
To appear in ACM TOG 32(4).

Position Based Fluids

Miles Macklin ∗ Matthias Müller †

NVIDIA

Abstract

In fluid simulation, enforcing incompressibility is crucial for real-
ism; it is also computationally expensive. Recent work has im-
proved efficiency, but still requires time-steps that are impractical
for real-time applications. In this work we present an iterative den-
sity solver integrated into the Position Based Dynamics framework
(PBD). By formulating and solving a set of positional constraints
that enforce constant density, our method allows similar incom-
pressibility and convergence to modern smoothed particle hydro-
dynamic (SPH) solvers, but inherits the stability of the geometric,
position based dynamics method, allowing large time steps suit-
able for real-time applications. We incorporate an artificial pressure
term that improves particle distribution, creates surface tension, and
lowers the neighborhood requirements of traditional SPH. Finally,
we address the issue of energy loss by applying vorticity confine-
ment as a velocity post process.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: fluid simulation, SPH, PCISPH, constraint fluids, po-
sition based dynamics

1 Introduction

Fluids, in particular liquids such as water, are responsible for many
visually rich phenomena, and simulating them has been an area of
long-standing interest and challenge in computer graphics. There
are a variety of techniques available, but here we focus on particle
methods, which are popular for their simplicity and flexibility.

Smoothed Particle Hydrodynamics (SPH) [Monaghan 1992][1994]
is a well known particle based method for fluid simulation. It
has many attractive properties: mass-conservation, Lagrangian dis-
cretization (particularly useful in games where the simulation do-
main is not necessarily known in advance), and conceptual simplic-
ity. However, SPH is sensitive to density fluctuations from neigh-
borhood deficiencies, and enforcing incompressibility is costly due
to the unstructured nature of the model. Recent work has im-
proved efficiency by an order of magnitude [Solenthaler and Pa-
jarola 2009], but small time steps remain a requirement, limiting
real-time applications.
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(a) Real-time rendered fluid surface using ellipsoid splatting

(b) Underlying simulation particles

Figure 1: Bunny taking a bath. 128k particles, 2 sub-steps, 3 den-
sity iterations per frame, average simulation time per frame 10ms.

For interactive environments, robustness is a key issue: the simula-
tion must handle degenerate situations gracefully. SPH algorithms
often become unstable if particles do not have enough neighbors for
accurate density estimates. The typical solution is to try to avoid
these situations by taking sufficiently small time steps, or by using
sufficiently many particles, at the cost of increased computation.

In this paper, we show how incompressible flow can be simulated
inside the Position Based Dynamics (PBD) framework [Müller
et al. 2007]. We choose PBD for its unconditionally stable time
integration and robustness, which has made it popular with game
developers and film makers. By addressing the issue of particle
deficiency at free surfaces, and handling large density errors, our
method allows users to trade incompressibility for performance,
while remaining stable.

2 Related Work

Müller [2003] showed that SPH can be used for interactive fluid
simulation with viscosity and surface tension, by using a low stiff-
ness equation of state (EOS). However to maintain incompressibil-
ity, standard SPH or weakly compressible SPH (WCSPH) [Becker
and Teschner 2007] require stiff equations, resulting in large forces
that limit the time-step size. Predictive-corrective incompressible
SPH (PCISPH) [Solenthaler and Pajarola 2009] relaxes this time-
step restriction by using an iterative Jacobi-style method that accu-
mulates pressure changes and applies forces until convergence. It
has the advantage of not requiring a user-specified stiffness value
and of amortizing the cost of neighbor finding over many density
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corrections.

Bodin et al [2012] achieve uniform density fluid by posing incom-
pressibility as a system of velocity constraints. They construct a
linear complementarity problem using linearized constraint func-
tions, which are solved using Gauss-Seidel iteration. In contrast,
our method (and PCISPH) attempts to solve the non-linear problem
by operating on particles directly, and re-evaluating constraint error
and gradients each Jacobi iteration.

Hybrid methods, such as Fluid Implicit-Particle (FLIP) [Brackbill
and Ruppel 1986] use a grid for the pressure solve and transfer ve-
locity changes back to particles. FLIP was later extended to in-
compressible flow with free surfaces by Zhu and Bridson [2005].
Raveendran et al. [2011] use a coarse grid to solve for an approx-
imately divergence free velocity field before an adaptive SPH up-
date.

Clavet et al. [2005] also use a position based approach to simu-
late viscoelastic fluids. However, because the time step appears in
various places of their position projections, their approach is only
conditionally stable as in regular explicit integration.

Position Based Dynamics [Müller et al. 2007] provides a method
for simulating dynamics in games based on Verlet integration. It
solves a system of non-linear constraints using Gauss-Seidel itera-
tion by updating particle positions directly. By eschewing forces,
and deriving momentum changes implicitly from the position up-
dates, the typical instabilities associated with explicit methods are
avoided.

3 Enforcing Incompressibility

To enforce constant density we solve a system of non-linear con-
straints, with one constraint per-particle. Each constraint is a func-
tion of the particle’s position and the positions of its neighbors,
which we refer to collectively as p1, · · · ,pn. Following [Bodin et al.
2012] the density constraint on the ith particle is defined using an
equation of state:

Ci(p1, ...,pn) =
ρi

ρ0
−1, (1)

where ρ0 is the rest density and ρi is given by the standard SPH
density estimator:

ρi = ∑
j

m jW (pi−p j,h). (2)

We treat all particles as having equal mass and will drop this term
from subsequent equations. In our implementation we use the
Poly6 kernel for density estimation, and the Spiky kernel for gradi-
ent calculation, as in [Müller et al. 2003].

Now we give some background on the position based dynamics
method and then show how to incorporate our density constraint.
PBD aims to find a particle position correction ∆p that satisfies the
constraint:

C(p+∆p) = 0 (3)

This is found by a series of Newton steps along the constraint gra-
dient:

∆p≈ ∇C(p)λ (4)

C(p+∆p)≈C(p)+∇CT
∆p = 0 (5)

≈C(p)+∇CT
∇Cλ = 0. (6)

Algorithm 1 Simulation Loop

1: for all particles i do
2: apply forces vi⇐ vi +∆tfext(xi)
3: predict position x∗i ⇐ xi +∆tvi
4: end for
5: for all particles i do
6: find neighboring particles Ni(x∗i )
7: end for
8: while iter < solverIterations do
9: for all particles i do

10: calculate λi
11: end for
12: for all particles i do
13: calculate ∆pi
14: perform collision detection and response
15: end for
16: for all particles i do
17: update position x∗i ⇐ x∗i +∆pi
18: end for
19: end while
20: for all particles i do
21: update velocity vi⇐ 1

∆t
(
x∗i −xi

)
22: apply vorticity confinement and XSPH viscosity
23: update position xi⇐ x∗i
24: end for

[Monaghan 1992] gives the SPH recipe for the gradient of a func-
tion defined on the particles. Applying this, the gradient of the
constraint function (1) with respect to a particle k is given by:

∇pkCi =
1
ρ0

∑
j

∇pkW (pi−p j,h) (7)

Which has two different cases based on whether k is a neighboring
particle or not:

∇pkCi =
1
ρ0

∑
j

∇pkW (pi−p j,h) if k = i

−∇pkW (pi−p j,h) if k = j
(8)

Plugging this into (6) and solving for λ gives

λi =−
Ci(p1, ...,pn)

∑k
∣∣∇pkCi

∣∣2 (9)

which is the same for all particles in the constraint.

Because the constraint function (1) is non-linear, with a vanish-
ing gradient at the smoothing kernel boundary, the denominator in
equation (9) causes instability when particles are close to separat-
ing. As in PCISPH this can be solved by pre-computing a conser-
vative corrective scale based on a reference particle configuration
with a filled neighborhood.

Alternatively, constraint force mixing (CFM) [Smith 2006] can be
used to regularize the constraint. The idea behind CFM is to soften
the constraint by mixing in some of the constraint force back into
the constraint function, in the case of PBD this changes (6) to

C(p+∆p)≈C(p)+∇CT
∇Cλ + ελ = 0. (10)

Where ε is a user specified relaxation parameter that is constant
over the simulation. The scaling factor is now

λi =−
Ci(p1, ...,pn)

∑k
∣∣∇pkCi

∣∣2 + ε

, (11)
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and the total position update ∆pi including corrections from neigh-
bor particles density constraint (λ j) is

∆pi =
1
ρ0

∑
j

(
λi +λ j

)
∇W (pi−p j,h). (12)

Figure 2: Armadillo Splash, Top: particle clumping due to neigh-
bor deficiencies, Bottom: with artificial pressure term, note the im-
proved particle distribution and surface tension.

4 Tensile Instability

A common problem in SPH simulations is particle clustering or
clumping caused by negative pressures when a particle has only a
few neighbors and is unable to satisfy the rest density (Figure 2).
This may be avoided by clamping pressures to be non-negative, but
at the cost of reduced particle cohesion. Clavet et al. [2005] use
a second ’near pressure’ term, while Alduan and Otaduy [2011]
use discrete element (DEM) forces [Bell et al. 2005] to push apart
particles closer than half the smoothing kernel width. Schechter
and Bridson [2012] place ghost particles around the free surface to
ensure consistent density estimates.

We follow the approach of [Monaghan 2000] which adds an arti-
ficial pressure specified in terms of the smoothing kernel itself as

scorr =−k
(

W (pi−p j,h)
W (∆q,h)

)n

, (13)

where ∆q is a point some fixed distance inside the smoothing kernel
radius and k is a small positive constant. |∆q| = 0.1h · · ·0.3h, k =
0.1 and n = 4 work well. We then include this term in the particle
position update as

∆pi =
1
ρ0

∑
j

(
λi +λ j + scorr

)
∇W (pi−p j,h). (14)

This purely repulsive term keeps particle density slightly lower than
the rest density. Consequently, particles pull their neighbors in-
wards causing surface tension-like effects similar to the ones de-
scribed in [Clavet et al. 2005]. We note that this effect is a non-
physical artifact of the anti-clustering term and requires a trade off
between clustering errors and surface tension strength.

Without clustering problems our algorithm is free from the rule of
thumb that in SPH a particle must have 30-40 neighbors at all times,
improving efficiency.

5 Vorticity Confinement and Viscosity

Position based methods introduce additional damping which is of-
ten undesirable. Fedkiw et al. [2001] introduced vorticity confine-
ment to computer graphics to address numerical dissipation in the
simulation of smoke, which was later extended to energy conserv-
ing fluid simulation in [Lentine et al. 2011]. In Bubbles Alive, Hong
et al. [2008] show how vorticity confinement can be used in a hy-
brid setup where by vorticity is transferred from a grid to the SPH
particles to introduce turbulent motion.

We optionally use vorticity confinement to replace lost energy (Fig-
ure 5). This requires first calculating the vorticity at a particle’s lo-
cation, for which we use the estimator given in [Monaghan 1992]:

ω i = ∇×v = ∑
j

vi j×∇p jW (pi−p j,h) (15)

where vi j = v j − vi. Once we have the vorticity we calculate a
corrective force using the location vector N = η

|η | with η = ∇|ω|i

fvorticity
i = ε (N×ω i) . (16)

Unlike [Hong et al. 2008] we do not use normalized ω as this would
increase vorticity indiscriminately. Instead we use the unnormal-
ized value, which only adds vorticity where it already exists, as in
[Fedkiw et al. 2001].

In addition, we apply XSPH viscosity [Schechter and Bridson
2012], which is important for coherent motion. The parameter c
is typically chosen to be 0.01 in our simulations:

vnew
i = vi + c∑

j
vi j ·W (pi−p j,h) (17)

6 Algorithm

Our simulation loop is outlined in Algorithm 1. It is similar to
the original Position Based Dynamics update except that each con-
straint is solved independently in a Jacobi fashion, rather than
through sequential Gauss-Seidel iteration. We perform collision de-
tection against solids as part of the constraint solving loop.

We recompute particle neighborhoods once per-step and re-
calculate distance and constraint values each solver iteration. This
optimization can lead to density underestimates, for example if a
particle separates from the initial set of neighbors. In PCISPH this
can cause serious problems, once a particle becomes isolated, each
iteration makes its pressure increasingly negative. If it then comes
back into contact on a subsequent iteration, large erroneous pres-
sure forces are applied. Our algorithm considers only the current
particle positions (not accumulated pressure), so this does not oc-
cur.
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Figure 3: Dropping a liquid bunny into a pool of water (80k parti-
cles).

(a) Average Density (b) Maximum Density

Figure 4: Density over the bunny drop simulation. Our algorithm
maintains compressibility similar to PCISPH at time-steps more
than twice as large. Color key: Blue, rest density. Red, PCISPH.
Green, our method.

7 Rendering

Real-time fluid surfacing is performed using a GPU based ellipsoid
splatting technique. Particle anisotropy is first computed using the
method of Yu and Turk [2013], and the surface is reconstructed
using a method based on the screen-space filtering presented in
[van der Laan et al. 2009].

8 Results

We tested our algorithm by dropping a liquid bunny into a pool of
water (Figure 3) and compared our results with a PCISPH imple-
mentation. For this scenario PCISPH is not stable with less than
10 sub-steps per frame (∆t = 0.0016s). In contrast our algorithm is
stable with a single step (∆t = 0.016s).

To compare compressibility we run PCISPH with 10 sub-steps and
4 pressure iterations, and our algorithm with 4 sub-steps and 10
iterations per sub-step, so that each performs 40 pressure iterations
per-frame in total. The point of this comparison is to show that
our method can achieve comparable results with larger time-steps,
allowing us to amortize the per-step costs of grid construction and
neighbor finding over more density iterations.

Our results are in good accordance, and a plot of density over the
simulation confirms that the level of compression is similar despite
the larger time-step for our method (Figure 4). Tables 1 and 2 sum-
marize the performance of our algorithm in a selection of scenarios.

Because we are interested in real-time applications with predictable
performance, we set the number of iterations to a fixed value (typ-
ically 2-4) rather than solving for a specific error threshold. How-
ever, we also show the convergence of our method over multiple
iterations in Figure 6.

We implemented our algorithm in CUDA and ran our simulations
on an NVIDIA GTX 680. Each stage of our algorithm is fully par-
allelizable so we are able to take advantage of parallel architec-
tures such as GPUs. For neighbor finding we use the method of
[Green 2008]. We also perform particle-solid collision detection on
the GPU where we use signed distance fields [Bridson et al. 2006]
stored as volume textures.

9 Limitations and Future Work

Occasionally particle stacking along boundaries can occur due to
incorrect density estimates when particles are in contact with solids.
Recent work by Akinci et al. [2012] would help address this issue.

Jacobi methods only propagate information (in our case position
corrections) between a particle’s immediate neighbors each itera-
tion. This can lead to slow convergence as the number of particles
increases. More sophisticated parallel solvers such as red-black or
multi-scale schemes such as [Solenthaler and Gross 2011] should
help improve convergence speed.

Because our artificial pressure term is dependent on the spatial res-
olution and time-step it can be difficult to adjust parameters inde-
pendently. Decoupling these parameters and making anti-clustering
independent from surface tension effects would be important future
work.

Position based dynamics is popular for simulating deformable ob-
jects such as cloth. We have prototyped two-way interaction be-
tween position based cloth and fluid with promising results.

Table 1: Performance results for several examples. A frame time of
16ms is used in all cases.

Scene particles steps/frame iters/step time/step [ms]
Armadillo Splash 128k 2 3 4.2
Dam Break 100k 4 3 4.3
Bunny Drop 80k 4 10 7.8

Table 2: Breakdown of a frame (percentages) for two examples.
Constraint Solve includes collision handling with static objects, and
Velocity Update includes vorticity confinement and viscosity calcu-
lation.

Step Armadillo Splash Dam Break
Integrate 1 1
Create Hash Grid 8 6
Detect Neighbors 28 28
Constraint Solve 38 51
Velocity Update 25 14
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Figure 5: Dam break scenario at t=6.0, Left: vorticity confine-
ment disabled. Right: vorticity confinement enabled, note the visi-
bly higher splash.

Figure 6: Convergence of our method over multiple iterations at
t = 1.0 in the dam break scenario.
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