
Eurographics Symposium on Rendering 2008
Steve Marschner and Michael Wimmer
(Guest Editors)

Volume 27 (2008), Number 4

Compact, Fast and Robust Grids for Ray Tracing

Ares Lagae & Philip Dutré†

Department of Computer Science
Katholieke Universiteit Leuven

Abstract

The focus of research in acceleration structures for ray tracing recently shifted from render time to time to image,

the sum of build time and render time, and also the memory footprint of acceleration structures now receives more

attention. In this paper we revisit the grid acceleration structure in this setting. We present two efficient methods

for representing and building a grid. The compact grid method consists of a static data structure for representing

a grid with minimal memory requirements, more specifically exactly one index per grid cell and exactly one index

per object reference, and an algorithm for building that data structure in linear time. The hashed grid method

reduces memory requirements even further, by using perfect hashing based on row displacement compression. We

show that these methods are more efficient in both time and space than traditional methods based on linked lists

and dynamic arrays. We also present a more robust grid traversal algorithm. We show that, for applications where

time to image or memory usage is important, such as interactive ray tracing and rendering large models, the grid

acceleration structure is an attractive alternative.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: [ray tracing] [acceleration structure] [grid] [row displacement compression] [perfect hashing]

1 Introduction

Ray tracing is becoming more and more the method of
choice for both offline global illumination simulations as
well as interactive visualizations. Because intersecting a ray
with all objects in a scene is usually very expensive, almost
all ray tracers rely on acceleration structures, trading prepro-
cessing time and memory for faster ray-object intersections.

The uniform grid was one of the first proposed acceler-
ation structures [FTI86]. Over time, several other acceler-
ation structures, such as bounding volume hierarchies and
kd-trees, have been introduced [Gla89]. For static scenes,
kd-trees are by many considered the best acceleration struc-
ture [WMG∗07]. Uniform grids usually perform worse than
kd-trees, mainly because they are not adaptive. For dynamic
scenes however, there is no consensus [WMG∗07]. The ac-
celeration structure has to be rebuilt every frame, and rather
than minimizing render time, the time to image, the sum of
build time and render time, has to be minimized. Building
a grid can be done in linear time, while other popular ac-
celeration structures require super-linear time. For dynamic

† e-mail: {ares.lagae,philip.dutre}@cs.kuleuven.be

scenes, a shorter build time can compensate for a longer ren-
der time. Therefore, a grid can result in a shorter time to
image than other acceleration structures that are usually con-
sidered superior.

Algorithms are typically CPU-bound or memory-bound.
The execution time of an algorithm that is CPU-bound
mainly depends on the speed of the CPU, while the exe-
cution time of an algorithm that is memory-bound mainly
depends on the access speed of the memory. Memory-bound
algorithms can be made significantly faster just by reduc-
ing the memory footprint of the data they work on. Build-
ing a grid is memory-bound, while rendering is CPU-bound.
Therefore, reducing the memory footprint of a grid can result
in shorter build times.

Uniform grids were used in one of the first systems for
interactive ray tracing [PMS∗99], and are still popular to-
day [GIK∗07]. Recent work on grids for ray tracing con-
centrated on fast traversal [WIK∗06], parallelizing the build
process [IRWP06], and choosing the grid size [ISP07]. In
this paper, we present two efficient methods for represent-
ing and building a grid. The compact grid method consists
of a static data structure for representing a grid with mini-
mal memory requirements, more specifically exactly one in-

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

ti
m

e
 (

s
)

grid density

Build time, render time and time to image versus grid density

build time
render time

time to image

Figure 1: Grid density. Build time (red), render time (green) and
time to image (blue) versus grid density for the Happy Buddha

scene. A grid density of 4 minimizes the time to image.

dex per grid cell and exactly one index per object reference,
and an algorithm for building that data structure in linear
time. The hashed grid method consists of a static data struc-
ture for representing a grid that reduces memory require-
ments even further, by using perfect hashing based on row
displacement compression, and a fast algorithm for building
that data structure. We believe that these data structures and
algorithms are the most space and time efficient methods for
representing and building a grid for ray tracing.

2 The Grid Acceleration Structure

The grid acceleration structure was introduced by Fujimoto
et al. [FTI86]. A grid uniformly partitions space into cubi-
cally shaped cells. Each cell contains references to the ob-
jects that overlap the cell. Rather than intersecting a ray with
all objects in the scene, only the objects in the cells pierced
by the ray have to be intersected, greatly reducing the num-
ber of intersection tests. In this section we motivate the de-
sign decisions we made for our grid acceleration structure.

Number of Cells The number of cells M should be linear
in the number of objects N [Dev88, JW89], or

M = ρN, (1)

where ρ is called the grid density. The number of cells M
is equal to the product of the resolution of the grid in each
dimension and cubically shaped cells work best. The reso-
lution of the grid Mx ×My ×Mz is therefore determined as

Mi = Si
3

√

ρN

V
(i ∈ {x,y, z}), (2)

where Si is the size of the bounding box of the grid in di-
mension i and V is the volume of the bounding box.
According to Purcell a grid density of 5 to 10 works best
[Hai01], Shirley reports grid densities of 2 to 10 [Shi02],
Wald et al. use a grid density of 5 [WIK∗06], and Ize et
al. empirically determined 8 to be the optimal grid den-
sity [ISP07].
In contrast to previous work, we use the time to image rather

than the render time to determine the optimal grid density.
We use a grid density of 4, as suggested by figure 1. Fortu-
nately, the performance of the grid is not too sensitive to the
choice of the parameter.

Inserting Objects To insert an object into a grid, all cells
that the object overlaps have to be determined. This can be
done using the bounding box of the object, or with more ac-
curate object cell overlap tests. Using the bounding box re-
sults in shorter build times and longer render times, because
the object is also added to cells that overlap the bounding
box but not the object. More accurate object cell overlap tests
results in longer build times and shorter render times. Since
Ize et al. [IRWP06] and Wald et al. [WIK∗06] reported that
using more accurate object cell overlap tests does not pay
off, we insert objects based on their bounding box. How-
ever, our construction method does not preclude the use of
more accurate object cell overlap tests.

Mailboxing Mailboxing is a technique for avoid-
ing repeated intersection test with the same object.
Havran [Hav02] reported that mailboxing does not necessar-
ily pay off, especially for objects that are cheap to intersect.
Therefore we do not use mailboxing.

3 The Compact Grid Method

In this section we present the compact grid method. This
method consists of a data structure for representing a grid
with minimal memory requirements, more specifically ex-
actly one index per grid cell and exactly one index per object
reference, and an algorithm for building that data structure in
linear time.

3.1 Data Structure

In this subsection, we review the memory requirements of
grid representations based on linked lists and dynamic ar-
rays, and we present our compact grid representation.

Linked Lists The most straightforward implementation of
a grid uses linked lists [CLRS01]. Figure 2(a) shows a grid
and figure 2(b) shows the representation of the grid using
linked lists. Figure 2(a) also shows the linearization of the
three-dimensional array of cells.
The memory requirements of a grid representation based on
linked lists are one machine word per cell (a pointer to a list
node) and two or three machine words per object reference
(an object index and one or two pointers to list nodes), de-
pending on whether singly linked lists or doubly linked lists
are used.

Dynamic Arrays Dynamic arrays or vectors [CLRS01] are
often used as an alternative for lists. Dynamic arrays main-
tain a static array and keep track of its capacity and size.
When the size is about to exceed the capacity, a new ar-
ray with a larger capacity is allocated and the old array is
copied and freed. Dynamic arrays typically support faster it-
eration due to their improved locality of reference [Pha02].

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

(a) (b) (c) (d)
Figure 2: Data structures for representing a grid. (a) A grid with three triangles and the linearized version of the grid. (b) A traditional grid
data structure using linked lists. (c) A traditional grid data structure using dynamic arrays. (c) The compact grid data structure presented in this
paper.

Figure 2(a) shows a grid and figure 2(c) shows the represen-
tation of the grid using dynamic arrays.
The memory requirements of a grid representation based on
dynamic arrays are three machine words per cell (a pointer
to the array, the size of the array and the capacity of the ar-
ray) and anywhere between 1 to 2 machine words per object
reference, depending on the number of unused entries in the
dynamic array.

Compact Grid Grid representations based on linked lists
and dynamic arrays are dynamic data structures. They sup-
port insertion of objects and can even support removal of
objects. The memory overhead of these data structures is ex-
actly because of this. However, in a setting where the grid
is rebuilt from scratch every frame, dynamic data structures
are not needed.
The compact grid data structure for representing a grid con-
sists of two static arrays. This is illustrated in figure 2(c). The
array L consist of the concatenation of all object lists. The
array C stores for each cell the offset of the corresponding
object list in L. This data structure is static, objects cannot
be inserted nor removed.
The array L is a 1D array. The array C is a 3D array of size
Mx ×My ×Mz, linearized in row major order into a 1D array
of size M. The array C supports both 3D indexing C[z][y][x]
and 1D indexing C[i]

C[z][y][x] = C[(((Myz)+ y)Mx)+ x]. (3)

The size of the object list of the cell with 1D index i is given
by C[i+1]−C[i]. Note that this expression is invalid for the
last object list, since C[N] does not exist. In order to avoid
an explicit check for this special case, we extend the array C

with one position.
Intersecting all objects in a given cell can be done as follows.

/* intersect all objects in cell (x,y,z) */

i = (((M_y * z) + y) * M_x) + x

for (j = C[i]; j < C[i + 1]; ++j) {

/* intersect object L[j] */

}

The memory requirements of the compact grid data struc-
ture for representing a grid are exactly one machine word
per per cell and exactly one machine word per object refer-
ence. If the grid resolution is chosen according to equation 2,
this data structure has a space complexity that is linear in the
number of objects.

The array L uses 32-bit unsigned integers to index the ob-
jects. This is sufficient for indexing over 4 billion objects.
The array C uses 32-bit unsigned integers to index the object
lists. Note that storing 32-bit unsigned integer indices rather
than pointers results in additional memory savings on 64-bit
platforms.

3.2 Algorithm

In this subsection, we present the algorithm for building the
compact grid representation.

The algorithm works as follows. First, the bounding box
of the objects is computed and the grid resolution is deter-
mined using equation 2.
Next, the size of all object lists is computed and stored in the
cell array, i.e. C[i] records the size of the object list of the
cell with 1D index i. The size of the object lists is needed
to compute the offsets of the object lists, and the joint size
of the object lists is needed to allocate the object lists array
L. The cell array C is allocated and each entry is initialized
to zero. The size of all object lists is computed by iterating
over all objects and incrementing the object list size of all
cells overlapped by an object.
The offsets of the object lists can now be computed by ac-
cumulating the size of the object lists. However, inserting
the object indices into the object lists is not possible with-
out keeping track of how many objects indices are already
inserted during iteration over the objects. Rather than com-
puting for each cell the offset to its object list, the offset to
the next object list is computed, i.e. C[i] records the offset of
the object list of the cell with 1D index i+1. In other words,
C[i] points to one past the end of the object list of the cell
with 1D index i. This can be accomplished as follows.

for (i = 1; i <= M; ++i) {

C[i] += C[i-1];

}

The joint size of the object lists is now given by C[N −1].
Finally, the object indices are inserted into the object lists.
The object list array L is allocated and the object indices are
inserted by reversely iterating over all objects, and for each
cell overlapped by an object decrementing the offset of the
cell and storing the object index at that offset. This can be
done as follows.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

for (i = N - 1; i >= 0; --i) {

/* for each cell j overlapped by object i */

L[--C[j]] = i;

}

The object lists are thus filled backwards. After this oper-
ation the cell array will contain the correct offsets, since each
offset was decremented the appropriate number of times.
Note that the indices in each object list are sorted.
This algorithm has a time complexity that is linear in the
number of objects and does not require additional memory.

To our knowledge, the compact grid method has never
been described in literature. However, some similar meth-
ods are used by researchers in the field.
We believe the idea of doing two passes over the triangles
can be traced back to a short article of Eric Haines in Ray

Tracing News [Hai99]. However, the method of Haines uses
NULL pointers to keep track of available locations in the
object lists, making insertion a linear (at best logarithmic)
rather than constant time operation. The method of Haines
also uses a NULL pointer to indicate the end of an object list,
resulting in a larger memory footprint.
Personal communication with the authors of [WIK∗06] and
[ISP07] revealed another similar method, which can proba-
bly be traced back to Steven Parker. However, during inser-
tion the method of Parker uses another array to keep track of
the next free location of each object list. This almost doubles
the memory footprint.
From an algorithmic point of view, the compact grid method
is very similar to counting sort, a method for sorting in linear
time [CLRS01].

4 The Hashed Grid Method

In this section we present the hashed grid method. This
method consists of a data structure for representing a grid
that reduces memory requirements even further, by using
hashing to avoid the storage of the empty cells in the grid,
and an algorithm for building that data structure.

The memory footprint of the cell offsets is significantly
larger than the memory footprint of the object lists. Further-
more, the majority of the cells is empty, while the object
lists do not contain much redundant information. Experi-
ments with eliminating duplicate lists were not promising.
The array with the cell offsets is therefore the best candidate
for further reduction in size.
The array with the cell offsets is essentially a sparse array,
and the typical solution to avoid the storage of the complete
array is to use hashing [CLRS01]. To our knowledge, hash-
ing has never been investigated in detail in the context of
grids for ray tracing. Traditional hash tables are dynamic
data structures, that support insertion and removal of ele-
ments, and handle collisions of the hash function. As in the
previous section, we will replace the dynamic data structure
by a static one. If the data is static, a hash function that does
not result in collisions can be computed. This is called a per-
fect hash function. For more information about hashing, per-
fect hashing and perfect spatial hashing, we refer to Cormen

Figure 3: Row displacement compression. The square matrix C is
compressed into a hash table H by displacing the rows, and storing
the offset of each row in the offset table O.

et al. [CLRS01], Czech et al. [CHM97] and Lefebvre and
Hoppe [LH06].

4.1 Perfect Hashing using Row Displacement

Compression

Our method for computing a perfect hash function is based
on the row displacement compression algorithm, introduced
in 1977 by Aho and Ullman [AU77] as a compaction scheme
for transition diagrams of deterministic finite automata. We
will explain the method in 2D using sparse matrix compres-
sion.

Given a sparse matrix C, the goal is to compute a hash
function h and a hash table H such that each non-zero ele-
ment C(i, j) is hashed to the position h(i, j) in the hash ta-
ble H. The hash function h should be perfect and close to
minimal, i.e. the hash table H should contain as few unused
entries as possible.
The algorithm works as follows. The first row of the matrix
C is copied to the hash table H at offset 0. Each subsequent
row of the matrix C is then copied to the hash table H at
the smallest offset, such that non-zero elements do not over-
lap. Each offset is determined starting from the offset of the
previous row. For each row i, this offset is recorded in a 1D
offset table O at position i. The algorithm is illustrated in fig-
ure 3.
Each non-zero element C(i, j) corresponds to H[O[i]+ j], i.e.
the hash function h is given by h(i, j) = O[i]+ j.

Encoding which elements are non-zero can be done using
domain bits or using position tags. When using domain bits,
a matrix D with the same dimensions as the matrix C records
which positions in C are non-zero, using a single bit per ele-
ment. When using position tags, each entry in the hash table
H also stores a tag that identifies the position in the matrix C

of the element, i.e. if H[h(i, j)] does not contain the tag asso-
ciated with position (i, j) then C(i, j) was zero. Note that the
hash function h only prevents collisions between non-zero
elements. In figure 3 the linearized index is used as position
tag.

The worst case time complexity of this algorithm is
O(M3/2), where M is the number of elements in the matrix
C. The perfect hash function is simple and can be evaluated
efficiently. The elements in the hash table can be accessed in
constant time.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

4.2 Data Structure and Algorithm

In this subsection, we present the data structure and algo-
rithm for the hashed grid method.

The data structure consists of four static arrays. The ar-
ray L consist of the concatenation of all object lists, as in
the compact grid method. The array C of the compact grid
method, which stores for each cell the offset of the corre-
sponding object list in L, is replaced by a hash table. This
hash table is computed with the 3D equivalent of the algo-
rithm presented in the previous subsection. The 3D version
of the algorithm processes rows of the array C. Remember
that the array C is a 3D array of size Mx × My × Mz, lin-
earized in row major order into a 1D array of size M. The
array C therefore consists of MyMz rows of size Mx. The off-
set table O is a 2D array of size My ×Mz, linearized into a
1D array of size MyMz. The hash table H is a 1D array, and
the domain bits D is an array similar to C but using only one
bit per entry.

The algorithm works as follows. First, the bounding box
of the objects is computed, and the grid resolution is deter-
mined using equation 2.
Next, the domain bits are computed. The array D is allocated
and each bit is initialized to zero. The domain bits are com-
puted by iterating over all objects, and setting the bit corre-
sponding to each cell overlapped by an object to one. The
number of non-empty cells is also computed.
Then, the hash function and the size of the hash table are
computed. The array O is allocated and filled in with the 3D
equivalent of the algorithm presented in the previous subsec-
tion. This is done using the domain bits and a temporary hash
table. For the temporary hash table we use a dynamic array
with an initial size equal to twice the number of non-empty
cells. A static array of size Mx would also suffice, because
only the last Mx entries of the hash table are relevant, but this
results in a slightly slower algorithm.
Finally, the offsets of the object lists are computed and the
object indices are inserted into the object lists. The hash ta-
ble H is allocated and each entry is initialized to zero. Then
the algorithm proceeds in exactly the same way as the com-
pact grid method, but using H[h(x,y,z)] rather than C[z][y][x],
where h(x,y,z) = O[(Myz)+ y] + x. The cells in H are in a
different order than in C, because the hash function is not or-
der preserving, but the size of the object list of the cell at lo-
cation (x,y,z) is still given by H[h(x,y,z)+1]−H[h(x,y,z)].

This algorithm has a time complexity that is linear in the
number of objects, except for the computation of the hash
function. The worst case time complexity of that part of the
algorithm is O(M4/3), where M is the number of cells in the
grid.

5 Robust Grid Traversal

Grid traversal methods usually reject and discard intersec-
tions outside of the cell being traversed. This is also the
case for the popular single ray grid traversal method of

(a) (b)
Figure 4: Numerical robustness errors. An intersection with a trian-
gle (a) on the bounding box of the grid and (b) on a plane implied
by the grid is missed due to numerical robustness errors.

Cleary and Wyvill [CW88] we use in this paper. However,
this can easily lead to numerical robustness errors.

Figure 4 shows two examples. In figure 4(a), the inter-
section of the triangle on the bounding box of the grid and
the ray, computed while visiting the gray cell, is rejected be-
cause it is outside of the gray cell due to numerical robust-
ness errors. In figure 4(b), the intersection of the triangle on
a plane implied by the grid and the ray, computed while vis-
iting the first gray cell is rejected, and is not detected while
visiting the second gray cell, because the triangle was not
added to that cell. These errors can be alleviated using ε-
tests during building and/or traversal of the grid. However,
choosing the correct ε is hard and scene-dependant. Instead
we use a small modification to existing grid traversal meth-
ods to solve this problem. Instead of rejecting and discarding
intersections outside of the cell being traversed, we keep the
ray parameter of the closest intersection during grid traver-
sal, even if outside of the cell being traversed, and terminate
ray traversal when the maximum ray parameter for the cell
being traversed is larger than the ray parameter of the closest
intersection. We call this method robust grid traversal.

Although robust grid traversal is used by some researchers
in the field [PH04], several important sources still discard
intersections [Shi00,Suf07]. This is why we stress on robust
ray traversal in this paper.

6 Results and Discussion

In this section we present a thourough evaluation of the per-
formance of the compact grid method and the hashed grid
method. We present results, we compare to traditional grid
representations and to other acceleration structures, we dis-
cuss parallelization and we present several applications.

6.1 Methodology

The methods presented in this paper were tested using
scanned models from The Stanford 3D Scanning Repository

and The Digital Michelangelo Project, and scenes from the
recent bwfirt benchmark [RGH∗07], including scenes from
Radiance. This set of scenes includes both scenes that work
well with grids (e.g. the scanned models), and scenes that
work less well with grids (e.g. the Nature and Radiance

scenes).
The methods presented in this paper were implemented in
high-level C++ using templates and STL. Low-level opti-
mizations such as SIMD were not used. The methods were

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

Ulm Box Classroom Office Bunny Soda Cabin Armadillo Atrium

scene statistics

#tri’s 492 9.25 K 34.00 K 69.45 K 141.64 K 219.44 K 345.94 K 559.99 K

memory 17.30 Kb 325.30 Kb 1.17 MB 2.38 MB 4.86 MB 7.53 MB 11.88 MB 19.23 MB

grid statistics

grid res 13x13x13 36x58x18 61x36x61 71x71x55 84x40x168 112x88x90 109x129x99 88x256x99

cells 2.20 K 37.58 K 133.96 K 277.25 K 564.48 K 887.04 K 1.39 M 2.23 M

% empty cells 56.94 % 75.11 % 85.35 % 92.32 % 87.69 % 47.70 % 96.53 % 89.44 %

avg # tri’s / n-emp cell 3.87 6.27 6.85 10.34 11.42 4.82 16.35 7.38

avg # cells / tri 7.44 6.34 3.95 3.17 5.60 10.19 2.28 3.11

render statistics

avg # n-emp cells / isect ray 3.68 4.08 4.12 2.15 4.08 24.17 2.33 4.34

avg # isect tests / isect ray 11.82 38.71 75.41 24.74 93.10 106.31 40.99 55.78

Dragon Conference Buddha Cruiser Asian Dragon Thai Statue Lucy Nature

scene statistics

#tri’s 871.41 K 987.52 K 1.09 M 3.64 M 7.22 M 10.00 M 28.06 M 41.35 M

memory 29.92 MB 33.90 MB 37.34 MB 124.84 MB 247.85 MB 343.32 MB 963.22 MB 1.39 GB

grid statistics

grid res 223x157x100 296x188x71 121x295x121 523x176x158 428x237x284 302x508x261 485x278x832 906x202x902

cells 3.50 M 3.95 M 4.32 M 14.54 M 28.81 M 40.04 M 112.18 M 165.08 M

% empty cells 95.44 % 92.24 % 94.86 % 95.54 % 98.99 % 98.44 % 99.00 % 92.04 %

avg # tri’s / n-emp cell 13.96 9.43 13.02 11.67 40.79 29.25 41.50 28.52

avg # cells / tri 2.56 2.93 2.66 2.08 1.65 1.83 1.66 9.06

render statistics

avg # n-emp cells / isect ray 2.24 4.83 2.52 8.69 2.14 2.38 2.06 12.12

avg # isect tests / isect ray 33.78 28.14 37.27 116.69 96.93 73.91 99.28 302.23

Table 1: Scene statistics, grid statistics and render statistics for various scenes.

also implemented in the recent bwfirt benchmark [RGH∗07].
All timings were obtained on a computer with two four-core
3 GHz Intel Xeon X5365 CPU’s and 16 Gb of memory. Only
a single core was used, unless noted otherwise. All images
were rendered at a resolution of 1024×1024 with one ray
per pixel and diffuse shading, unless noted otherwise.

6.2 Compact Grid Method and Hashed Grid Method

Table 1 shows scene statistics, grid statistics and render
statistics for the test scenes. These statistics are the same
for both methods, since they produce the same grids. The
size of the scenes is computed using a representation of 36
bytes per triangle (three single precision floating point num-
bers for each coordinate). The grid resolution is determined
according to equation 2. The average number of triangles per
non-empty cell and the average number of cells per triangle
are both relatively low. The majority of the cells is empty,
and each triangle is only in a few cells. The average number
of non-empty cells and intersection tests per intersecting ray
are both relatively low, indicating relatively good ray tracing
performance, also for scenes that work less well with grids.

Table 2 shows statistics of the compact grid method and
hashed grid method. The most important figures are the build
time, the time to image and the memory.
The build time of the compact grid method is relatively short,
and is roughly linearly in the number of triangles. This re-

sults in a short time to image. The memory footprint of the
compact grid method is roughly about three quarter of the
memory footprint of the scene. The memory footprint is bro-
ken down into the memory needed for the cells and the mem-
ory needed for the object lists. The memory needed for the
cells is significantly larger than the memory needed for the
object lists.
The memory footprint of the hashed grid method is signif-
icantly smaller than the memory footprint of the compact
grid method. The memory footprint of the cells is replaced
by the sum of the memory footprints of the domain bits, the
offset table and the hash table. The memory footprint of the
object lists remains the same. The build time moderately in-
creases due to computation of the hash function. The render
time slightly decreases due to an improved locality of refer-
ence. The perfect hashing algorithm using row displacement
compression works surprisingly well. It achieves compres-
sion ratios of up to 20:1, and the load factor of the hash table
is within a factor two of the optimal solution.
Perfect spatial hashing was recently studied by Lefebvre and
Hoppe [LH06] in the context of the GPU. Their method pro-
duces hash tables with a higher load factor but the algorithm
is significantly more complex and slower. In the context of
grids for ray tracing, running time is more important because
even with moderate load factors, the memory requirements
for the grid are already well below the memory requirements

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

Ulm Box Classroom Office Bunny Soda Cabin Armadillo Atrium

compact grid statistics

mem cells 8.58 Kb 146.81 Kb 523.27 Kb 1.06 MB 2.15 MB 3.38 MB 5.31 MB 8.51 MB

mem tri lists 14.30 Kb 229.16 Kb 524.87 Kb 859.69 Kb 3.03 MB 8.53 MB 3.01 MB 6.64 MB

build time 0.00 s 0.00 s 0.00 s 0.01 s 0.02 s 0.04 s 0.05 s 0.08 s

render time 0.48 s 1.13 s 1.68 s 0.68 s 2.23 s 2.56 s 0.90 s 1.93 s

time to image 0.48 s 1.14 s 1.68 s 0.69 s 2.25 s 2.60 s 0.95 s 2.01 s

memory 22.88 Kb 375.97 Kb 1.02 MB 1.90 MB 5.18 MB 11.91 MB 8.32 MB 15.14 MB

hashed grid statistics

data density 43.06 % 24.89 % 14.65 % 7.68 % 12.31 % 52.30 % 3.47 % 10.56 %

hash table size 1.07 K 10.74 K 23.49 K 27.87 K 96.89 K 492.23 K 69.53 K 303.55 K

hash table load factor 88.58 % 87.10 % 83.52 % 76.38 % 71.73 % 94.24 % 69.41 % 77.61 %

mem domain bits 275.00 b 4.59 Kb 16.35 Kb 33.84 Kb 68.91 Kb 108.28 Kb 169.93 Kb 272.25 Kb

mem offset table 676.00 b 4.08 Kb 8.58 Kb 15.25 Kb 26.25 Kb 30.94 Kb 49.89 Kb 99.00 Kb

mem hash table 4.17 Kb 41.95 Kb 91.75 Kb 108.88 Kb 378.48 Kb 1.88 MB 271.59 Kb 1.16 MB

mem cells 5.10 Kb 50.61 Kb 116.68 Kb 157.97 Kb 473.64 Kb 2.01 MB 491.40 Kb 1.52 MB

compression ratio 168.26 % 290.08 % 448.44 % 685.58 % 465.55 % 168.04 % 1110 % 559.54 %

mem tri lists 14.30 Kb 229.16 Kb 524.87 Kb 859.69 Kb 3.03 MB 8.53 MB 3.01 MB 6.64 MB

build time 0.00 s 0.00 s 0.01 s 0.01 s 0.03 s 0.07 s 0.07 s 0.10 s

render time 0.48 s 1.12 s 1.69 s 0.67 s 2.26 s 2.57 s 0.89 s 1.86 s

time to image 0.48 s 1.12 s 1.70 s 0.69 s 2.29 s 2.64 s 0.96 s 1.97 s

memory 19.40 Kb 279.77 Kb 641.55 Kb 1017.66 Kb 3.49 MB 10.54 MB 3.49 MB 8.16 MB

Dragon Conference Buddha Cruiser Asian Dragon Thai Statue Lucy Nature

compact grid statistics

mem cells 13.36 MB 15.07 MB 16.48 MB 55.48 MB 109.89 MB 152.75 MB 427.93 MB 629.72 MB

mem tri lists 8.51 MB 11.03 MB 11.03 MB 28.84 MB 45.37 MB 69.78 MB 178.06 MB 1.40 GB

build time 0.11 s 0.12 s 0.14 s 0.39 s 0.80 s 1.17 s 3.15 s 9.12 s

render time 0.80 s 2.28 s 0.58 s 2.49 s 1.43 s 1.55 s 1.90 s 10.75 s

time to image 0.91 s 2.40 s 0.72 s 2.89 s 2.23 s 2.72 s 5.05 s 19.87 s

memory 21.86 MB 26.10 MB 27.50 MB 84.32 MB 155.27 MB 222.53 MB 605.98 MB 2.01 GB

hashed grid statistics

data density 4.56 % 7.76 % 5.14 % 4.46 % 1.01 % 1.56 % 1.00 % 7.96 %

hash table size 277.37 K 454.81 K 322.69 K 1.14 M 466.89 K 967.47 K 1.76 M 28.82 M

hash table load factor 57.57 % 67.41 % 68.78 % 56.71 % 62.45 % 64.64 % 63.76 % 45.57 %

mem domain bits 427.38 Kb 482.30 Kb 527.23 Kb 1.73 MB 3.43 MB 4.77 MB 13.37 MB 19.68 MB

mem offset table 61.33 Kb 52.14 Kb 139.43 Kb 108.62 Kb 262.92 Kb 517.92 Kb 903.50 Kb 711.73 Kb

mem hash table 1.06 MB 1.73 MB 1.23 MB 4.36 MB 1.78 MB 3.69 MB 6.73 MB 109.94 MB

mem cells 1.54 MB 2.26 MB 1.88 MB 6.20 MB 5.47 MB 8.97 MB 20.98 MB 130.31 MB

compression ratio 869.89 % 667.82 % 875.44 % 895.01 % 2010 % 1700 % 2040 % 483.24 %

mem tri lists 8.51 MB 11.03 MB 11.03 MB 28.84 MB 45.37 MB 69.78 MB 178.06 MB 1.40 GB

build time 0.19 s 0.19 s 0.22 s 0.72 s 1.22 s 1.76 s 4.77 s 21.23 s

render time 0.79 s 2.22 s 0.57 s 2.52 s 1.25 s 1.43 s 1.53 s 10.07 s

time to image 0.98 s 2.41 s 0.79 s 3.25 s 2.47 s 3.18 s 6.30 s 31.30 s

memory 10.04 MB 13.29 MB 12.91 MB 35.04 MB 50.84 MB 78.75 MB 199.04 MB 1.52 GB

Table 2: Compact grid statistics and hashed grid statistics for various scenes.

of the object lists. This means that more complex hashing
methods will most likely not pay off.

6.3 Comparison with Traditional Grid

Representations

Figure 5 shows a comparison of memory footprint and build
time between the compact grid method and the hashed grid
method and straightforward representations using linked
lists and dynamic arrays (vectors).
We used std::list and std::vector from the STL
to implement these traditional grid representations. Replac-
ing these STL components with custom list and dynamic
array implementations could improve the performance of

the traditional grid representations. However, a straightfor-
ward grid implementation is likely to use standard compo-
nents,and the added complexity of custom list and dynamic
array implementations is probably larger than that of the
methods presented in this paper.
The memory footprint of the compact grid method is about a
factor 4 smaller than the memory footprint of the representa-
tions using linked lists and dynamic arrays. This verifies the
theoretical analysis of section 3.1. The memory footprint of
the hashed grid method is even smaller.
The build time of the compact grid method is about a fac-
tor 3 smaller than the build time of the representations using
linked lists and dynamic arrays. Although the compact grid

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

 0

 200

 400

 600

 800

 1000

 1200

cabin armadillo atrium dragon con-
ference

buddha cruiser asian
dragon

thai
statue

m
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Memory usage for different methods and scenes

list grid
vector grid

compact grid
hashed grid

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

cabin armadillo atrium dragon con-
ference

buddha cruiser asian
dragon

thai
statue

b
u

ild
 t

im
e

 (
s
)

Build time for different methods and scenes

list grid
vector grid

compact grid
hashed grid

(b)
Figure 5: Comparison with traditional grid methods. The (a) memory consumption and (b) build times for the different grid representations.
The compact grid uses less memory and builds faster than grids based on lists and vectors. The hashed grid uses even less memory and still
builds faster than grids based on lists and vectors.

method requires an extra pass over the triangles, the method
is faster because it uses less memory, has a better locality of
reference, and does not need to maintain dynamic data struc-
tures. This nicely illustrates that memory-bound algorithms
can be made significantly faster just by reducing the mem-
ory footprint of the data they are working on. The build time
of the hashed grid method is longer than the build time of
the compact grid, but shorter than the build time of the tra-
ditional methods.
The render time of the compact grid method and the repre-
sentations using linked lists and dynamic arrays are about
the same. The render time is the largest for the implementa-
tion using linked lists and the smallest for the compact grid
method. This is due to locality of reference.
The render time of the compact grid method and hashed grid
method can most likely be further decreased by using packet
grid traversal or coherent grid traversal [WIK∗06]. However,
these optimizations are mostly orthogonal to the ones pre-
sented in this work, since the time to build the grid is the
major improvement over traditional grid representations.

6.4 Comparison with other Acceleration Structures

The timings included in recent work [WH06,WK06,SSK07]
at least indicate that the methods presented in this paper are
competitive with state of the art methods. For example, Wald
et al. [WIK∗06] reported a build time, render time and time
to image of respectively 1.65 s, 0.55 s and 2.20 s for the Thai

Statue scene, using a packet size of 4 and a computer with
a dual 3.2 GHz Intel Xeon CPU. However, a direct com-
parison is difficult without integrating these methods into a
single framework. In order to give a rough idea of how our
method compare to other acceleration structures we have in-
tegrated the methods presented in this paper into the recent
bwfirt benchmark [RGH∗07].
The bwfirt benchmark is an extensible framework that com-
pares the performance of ray tracing kernels using a ren-
derer based on path tracing in terms of build time, render

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

s
p

e
e

d
u

p

number of threads

Speedup in build time, render time and time to image versus number of threads

speedup in build time
speedup in render time

speedup in time to image

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

s
p

e
e

d
u

p

number of threads

Speedup in build time, render time and time to image versus number of threads

speedup in build time
speedup in render time

speedup in time to image

(b)
Figure 6: Parallel building and renderering. Speedup in build time
(red), render time (green) and time to image (blue) versus number
of threads for (a) the Asian Dragon scene and (b) the Nature.

time and memory usage. The bwfirt includes ray tracing ker-
nels based on kd-trees and bounding volume hierarchies, de-
scribed as decent performance but not state of the art. We
have integrated the compact grid method into bwfirt, and we
have added a simple renderer to bwfirt in order to support
scenes without light sources. The reports generated by bw-

firt show that the compact grid method is competitive with
the ray tracing kernels of bwfirt.
The memory usage of the compact grid method is in almost
all cases less than that of the kd-tree (up to a factor of 10)
and the bounding volume hierarchy (up to a factor of 2). The
build time of the compact grid method is only a fraction of
the build time of the kd-tree and the bounding volume hier-
archy. The render time of the compact grid method is in most
cases between the render time of the kd-tree and the bound-
ing volume hierarchy (with differences up to a factor of 2).
The time to image of the compact grid method is usually less
than the time to image of the kd-tree and the bounding vol-
ume hierarchy (up to a factor of 10).
The integration into bwfirt also shows that the compact grid
method is very simple to implement. The implementation of
the algorithm for building the grid is only about 130 lines of
code. This can be an important advantage over other accel-
eration structures.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

Figure 7: Interactive ray tracing. Three frames of an animation of the
Jessi model walking. The animated Jessi model consists of 260.72 K
dynamic triangles. The animation is rendered at a resolution of
512×512 at 8.38 FPS.

6.5 Parallelization

Modern hardware architectures are becoming increasingly
multi-core. Therefore, we have implemented a parallel ver-
sion of the compact grid method.
We have combined our compact grid representation with
the scalable sort-middle grid build method of Ize et
al. [IRWP06]. Figure 6 shows the speedup in build time, ren-
der time and time to image versus the number of threads for
the Asian Dragon and Nature scene. Rendering time scales
almost perfectly with the number of threads. However, build
time does not scale as well, with a speedup of only 3 and 5
for 8 threads. This indicates that the build algorithm is in-
deed memory-bound. The build method of Ize et al. is de-
signed for a NUMA architecture, in which each node has
its own memory controller. This is essential for speeding
up memory-bound algorithms. In contrast to the dual-core
AMD Opteron CPU’s used by Ize et al., the quad-core Intel
Xeon X5365 CPU’s in our benchmark computer do not have
an integrated memory controller. Therefore, building does
not scale very well on this architecture.
The hashed grid representation can be combined with the
scalable sort-middle grid build method of Ize et al. by paral-
lelizing the computation of the domain bits, and then paral-
lelizing the computation of the hash function by distributing
the rows of the grid over the threads.
Although multi-threaded grid building is a viable option, the
build times are small compared to those of other acceleration
structures. Therefore, single-threaded building and multi-
threaded rendering probably offers most bang for buck.

6.6 Applications

The methods presented in this paper are well suited for in-
teractive ray tracing of dynamic scenes, and might be a vi-
able alternative for recent methods for interactive ray trac-
ing of dynamic scenes such as the dynamic bounding vol-
ume hierarchy methods by Günther et al. [GPSS07] and
Wald [Wal07]. Although the time to image given in table 2
can simply be extrapolated to frames per second, we have
also tested our methods using an animation. Figure 7 and the
accompanying video show an animation of the Jessi model
walking. The character was modeled and animated using
Poser 7. The animated Jessi model consists of 260.72K dy-
namic triangles. The quarter million triangles animated Jessi

model is rendered at a resolution of 512×512, at 8.38 FPS

David St. Matthew

scene statistics

#tri’s 56.23 M 372.77 M

memory 1.89 GB 12.50 GB

compact grid statistics

build time 5.81 s N/A

render time 1.74 s N/A

time to image 7.55 s N/A

memory 1.17 GB N/A

hashed grid statistics

build time 8.92 s 57.82 s

render time 1.29 s 2.934 s

time to image 10.21 s 60.75 s

memory 379.94 MB 2.36 GB

Table 3: Ray tracing large scenes. Scene statistics, compact grid
statistics and hashed grid statistics for the David and St. Matthew
model. (Compact grid statistics for the St. Matthew model are miss-
ing due to memory exhaustion.)

using 6.96 Mb of memory with the compact grid method,
and at 7.34 FPS using 3.88 Mb of memory with the hashed
grid method.

The methods presented in this paper are also well suited
for ray tracing very large models, due to their low memory
consumption and fast build algorithms. Table 3 shows results
for the compact grid method and the hashed grid method for
the David and St. Matthew models, rendered at a resolution
of 1024×1024. The 56.23 million triangles David model can
be visualized in less than eight seconds. The time to image
for the 372.77 million triangles St. Matthew model, one of
the largest models available, is only about 60 seconds.

7 Conclusion

We have presented two methods for representing and build-
ing grids for ray tracing. The compact grid method uses
less memory and builds grids faster than traditional repre-
sentations based on lists and dynamic arrays. The hashed
grid method uses even less memory and still builds grids
faster than traditional representations. We have shown that
the compact grid method and the hashed grid methods have
several important advantages over alternative acceleration
structures, such as a short build time, a short time to image,
robust ray traversal, and easy implementation.
In future work, we would like to extend these methods to
hierarchical grids, and we would like to apply the idea of re-
placing dynamic data structures with static data structures to
other acceleration structures.

Acknowledgments

Ares Lagae is a Postdoctoral Fellow of the Research Foundation

- Flanders (FWO). We are grateful to the anonymous reviewers

for their valuable comments. We acknowledge The Stanford 3D

Scanning Repository, The Digital Michelangelo Project, the bwfirt

benchmark, Matthias Rolf, Bernhard Finkbeiner and Greg Ward for

the scenes.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Compact, Fast and Robust Grids for Ray Tracing

References

[AU77] AHO A. V., ULLMAN J. D.: Principles of Com-

piler Design. Addison-Wesley Longman Publishing Co.,
Inc., 1977.

[CHM97] CZECH Z. J., HAVAS G., MAJEWSKI B. S.:
Perfect hashing. Theoretical Computer Science 182, 1-2
(1997), 1–143.

[CLRS01] CORMEN T. H., LEISERSON C. E., RIVEST

R. L., STEIN C.: Introduction to algorithms.

[CW88] CLEARY J. G., WYVILL G.: Analysis of an algo-
rithm for fast ray tracing using uniform space subdivision.
The Visual Computer 6, 2 (1988), 65–83.

[Dev88] DEVILLERS O.: Methodes d’optimisation du

tracé de rayons. PhD thesis, Université de Paris-sud,
1988.

[FTI86] FUJIMOTO A., TANAKA T., IWATA K.: Arts: Ac-
celerated ray-tracing system. IEEE Computer Graphics

and Applications 6, 4 (April 1986), 16–26.

[GIK∗07] GRIBBLE C. P., IZE T., KENSLER A., WALD

I., PARKER S. G.: A coherent grid traversal approach to
visualizing particle-based simulation data. IEEE Trans-

actions on Visualization and Computer Graphics 13, 4
(2007).

[Gla89] GLASSNER A. S. (Ed.): An introduction to ray

tracing. Academic Press Ltd., 1989.

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P.,
SLUSALLEK P.: Realtime ray tracing on GPU with BVH-
based packet traversal. In Proceedings of the 2007 Eu-

rographics/IEEE Symposium on Interactive Ray Tracing

(2007), pp. 113–118.

[Hai99] HAINES E.: Quicker grid generation via memory
allocation. Ray Tracing News 12, 1 (1999).

[Hai01] HAINES E.: Siggraph 2001 ray tracing roundtable
report. Ray Tracing News 14, 1 (2001).

[Hav02] HAVRAN V.: Mailboxing, yea or nay? Ray Trac-

ing News 15, 1 (2002).

[IRWP06] IZE T., ROBERTSON C., WALD I., PARKER

S. G.: An evaluation of parallel grid construction for ray
tracing dynamic scenes. In Proceedings of the IEEE 2006

Symposium on Interactive Ray Tracing (2006), pp. 47–55.

[ISP07] IZE T., SHIRLEY P., PARKER S.: Grid creation
strategies for efficient ray tracing. In Proceedings of the

IEEE 2007 Symposium on Interactive Ray Tracing (2007).

[JW89] JEVANS D., WYVILL B.: Adaptive voxel subdivi-
sion for ray tracing. In Proceedings of Graphics Interface

’89 (1989), pp. 164–172.

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hash-
ing. ACM Transaction on Graphics 25, 3 (2006), 579–
588.

[PH04] PHARR M., HUMPHREYS G.: Physically Based

Rendering. Morgan Kaufmann Publishers, Inc., San Fran-
sisco, CA, USA, 2004.

[Pha02] PHARR M.: Array good, linked list bad. Ray

Tracing News 15, 1 (2002).

[PMS∗99] PARKER S., MARTIN W., SLOAN P.-P. J.,
SHIRLEY P., SMITS B., HANSEN C.: Interactive ray trac-
ing. In Symposium on Interactive 3D Graphics (1999),
pp. 119–126.

[RGH∗07] RAAB M., GRÜNSCHLOSSL., HANIKAZ J.,
FINCKHX M., KELLER A.: Benchmarking ray tracing
for realistic light transport algorithms, 2007.

[Shi00] SHIRLEY P.: Realistic ray tracing. A. K. Peters,
Ltd., Natick, MA, USA, 2000.

[Shi02] SHIRLEY P.: Objects per grid cell. Ray Tracing

News 15, 1 (2002).

[SSK07] SHEVTSOV M., SOUPIKOV A., KAPUSTIN A.:
Highly parallel fast kd-tree construction for interactive ray
tracing of dynamic scenes. Computer Graphics Forum 26,
3 (2007).

[Suf07] SUFFERN K.: Ray Tracing from the Ground Up.
A. K. Peters, Ltd., Natick, MA, USA, 2007.

[Wal07] WALD I.: On fast construction of SAH based
bounding volume hierarchies. In Proceedings of the 2007

Eurographics/IEEE Symposium on Interactive Ray Trac-

ing (2007).

[WH06] WALD I., HAVRAN V.: On building fast kd-trees
for ray tracing, and on doing that in o(n log n). In Pro-

ceedings of the IEEE 2006 Symposium on Interactive Ray

Tracing (2006), pp. 61–69.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A.,
PARKER S. G.: Ray tracing animated scenes using coher-
ent grid traversal. ACM Transactions on Graphics 25, 3
(2006), 485–493.

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing:
The bounding interval hierarchy. In Rendering Techniques

2006 (Proceedings of the 17th Eurographics Symposium

on Rendering) (2006), pp. 139–149.

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOU-
LOS S., IZE T., HUNT W., PARKER S. G., SHIRLEY P.:
State of the art in ray tracing animated scenes. In Euro-

graphics 2007 State of the Art Reports (2007).

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

