhood query. Later, [HKK07b,ZSP08] presented
SPH implementations that run entirely on the GPU. These
methods map a three-dimensional uniform grid onto a two-
dimensional texture. Particle indices are stored in RGBA
channels. Thus, only four particles can be mapped into each
grid cell. Due to this issue, a smaller than optimal cell size
has to be chosen in order to avoid simulation artifacts.

Generally, even though a uniform grid is fast to construct
and the costs of accessing an item are in O(1), it suffers
from a low cache-hit rate in the case of SPH fluid simula-
tions. This is due to the fact that the fluid fills the simula-
tion domain in a non-uniform way. Only a small part of the
domain is filled, while the fluid also tends to cluster. Conse-
quently, the grid is only sparsely filled and, hence, a signifi-
cant amount of memory is unnecessarily allocated for empty
cells. As stated in [HKK07b], this decreases the performance
due to a higher memory transfer. In [HKK07a], an adaptive
uniform grid is presented, where the memory consumption
scales with the bounding box of the fluid volume.

Index sort is another approach to reduce the memory
consumption and transfer of the uniform grid. Index sort
first sorts the particles with respect to their cell indices c.
Then, indices of the sorted array are stored in each cell.
Each cell just stores one reference to the first particle with
corresponding cell index. This idea has been described by
Purcell et al. [PDC∗03] for a fast photon mapping algo-
rithm on the GPU. In [OD08], a similar idea is applied to
a non-parallel SPH simulation. The paper shows that index
sort outperforms the spatial hashing scheme for simulations
with a low number of particles, i. e. 1300. Index sort is
used in NVIDIA’s CUDA based SPH fluid solver [Gre08]
and also employed for fast parallel ray tracing of dynamic
scenes [LD08,KS09]. In this work, we discuss important is-
sues of the index-sort scheme in the context of a parallel SPH
implementation on multi-core CPUs. Thereby, we propose a
new variant named Z-index sort which includes SPH-specific
enhancements.

In contrast to the uniform grid, the spatial hashing method
can represent infinite domains. This method has been in-
troduced for deformable solids [THM∗03] and rigid bod-
ies [GBF03]. For particle-based granular materials, spatial
hashing is applied by [BYM05]. We propose a memory-
efficient data structure for the spatial hashing method called
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compact hashing that allows for larger tables and faster
queries.

In general, a hash function does not maintain spatial local-
ity of data, which increases the memory transfer. In order to
enforce spatial locality, we employ a space-filling Z-curve.
A similar strategy is used by Warren and Salmon [WS95].
In this approach, a hashed octree is presented for parallel
particle simulations. For the cosmological simulation code
GADGET-2, particles are ordered in memory according to a
Peano-Hilbert curve [Spr05]. The Peano-Hilbert curve pre-
serves the locality of the data very well, but is relatively ex-
pensive to evaluate. Instead, we use the Z-curve which can
be efficiently computed by bit-interleaving [PF01].

In addition to the uniform grid, spatial hashing and in-
dex sort, various other acceleration structures have been pre-
sented. One of the most popular techniques is the Verlet-
list method [Ver67, Hie07]. In this method, a list of poten-
tial neighbors is stored for each particle. Potential neighbors
have a distance which is lower or equal to a predefined range
s, where s is significantly larger than the influence radius r.
Thereby, the list of potential neighbors needs to be updated
only if a particle has moved more than s− r. However, the
memory transfer of this method scales with the ratio s/r, as
all potential particle pairs are processed in each neighbor-
hood query.

In [KW06], particles are sorted according to staggered
grids, one for each dimension. Instead of querying spatially
close cells in all dimensions at once, dimensions are pro-
cessed one after another. As stated in [KW06], this method
works well for a low number of particles. For higher res-
olutions, the performance is lower compared to, e. g., the
octree used in [VCC98]. However, as reported in [PDC∗03]
and [HKK07b], hierarchical subdivision-schemes are not a
good choice for fluids with uniform influence radius, since
the costs of accessing an item are in O(logn), while for uni-
form grids they are in O(1). This implies an higher memory
transfer, which especially limits the performance of hierar-
chical data structures in parallel implementations.

The above-mentioned GADGET-2 simulation code is de-
signed for massively parallel architectures with distributed
memory. MPI (Message Passing Interface) is used for the
parallelization. A parallel library for distributed memory
systems is also presented by Sbalzarini et al. [SWB∗06].
Using the library, continuum systems can be simulated with
different particle-based methods. [FE08] use orthogonal re-
cursive bisection for decomposing the simulation domain, in
order to achieve load balanced parallel simulations of parti-
cle based fluids. This approach is designed for cluster sys-
tems. While these approaches focus on distributed mem-
ory systems, our approach addresses shared memory sys-
tems, where parallelization can be efficiently realized using
OpenMP [Ope05].

3. SPH

The SPH method approximates a function f (xi) as a
smoothed function 〈 f (xi)〉 using a finite set of sampling
points x j with mass m j , density ρ j, and a kernel function
W (xi −x j,h) with influence radius h. According to Gingold
and Monaghan [GM77] and Lucy [Luc77], the original for-
mulation of the smoothed function is

〈 f (xi)〉 = ∑
j

m j

ρ j
f (x j)W (xi −x j,h). (1)

The concept of SPH can be applied to animate different
kinds of materials including fluids. The underlying contin-
uum equations of the material are discretized using the SPH
formulation. Thereby, objects are discretized into a finite set
of sampling points, also called particles. The neighborhood
of a particle i is defined by the particles j that are located
within the support radius of i, i. e.

∥

∥xi −x j ≤ h
∥

∥. Each par-
ticle represents the material properties of the object with re-
spect to its current position. In each time step, these prop-
erties are updated according to the influence of neighbor-
ing particles. Therefore, the particle neighborhood has to be
computed in each time step.

In the SPH method, derivatives are calculated by shift-
ing the differential operator to the kernel function [Mon02].
Thereby, the computations are simplified. The most time
consuming part of SPH simulations is the neighborhood
query and the processing of neighbors, since the number of
interacting particles (pairs) is significantly larger than the
number of particles. In the following sections, we there-
fore focus on acceleration techniques and data structures for
these methods.

4. Neighborhood search

The neighborhood search can be accelerated using spatial
subdivision schemes. As reported in [HKK07b], the con-
struction cost of a hierarchical grid is O(n logn) and the cost
of accessing a leaf node is O(logn). In contrast, the con-
struction cost of a uniform grid is O(n), while any item can
be accessed in O(1). Therefore, uniform grid approaches are
most efficient for SPH simulations with uniform support ra-
dius h.

4.1. Basic uniform grid

In the basic uniform grid approach, each particle i with po-
sition x = (x,y,z) is inserted into one spatial cell with coor-
dinates (k, l,m). In order to determine the neighborhood of
i, only particles that are in the same spatial cell or in one
of the neighboring spatial cells within distance h need to be
queried.

Obviously, the cell size d has an impact on the number of
potential neighbors. The smaller the cell size, the smaller the
number of potential pairs. However, with cell sizes smaller
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Figure 1: Index sort data structure. The top row illustrates

the uniform grid where the numbers refer to the correspond-

ing cell indices. Each non-empty cell points to the first parti-

cle in the sorted particle array with corresponding cell index

(bottom row).

than h, the number of cells to query gets bigger. This might
slow down the neighborhood query, due to a larger number
of memory lookups. In the following, we assume a cell size
of h. In this case, 27 cells have to be queried for each particle.
We discuss the performance of different cell sizes in Sec. 6.

4.2. Index sort

Parallel construction. The parallel construction of the uni-
form grid is not straightforward since the insertion of par-
ticles into the grid might cause race conditions, i. e. two or
more threads try to write to the same memory address con-
currently.

As suggested in [PDC∗03,KS09], these memory conflicts
can be avoided by using sorted lists. The index sort method
first sorts the particles in memory according to their cell in-
dex c. The cell index c of a position x = (x,y,z) is computed
as

c = k + l ·K +m ·K ·L (2)

c = (k, l,m) =
(⌊

x− xmin

d

⌋

,
⌊

y− ymin

d

⌋

,
⌊

z− zmin

d

⌋)

with d denoting the cell size. K and L may either denote the
number of cells in x and y direction of the fluid’s AABB or
of the whole simulation domain.

In contrast to non-sorted uniform grids, a grid cell does no
longer store references to all the particles in this cell. In fact,
a cell with index c does only store one reference to the first
particle in the sorted array with cell index c. We use a par-
allel reduction to insert the references into the grid [KS09].
Thereby, each bucket entry B[k] in the sorted particle array
B is tested against B[k− 1]. Let ck denote the cell index of
the particle stored at B[k]. If ck is different from ck−1, a ref-
erence to B[k] is stored in the spatial grid cell G[ck]. This
procedure can be performed in parallel since race conditions
do not occur. The final data structure is illustrated in Fig. 1.

Index sort avoids expensive memory allocations while the
memory consumption is constant. However, the whole spa-
tial grid needs to be represented in order to find neighboring
cells.

Parallel query. The neighborhood query for parallel ar-
chitectures is straightforward. The sorted particle array is

Figure 2: The self-similar structure of the Z-curve in 2D is

illustrated for a regular grid.

processed in parallel. For each particle i, all particles in
the 27 neighboring cells are tested for interaction. Due to
the sorting, particles that are in the same spatial cell are
also close in memory. This improves the memory coher-
ence (cache-hit rate) of the query. However, it depends on
the indexing scheme if particles in neighboring cells are also
close in memory. In the following section, we discuss impor-
tant aspects when applying the index sort method on parallel
CPU architectures.

4.3. Z-index sort

Indexing scheme. Current shared-memory parallel comput-
ers are built with a hierarchical memory system, where a
very fast, but small cache memory supplies the processor
with data and instructions. Each time new data is loaded
from main memory, it is copied into the cache, while blocks
of consecutive memory locations are transferred at a time.
A new block may dispose other blocks of data, if the cache
is full. Operations can be performed with almost no latency
if the required values are available in the cache. Otherwise,
there will be a delay. Thus, the performance of an algorithm
is improved by reducing the amount of data transferred from
main memory to the cache. Consequently, for parallel algo-
rithms we have to enforce that threads do share as much data
as possible without generating race conditions.

Even though it is not possible to directly control the cache,
the program can be structured such that the memory transfer
is reduced. The indexing scheme defined in (2) is not spa-
tially compact, since it orders the cells according to their z

position first. Thus, particles that are close in space are not
necessarily close in memory. In order to further reduce the
memory transfer, we suggest to employ a space-filling Z-
curve for computing the cell indices.

Rather than sorting an n-dimensional space one di-
mension after another, a Z-curve orders the space by n-
dimensional blocks of 2n cells. This ordering preserves spa-
tial locality very well due to the self-containing (recursive)
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block structure (see Fig. 2). Consequently, it leads to a high
cache-hit rate while the indices can be computed fast by bit-
interleaving [PF01]. In Sec. 6, we show that the Z-curve im-
proves the cache-hit rate and, therefore, improves the perfor-
mance for the query and processing of particle neighbors.

Sorting. The particles carry several physical attributes,
e. g. velocity, position and pressure. When sorting the parti-
cles, these values have to be copied several times. Thus, the
memory transfer might slow down the sorting significantly.
In order to avoid sorting the particles array in every simula-
tion step, we suggest to use a secondary data structure which
stores a key-value pair, called handle. Each handle stores a
reference to a particle (value) and its corresponding cell in-
dex (key). Due to the minimal memory usage of this struc-
ture, sorting the handles in each time step is much more ef-
ficient than sorting the particle array.

In order to yield high cache-hit rates, the particle array it-
self should still be reordered. However, we experienced that
it is sufficient to reorder the particle array every 100th simu-
lation step since the fluid simulation evolves slowly and co-
herently. The temporal coherence of the simulation data can
be exploited further. According to the Courant-Friedrich-
Levy (CFL) condition, a particle must not move more than
half of its influence radius h in one time step. Thus, the av-
erage number of particles for which the cell index changes
in a consecutive simulation step is low, i. e. 2%. Therefore,
we propose to use insertion sort for reordering the handles.
Insertion sort is very fast for almost sorted arrays. Usually,
parallel radix sort is used for sorting [Gre08, OD08]. As we
show in Sec. 6, the insertion sort outperforms our parallel
radix sort implementation on CPUs even for large data sets.

Generally, index sort variants are considered to be the
fastest spatial acceleration methods. However, according
to [Gre08] there are two limitations. First, the memory con-
sumption scales with the simulation domain. Second, for
sorting, the whole particle array has to be reprocessed af-
ter computing the cell indices. In the following sections, we
discuss an acceleration structure which is able to represent
infinite domains.

4.4. Spatial hashing

In order to represent infinite domains with low memory con-
sumptions, we employ the spatial hashing procedure intro-
duced in [THM∗03]. In this scheme, the effectively infinite
domain is mapped to a finite list. The hash function that
maps a position x = (x,y,z) to a hash table of size m has
the following form:

c =
[(⌊

x

d

⌋

· p1

)

xor
(⌊

y

d

⌋

· p2

)

xor
(⌊

z

d

⌋

· p3

)]

%m (3)

with p1, p2, p3 being large prime numbers that are cho-
sen similar to [THM∗03] as 73856093, 19349663 and
83492791, respectively.

Unfortunately, different spatial cells can be mapped to the

Figure 3: Compact hashing. A handle array is allocated for

the hash table of size m. The handles point to a compact

list which stores the small number of n used cells (yellow

shaded). For a used cell, memory for k entries is reserved.

The memory consumption is thereby reduced to O(n ·k+m).
Note that the neighborhood query traverses only the n used

cells.

same hash cell (hash collision), slowing down the neigh-
borhood query. The number of hash collisions can be re-
duced by increasing the size of the hash table. According
to [THM∗03], the hash table should be significantly larger
than the number of primitives, in order to minimize the risk
of hash collisions. Our experiments indicate that for SPH, a
hash table size of two times the number of particles is appro-
priate.

In order to avoid frequent memory allocations,
[THM∗03] reserve memory for a certain number k of
entries in all hash cells on initialization. Thereby, a table
with m hash cells consumes O(m · k) memory. However,
on average, the number of non-empty cells is only 12%
of the total number of particles. For SPH fluids, the hash
table is generally sparsely filled and a significant amount
of memory is unnecessarily preallocated. Furthermore, for
most of the hash cells, adjacent cells might be empty, which
reduces the cache-hit rate for the insertion and query. In the
following section, we present solutions to these problems.

4.5. Compact hashing

In order to reduce the memory consumption, we propose to
use a secondary data structure which stores a compact list
of non-empty (used) cells. The hash cells do only store a
handle to their corresponding used cell. Memory for a used
cell is allocated if it contains particles and deallocated if the
cell gets empty. Thus, this data structure consumes constant
memory for the hash table storing the handles and additional
memory for the list of used cells. In contrast to the basic uni-
form grid, the memory consumption scales with the number
of particles and not with the simulation domain. The data
structure is illustrated in Fig. 3.
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Figure 4: Particles are colored according to their location in memory, where red is the last and white is the first position. Spatial

locality is not maintained, if particles are not reordered (left). Since the hash function abolishes spatial locality, reordering

according to the cell index (middle) is a bad choice to reduce the memory transfer. Spatial compactness is enforced using a

Z-curve (right).

The compact list of used cells already lowers the expected
memory transfer. However, the hash function is not designed
to maintain spatial locality, but rather abolishes it. Thus,
compared to index sort, the required memory transfer for
the query is still comparatively large. This again results in
much larger query times, even if there are no hash collisions.
In the following, we propose techniques, which significantly
improve the performance of the construction and query for
the spatial hashing method.

Parallel construction. Like for the non-sorted uniform
grid, the particles cannot be inserted into the used cells in
parallel. On the other hand, temporal coherence can be ex-
ploited more efficiently. Therefore, we do not reconstruct
the compact list in each time step, but only account for the
changes in each cell.

In a first loop, the spatial cell coordinates ci = (k, l,m) of
each particle i are computed. Only if ci has changed, the new
cell index of i is computed with (3) and the particle is added
to a list of moving particles. In a second step, the moving
particles are removed from their old cell and inserted into
the new one. Note that the second step has to be performed
serially, but with very low amortized costs since the number
of moving particles is generally small, i. e. around 2% on
average.

Parallel query. The neighborhood query is straightfor-
ward. The compact list of used cells can be processed in
parallel without any race conditions. Nevertheless, the query
is expected to be comparatively slow for the spatial hash-
ing. This is due to hash collisions and an increased memory
transfer, as consecutive used cells are close in memory, but
not close in space. We now give solutions to overcome these
limitations.

Hash collisions. For a used cell without hash collisions,
all particles are in the same spatial cell and, hence, the po-
tential neighbors are the same. However, if there is a hash
collision in a used cell, the hash indices of the neighbor-
ing spatial cells have to be computed for each particle. This

results in a significant computational overhead, particularly
since we do not know if there is a hash collision in a cell or
not. In order to keep the overhead low, we suggest to store a
hash-collision flag in each used cell. Therefore, the hash in-
dices have to be computed only once for cells without hash
collisions.

The memory consumption of the proposed data structure
scales with the number of particles and not with the hash
(handle) table size. Therefore, the hash table can always be
set to a size which enforces a very low number of hash col-
lisions. For SPH, this number is usually below 2%. Storing
a collision flag significantly speeds up the query since the
performance is almost not influenced by the low number of
hash collisions.

Spatial locality. Hash functions are designed to map data
from a large domain to a small domain. Thereby, the data
is scattered and spatial locality is usually not preserved. The
list of used cells is, hence, not ordered according to space
which means that consecutive cells are not spatially close
(see Fig. 4). Thus, an increased memory transfer is expected
for the query since already cached data might not be reused.

In order to reduce the memory transfer, we again sort the
particles according to a Z-curve every 100th simulation step.
Sorting is performed similar as described in Sec. 4.3. Instead
of sorting the particle array with all attributes, we sort a han-
dle structure. Each handle consists of cell index and refer-
ence to a particle. Then, all other attributes of the particle
are sorted accordingly.

Note that when sorting the particle array, the pointers in
the used cell become invalid. Therefore, the compact used-
cell list has to be rebuilt. Used cells are created each time a
particle is added to an empty hash cell. Thus, if we simply
insert the sorted particles serially into the compact hash ta-
ble, the order of the used cells is consistent with the Z-curve
order of the particles. We employ a similar parallel reduction
scheme as in Sec. 4.2, in order to parallelize this step. The
computational overhead of reconstructing the compact list of
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Algorithm 1: SESPH

foreach particle i do
compute density ;
compute pressure (4) or (5);

foreach particle i do
compute all forces;
integrate;

used cells is negligible since reordering every 100th steps is
sufficient.

In this section, we described a spatial hashing scheme op-
timized for SPH simulations on parallel architectures. By al-
locating memory only for non-empty hash cells, the over-
all memory consumption is reduced. Furthermore, for the
neighborhood query, only the small percentage of used cells
is traversed, which significantly improves the performance.
Finally, for shared memory systems, the memory transfer is
minimized by reordering particles and the compact list ac-
cording to a space-filling curve.

5. Fluid update

In Computer Graphics, two different algorithms are gener-
ally used for updating SPH fluids, namely SESPH [MCG03,
BT07] and PCISPH [SP09]. The neighborhood search dis-
cussed in Sec. 4 builds the base for these algorithms since
physical attributes are updated according to the influence of
neighboring particles. This is illustrated in Alg. 1 and Alg. 2
where we marked the steps that process the neighbor set with
red and bold letters. In this section, we discuss performance
and accuracy issues of both SPH algorithms.

5.1. SEPSPH

The SESPH algorithm loops only two times over all parti-
cles in each simulation step (see Alg. 1). Particles and their
neighbors are processed in two subsequent loops, in order to
update the physical attributes.

For SESPH, the pressure can be computed by using an
equation of state, namely the Tait-equation [BT07] or the gas
equation [MCG03]. The Tait-equation relates the pressure p

with the density ρ polynomially as

p = k

(

(

ρ

ρ0

)7

−1

)

(4)

where ρ0 denotes the rest density and k is a stiffness parame-
ter that governs the relative density fluctuation ρ−ρ0. While
for (4), the pressure grows polynomially with the compres-
sion of the fluid, for the gas equation

p = k(ρ−ρ0) (5)

it just grows linearly. Consequently, (4) results in larger pres-
sures than (5) which restricts the time step. Furthermore, as

Algorithm 2: PCISPH

foreach particle i do

compute forces F
υ,st,ext
i (t);

set pressure to 0;
set pressure force to (0,0,0)T ;

k = 0 ;
while (max(ρ∗

erri
) > η or k < 3) do

foreach particle i do
predict velocity ;
predict position ;

foreach particle i do
update distances to neighbors;
predict density variation;
update pressure ;

foreach particle i do
compute pressure force;

k+ = 1;

foreach particle i do
integrate;

reported in [BT07], k should not be set too small in order to
avoid compression artifacts. In order to get plausible simu-
lation results with SEPSH, small time steps are required.

5.2. PCISPH

In contrast to SESPH, the PCISPH algorithm [SP09] does
not use an equation of state for computing the pressure. This
method predicts and corrects the density fluctuations in an it-
erative manner. Thereby, the density error is propagated until
the compression is resolved. However, in every simulation
step, at least three iterations are required in order to limit
temporal fluctuations (see Alg. 2). Thereby, the neighbor set
is processed 7 times in total. Thus, the PCISPH method is
comparatively expensive to compute.

5.3. Performance comparison

For SPH simulations, various authors [HKK07b, Gre08,
GSSP10] give the number of simulation updates per lab sec-
ond and refer to this as frames per second (fps). In our opin-
ion, this number gives only small insights about the overall
performance as long as the time step is not given. In order to
assess the performance of our system, we do not only state
the simulation updates per second, but also the time step. In
the following, ups denotes the number of times the simula-
tion is updated (neighbor search + fluid update) in one lab
second.

Accordingly, the PCISPH might be more efficient than
the SESPH method, despite the computational overhead per
fluid update. The reason is that the PCISPH method can han-
dle significantly larger time steps. [SP09] reports up to 150
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recompute neighbors store neighbors
particles SESPH PCISPH SESPH PCISPH

130K 47.1 190.1 44.4 105.4
1700K 662.1 2649.5 572.3 1378.7

Table 1: Performance comparison of storing the neighbors

and recompute them on-the-fly. Here, SESPH and PCISPH

times (in milliseconds) include the neighbor query, but not

the construction time of the grid. Simulations were per-

formed on an Intel Xeon 7460 using all 24 CPUs with

2.66GHz.

times larger time steps in comparison to SESPH using the
Tait-equation [BT07].

Also, SESPH using the gas equation requires much
smaller time steps than the PCISPH in order to achieve plau-
sible simulation results. For all of our simulations, the time
step for PCISPH could be at least set 25 times higher than
for SESPH with (5). However, SESPH updates the simula-
tion only 2.5 times faster than PCISPH. Accordingly, the
PCISPH outperforms both SESPH algorithms at least by a
factor of ten.

Storing or recomputing neighbors. For some platforms,
dynamic memory management is expensive or challenging.
In such cases, recomputing the particle neighbors on-the-fly
can be efficient. Consequently, state-of-the art SPH imple-
mentations on the GPU do not store particle pairs, but re-
compute them when needed. In contrast, for our multi-core
CPU systems, we experienced that performing the neigh-
bor search only once per simulation step and query the pairs
from memory is more efficient.

In Table 1, we analyze the performance difference for the
fluid update, when querying pairs from memory and recom-
puting the neighborhood on-the-fly. When pairs are stored,
neighbors are computed in a first loop and then written to
and read from memory. In Table 1, these times are included
for store neighbors. On our system, the overhead of writing
and reading the data to memory pays off. While the ben-
efit is rather low for SESPH, it is significant for PCISPH.
This is due to the fact, that PCISPH performs seven neigh-
bor queries, if pairs are not stored. Accordingly, for PCISPH,
the neighbor query becomes the bottleneck if neighbors need
to be recomputed, as for the GPU based systems presented
in [HKK07b, ZSP08, Gre08, GSSP10].

6. Results

In this section, we evaluate the performance of the investi-
gated data structures. We start with a detailed performance
analysis of the five uniform grid variants. By comparing the
construction and query times, we show that the proposed Z-
index sort and the compact hashing are most efficient. Next,
we discuss the performance influence of the cell size and the

method construction query total

basic uniform grid 25.7 (27.5) 38.1 (105.6) 63.8 (133.1)
index sort [Gre08] 35.8 (38.2) 29.1 (29.9) 64.9 (77.3)
Z-index sort 16.5 (20.5) 26.6 (29.7) 43.1 (50.2)
spatial hashing 41.9 (44.1) 86.0 (89.9) 127.9 (134.0)
compact hashing 8.2 (9.4) 32.1 (55.2) 40.3 (64.6)

Table 2: Performance analysis of different spatial acceler-

ation methods with and without (in brackets) reordering of

particles. Timings are given in milliseconds for CBD 130K

and include storing of pairs.

scaling of our system for a varying number of threads. Fi-
nally, we give complete analyses for some example scenes,
where we also compare the performance of PCISPH and
SESPH. In the following, PCISPH and SEPSH times are for
reading neighbors from memory. Time required for neighbor
search is listed separately.

Our test system has the following specifications:

• CPU: 4x 64-Bit Intel Six Core 7460@2.66GHz, 16 MB
shared L3 cache, 64MB Snoop Filter that manages cached
data to reduce data traffic

• Memory: 128GB RAM, Bus Speed 1066MHz

6.1. Performance analysis

We use one example scene for analyzing the performance of
the presented spatial acceleration methods. For this scene,
we have chosen a corner breaking dam with 130K particles
(CBD 130K) since it is a typical test scene in the field of
computational fluid dynamics. We averaged the performance
over 20K time steps (see Table 2).

Basic uniform grid. The construction of the basic uni-
form grid is not parallelized due to race conditions. The
query step loops over all particles in parallel and computes
the neighbors. Thereby, we do not have to traverse the whole,
sparsely filled grid. However, if particles are not reordered,
the memory transfer is high, which has a significant impact
on the performance.

Index sort. In comparison to the basic uniform grid, the
query of the index sort is much faster since the query pro-
cesses the particles in the order of their cell indices. Con-
sequently, the cache-hit rate is high, which improves the
performance significantly. However, the construction time is
comparatively large due to a slow sorting time. Our parallel
radix sort algorithm sorts the 130K key-value pairs (handles)
in 25ms which is slow compared to the much faster multi-
core sort implementation described in [CNL∗08]. Note that
for this method, particles are reordered according to their
cell index which is computed with (2).

Z-index sort. For Z-index sort, the handles are sorted
using insertion sort instead of radix sort. Due to the small
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method compact hashing PCISPH (SESPH) ups

no reorder 64.6 171.8 (38.4) 4.2 (9.6)
reorder 40.3 78.6 (17.6) 8.3 (16.7)

Table 3: Performance improvement when particles are re-

ordered every 100 step. ups denotes simulation updates

(neighbor search + fluid update) per lab second. Timings

are in milliseconds for CBD 130K.

changes from one time step to the next, only a small number
of particles move to another spatial cell. Thus, the handles
are only slightly disordered from one time step to the next.
Since insertion sort performs very well on almost sorted lists,
the sorting time is significantly reduced to 6ms. Furthermore,
in contrast to index sort, the cell indices are computed on
a Z-curve and the particles are reordered accordingly. By
mapping spatial locality onto memory, the cache-hit rate is
increased and, hence, the construction and query time for Z-
index sort is further reduced.

Spatial hashing. We have implemented the spatial hash-
ing method described in [THM∗03]. This method performs
the worst due to hash collisions and a high memory transfer
invoked by the hash function. Note that even when reorder-
ing the particles according to a Z-curve, the improvement is
marginal since we traverse the whole hash table and spatially
close cells are not close in memory. However, if we loop over
the particles and not the whole grid, spatial compactness can
be exploited. In this case, the query time reduces to 50ms

when particles are reordered (this number is not given in Ta-
ble 2).

Compact hashing. The proposed compact hashing ex-
ploits temporal coherence in the construction step. Thereby,
the insertion of particles into the grid is five times faster than
for spatial hashing. Furthermore, the query is nearly three
times faster due to the reduced memory transfer invoked by
the compact list of used-cells and the hash collision flag.

Reordering. Note that we reorder the particles every
100th step according to a Z-curve in all methods except in-
dex sort. By reordering the particles according to a Z-curve,
spatially close particles reside close in memory. Thus, parti-
cles that are close in memory are very likely spatial neigh-
bors. Since in SPH, most computations are interpolations re-
quiring informations of neighbors, the Z-curve increases the
cache-hit rate for the neighborhood query and for the fluid
update. Reordering significantly reduces the memory trans-
fer and thereby improves the performance (see Table 3).

We summarize that compact hashing is as efficient as Z-
index sort. Both methods outperform spatial hashing and
the basic uniform grid. For compact hashing, the memory
consumption scales with the number of particles, while for
Z-index sort it scales with the domain. Therefore, for very
large or unrestricted domains, compact hashing should be

cell size pairs tested pairs ratio query

h 3.6M 25M 6.9 26.6
0.5h 3.6M 15.5M 4.3 39.6

Table 4: Influence of the cell size on the ratio of tested pairs

to influencing pairs and the query time in millisecond. Test

scene CBD 130K.

CPUs compact hashing Z-index sort PCISPH SESPH

1 404.1 391.3 791.1 189.5
24 40.3 43.1 78.6 17.6

Table 5: Parallel scaling of neighbor search and simulation

update. For 24 CPUs a speed up of 10 is achieved. Timings

are in milliseconds for CBD 130K.

preferred. On the other hand, if influencing pairs can not be
stored, Z-index sort should be used since the query time is
lower.

6.2. Cell size

The size of the spatial cells influences the number of po-
tential pairs that have to be tested for interaction. Generally,
smaller cell sizes approximate the shape of the influence ra-
dius h better which is a sphere in 3D. If the cell size d is
chosen as h, only 27 cells need to be tested for interaction.
If d < h, the number of potential cells grows, but less parti-
cles have to be tested for interaction. However, if more cells
are queried, the memory transfer increases. We observed that
the increased memory transfer is more expensive than test-
ing more potential neighbors for interaction (see Table 4).
Thus, the optimal cell size is the influence radius.

6.3. Parallel scaling

Optimally, the speed up from parallelization would be lin-
ear. However, the optimal scaling can not be expected due to
the parallelization overhead for synchronization and com-
munication between different threads. According to Am-
dahl’s law [Amd67], even a small portion of the problem
which cannot be parallelized will limit the possible speed
up. For example, if the sequential portion is 10%, the maxi-
mum speed up is 10.

Rewriting algorithms, in order to circumvent data depen-
dencies is fundamental to increase the possible speed up.
Furthermore, the performance of an algorithm is either mem-
ory or CPU bound. While for CPU-bound algorithms the
performance is easily increased by using an additional or
faster CPU, the bottleneck for memory-bound problems is
the bandwidth. Therefore, only strategies that are reducing
the memory transfer are improving the efficiency.

The presented strategies and techniques employed in Z-
index sort and the compact hashing as well as the reordering
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scene # particles compact hashing [ms] PCISPH (SESPH) [ms] ∆t[s] ups
Glass 75K (20K) 30.8 29.8 (7.3) 0.0025 (0.0001) 16.5 (26.2)

CBD 130K 130K 40.3 78.6 (17.6) 0.0006 (1.8e-5) 8.3 (16.7)
CBD large 1.7M 427.8 1130.0 (271.6) 0.0002 (5.7e-6) 0.6 (1.4)

River 12M (5M) 5193.6 11941.8 0.0005 0.06

Table 6: Average performance in milliseconds for different scenes. Compact hashing is used in all scenes. For the glass and

river scene, we use boundary particles (numbers are given in brackets). Fluid update times, time step and simulation updates

per lab second (ups) are for PCISPH and in brackets for SESPH (similar simulation result).

Figure 5: Total speed up of our system for fluid update and

neighbor search using compact hashing. The scaling is in

good agreement with Amdahl’s law. For comparison, the

scaling of spatial hashing is given.

of particles lower the memory transfer and, thus, improve
the performance of the system significantly. The scaling and
even the flattening of the proposed system is in very good
agreement with Amdahl’s law for a problem that is paral-
lelized to 95% (see Fig. 5 and Table 5). In contrast, the scal-
ing of spatial hashing is much worse.

6.4. Scaling with particles

Finally, we show that our system scales linearly with the
number of particles (see Table 6). We therefore set up dif-
ferent small-scale and large-scale simulations. In the glass

scene, a glass is filled with 75K particles (see Fig. 7). For this
scene, a plausible simulation result is achieved by PCISPH
for a time step of 0.0025. Thus, ten real world seconds were
simulated in four minutes. With SESPH we computed a sim-
ilar result with a 25 times smaller time step in 63 minutes
using (5).

Due to the large memory capacity of CPU architectures,
our system shows good performance for large-scale simula-
tions with millions of particles. For those setups, querying
the particles multiple times has a significant impact on the
performance. On average, for the CBD large scene, 341 mil-
lion pairs are queried for interaction per simulation step and
2.3 billion pairs for the river scene (see Fig. 6 and Fig. 8).

Our system updates an SESPH simulation of 130K par-

ticle with 17 ups. This performance is similar to the fastest
GPU implementation [GSSP10]. However, we present sim-
ulations with up to 12 million particles using the more effi-
cient PCISPH method, while [GSSP10] shows simulations
with up to 250K particles using SESPH.

7. Conclusion

We presented a parallel CPU-based framework for SPH fluid
simulations. Important aspects which are critical for the
performance of such a system are discussed. For accelera-
tion structures based on uniform grids, the construction and
query times are reduced by lowering the memory transfer.
This is achieved by mapping spatial locality onto memory,
using compact data structures and exploiting temporal co-
herence. Furthermore, we showed how the spatial hashing
can be optimized for a parallel SPH framework. We thor-
oughly analyzed the performance aspects of the five pre-
sented uniform grid methods and give detailed scaling anal-
yses. Additionally, we investigated the performance of dif-
ferent SPH algorithm, i. e. PCISPH and SESPH.

Figure 6: CBD large scene. A corner breaking dam with 1.7

million particles simulated with PCISPH.
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Figure 7: Glass scene. The ’wine’ is sampled with up to 75K particles, while the glass is sampled with 20K boundary particles.

Interaction is computed with [BTT09].

Figure 8: River scene. The fluid consists of 12.1 million par-

ticles and the terrain is sampled with more than 5 million

particles. The particles are coded according to acceleration,

where white is high and blue is low.
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