
Timo Viitanen, Jul 27. 2019, SIGGRAPH 2019, LA, USA

ACCELERATION DATA STRUCTURE
HARDWARE (AND SOFTWARE)

2

OUTLINE
1. What is a BVH?
2. RTX BVH maintenance
3. State of the art in BVH build hardware
4. Open problems

3

WHAT IS A BVH?

4

25.7.20194

BOUNDING VOLUME
HIERARCHY (BVH)

5

25.7.20195

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

… … ……

6

25.7.20196

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

… … ……

7

25.7.20197

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

… … ……

8

25.7.20198

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

… … ……

9

25.7.20199

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

……

… … … …

10

25.7.201910

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

……

… … … …

11

25.7.201911

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

……

… … … …

12

25.7.201912

BOUNDING VOLUME
HIERARCHY (BVH)
Each node divides a set of
triangles into two child subsets

…And stores their bounding
boxes

Allows roughly O(log 𝑛) ray-scene
collision tests

...Before tracing rays, we have to
build a BVH

Tree build is an expensive task
and may sometimes dwarf the
cost of ray tracing

13

25.7.201913

TREE QUALITY
Traversal speed (i.e tree quality)
depends on choice of splits

E.g. random splits →

Quality is related to node AABB
surface area (or related SAH)

Tradeoff curve between fast, low-
quality and slow, high-quality
builders

14

REFITTING

Given an animation where vertices move but the mesh topology stays the same, we can refit a
BVH instead of rebuilding: just read the new triangle data and recompute bounding boxes.

For example, in RTX refitting is ~10x faster than a full build.

Quality may degrade over a long animation → sometimes trees are periodically refreshed
with a rebuild.

14

15

BLAS

INSTANCING

Bottom Level Acceleration Structure (BLAS):

BVH of triangles

Top Level Acceleration Structure (TLAS):

BVH of instances with a BLAS reference and
a transform matrix

TLAS

BLAS

Instance

InstanceInstance

BLAS

Instance

16

BLAS

INSTANCING

Static geometry → Build once

Instancing → Share a BLAS between objects

Rigid body animation

→ Modify the transform matrix

Mesh deformation → Refit

Only run a full rebuild for difficult cases

TLAS

BLAS

Instance

InstanceInstance

BLAS

Instance

17

RTX BVH
MANAGEMENT

18

RTX BVH BUILDER

Supports refits and instancing

Perf rules of thumb:

Refit ~1000Mtris/s

Build ~100Mtris/s

Storage ~33B/tri after compaction

Continual optimization: e.g. ca. +36% average build throughput since launch (in internal
benchmark)

19

TYPICAL GAME BVH WORKLOAD

60fps game → must fit in small fraction of
16.66ms

Many BLAS FAST_BUILD refits

Many of the BLASes are small, 10s to 1000s
of triangles

TLAS build of ~1000...10000 instances

Already the result of heavy optimization:
geometry culling (BFV), build throttling
(Metro), overlapping other work with BVH

E.g. In BFV builds took 64 ms on the first
try, optimized down to 1.15 ms
(Shyshkovtsov 2019)

BLAS refit

BLAS refit

BLAS refit

BLAS build

BLAS refit

BLAS refit

.

.

.

TLAS build

(High quality)

Barrier

10s
...

1000s

20

RTX INSTANCED BUILD PERFORMANCE
Toy benchmark

21

RTX BUILDER
PERFORMANCE

A single build needs to be very
large to utilize the GPU

Toy benchmark

170.3

1968.5

0

500

1000

1500

2000

2500

10 100 1000 10000 100000 1000000

P
e
rf

 (
M

tr
is

/
s)

Instance size (tris)

Build performance (Mtris/s)

Single HQ build Single LQ refit

22

RTX BUILDER
PERFORMANCE

A single build needs to be very
large to utilize the GPU

Groups of smaller BLAS builds stay
efficient down to ~1000tri
instances (~5000 for refits). With
smaller instances, performance
starts to fall off.

Toy benchmark

0

500

1000

1500

2000

2500

10 100 1000 10000 100000 1000000

P
e
rf

 (
M

tr
is

/
s)

Instance size (tris)

Build performance (BLAS+TLAS) (Mtris/s)

Single LQ refit LQ refits, 500k tris

23

RTX BUILDER
PERFORMANCE

A single build needs to be very
large to utilize the GPU

Groups of smaller BLAS builds stay
efficient down to ~1000tri
instances (~5000 for refits). With
smaller instances, performance
starts to fall off.

Toy benchmark

0

500

1000

1500

2000

2500

10 100 1000 10000 100000 1000000

P
e
rf

 (
M

tr
is

/
s)

Instance size (tris)

Build performance (BLAS+TLAS) (Mtris/s)

Single LQ refit LQ refits, 500k tris

Efficient refits

24

RTX BUILDER
PERFORMANCE

A single build needs to be very
large to utilize the GPU

Groups of smaller BLAS builds stay
efficient down to ~1000tri
instances (~5000 for refits). With
smaller instances, performance
starts to fall off.

Toy benchmark

0

500

1000

1500

2000

2500

10 100 1000 10000 100000 1000000

P
e
rf

 (
M

tr
is

/
s)

Instance size (tris)

Build performance (BLAS+TLAS) (Mtris/s)

Single LQ refit LQ refits, 500k tris

Efficient refits

Game BLAS

workloads

25

SMALL BUILD/REFIT
OPTIMIZATIONS

New optimizations in recent driver
(431.36) : heavily improved
performance on batches of small
builds.

So far supports FAST_BUILD refits

0

500

1000

1500

2000

2500

10 100 1000 10000 100000 1000000

P
e
rf

 (
M

tr
is

/
s)

Instance size (tris)

500K tri build perf (BLAS+TLAS) (Mtris/s)

LQ refits, 500k tris LQ refits, 500k tris, batching

Efficient refits in

431.36

26

SMALL BUILD/REFIT
OPTIMIZATIONS

New optimizations in recent driver
(431.36) : heavily improved
performance on batches of small
builds.

So far supports FAST_BUILD refits
(and builds below a size threshold)

0

100

200

300

400

500

600

10 100 1000 10000 100000 1000000

P
e
rf

 (
M

tr
is

/
s)

Instance size (tris)

500K tri build perf (BLAS+TLAS) (Mtris/s)

LQ builds, 500k tris LQ builds, 500k tris, batching

Efficient builds in 431.36

27

OVERLAPPING

BVH builds have low utilization

Overlap asynchronous compute and graphics
work to hide BVH maintenance

Used in e.g. BFV, Metro

Improved in Turing: can run graphics and
compute concurrently in the same SM

BLAS refit

BLAS refit

BLAS refitBLAS refit

BLAS refit

.

.

.

TLAS build

(High quality)

Barrier

10s
...

1000s

Compute/graphics shaders

Difficult cases

RTX BVH MANAGEMENT

29

INSTANCE GROUPING

How to group geometry into BVH instances?

Adding RT effects to a rasterized game →
convert drawcalls to instances? Both have
geometry + shader program.

→1 instance per material shader?

30

INSTANCE PARTITIONING
Group by material, example instances

Instance 1 Instance 2 Instance 3 Instance 4

31

INSTANCE GROUPING

Large, overlapping instance bounds with
much empty space

- Many instance hits (have to transform
ray to object coordinates for each hit
instance)

- Bad TLAS quality

Group by material

32

INSTANCE GROUPING

BVH instancing works better with discrete
physical objects as instances

Note: Can still have multiple geometries in
a BLAS with different material shaders

(Open question: how to make a builder
robust to instance grouping)

Group by locality

33

SHARP TRIANGLES, DISPATCHRAYS() 0.5MS..3MS

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800

D
is

p
a
tc

h
R
a
y
s

ti
m

e
 (

m
s)

Frame

Base

Base

34

LONG, NARROW
TRIANGLES

When not axis-aligned, long, narrow triangles have large
AABBs that catch many false-positive rays

→ A BLAS with enough such triangles can hurt RT perf

Can be mitigated by triangle splitting – but limited split
budget, so too many sharp triangles overload the mechanism

(Very rare corner case, but hit in one real game workload)

35

LONG, NARROW TRIANGLES
Mitigation via app side splitting

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800

D
is

p
a
tc

h
R
a
y
s

ti
m

e
 (

m
s)

Frame

Chart Title

Base 2 segments 3 segments

4 segments 8 segments

36

REFIT FROM
DEGENERATES

Extra difficult case of heavily deformed
refitting: build degenerate geometry with
no spatial information whatsoever, then
refit

Often shows up in game particle effects

Works OK with ~tens of triangles

FRAME 0 FRAME N

Build degenerate geometry Refit into visible triangles

(0,0,0)

37

2000 PARTICLES, REBUILD EVERY FRAME, TRACERAYS() 0.5MS

38

2000 PARTICLES, REFIT EVERY FRAME, TRACERAYS() 0.5 → 8MS

39

RTX BVH SUMMARY

The RTX BVH builder is powering ray tracing in AAA games, and has been improving rapidly

Builds are often almost free due to asynch overlapping

Limitations:

Application side optimization needed; can’t rebuild all geometry every frame

Some corner cases must be currently worked around application side

(Some might in the future be handled by the driver)

→Not done yet!

40

BVH CONSTRUCTION
HARDWARE

41

MOTIVATION

Would always be nice to have much more raw build performance

Fixed-function accelerators can be 2—3 orders of magnitude faster (in perf per silicon area)
and more energy-efficient than SW on a general-purpose processor (Hameed 2010)

...But we are comparing against GPU SW and running a memory-intensive algorithm, so not
going to get that much

If HW accelerating a memory-intensive algorithm, might get more efficient on-chip
computation but the same memory accesses → maybe no gains at all

→ All recent research on ray tracing HW revolves around optimizing DRAM traffic

42

DRAM ACCESS COST
Energy and bandwidth usage

0

500

1000

1500

2000

0

2000

4000

6000

8000

10000

12000

14000

2008 2009 2010 2011 2012 2012 2013 2014 2015 2016 2017 2018

High end gaming GPUs 2008-2018
Series2 Series1

4x

13x

Operation Energy

64-bit multiply-add 64 pJ

Read/store register data 6 pJ

Read 64 bits from DRAM 4200 pJ

Read 32 bits from DRAM 2100 pJ

S. Borkar, Intel, 32nm technology ca. 2010

GFLOPS/s MB / s

43

BANDWIDTH-SAVING HARDWARE DESIGN

A CUDA program often has multiple kernel
launches which communicate through
intermediate data buffers.

In HW, maybe the same algorithm can be
expressed as serial HW pipelines communicating
through on-chip FIFOs, saving DRAM traffic.

(Note: often the CUDA program can be improved
in the same way)

DRAM Input Buffer Buffer Output

Kernel Kernel Kernel

DRAM Input Output

HW HW HW
FIFO FIFO

44

TREE UPDATE HARDWARE

Small field, ~10 papers

k-D tree builders (Nah, 2014; Liu, 2015)

Refitter units (Nah, 2015; Woop, 2006)

Imagination Technologies SHG (McCombe 2014)

Binned SAH sweep unit (Doyle, 2013)

MergeTree (Viitanen, 2015)

PLOCTree (Viitanen, 2018)

45

TREE UPDATE HARDWARE

Small field, ~10 papers

k-D tree builders (Nah, 2014; Liu, 2015)

Refitter units (Nah, 2015; Woop, 2006)

Imagination Technologies SHG (McCombe 2014)

Binned SAH sweep unit (Doyle, 2013)

MergeTree (Viitanen, 2015)

PLOCTree (Viitanen, 2018)

k-D tree builds are too expensive

Refitters are interesting, but

not described in much detail –

parts of larger RT systems

We’ll look at these

Very interesting and exotic

architecture by a GPU vendor –

but not much information out

46

HARDWARE TREE BUILDERS:
BINNED SAH (DOYLE, 2013)

47

BINNED SAH SWEEP
(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3

48

BINNED SAH SWEEP
(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3

Best split!

49

BINNED SAH SWEEP
(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3

50

BINNED SAH HW

Memory optimizations:

Pipeline partitioning with binning and SAH
computation for the child partitions (one
pass over input data instead of two)

When partition size drops small enough,
handle it completely in on-chip memory

Mem traffic 2-3x less than HLBVH, a
cheaper algorithm; far faster than GPU
binned SAH

Downside: expensive, many FPUs

(Doyle, 2013)

DRAM
Output

Bin Partition

DRAM Input Output

Partition
Bin&SAH, right

FIFO

Bin AABBs

SAH calc

Split decision

Input

Bin&SAH, left
FIFO

SRAM Split decision

51

HARDWARE TREE BUILDERS:
MERGETREE (VIITANEN, 2015)

52

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201952

53

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201953

54

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201954

55

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201955

56

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201956

0000 0001

0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0010

57

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201957

0000

0011 0110 0111

1000

1010 1011

58

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201958

0000

0011 0110 0111

1000

1010 1011

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

Hierarchy emission

59

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201959

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

0000

0011 0110 0111

1000

1010 1011

Hierarchy emission

60

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201960

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

0000

0011 0110 0111

1000

1010 1011

Hierarchy emission

61

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201961

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

0000

0011 0110 0111

1000

1010 1011

Hierarchy emission

62

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201962

0000

0011 0110 0111

1000

1010 1011

Hierarchy emission

63

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission

25.7.201963

0000

0011 0110 0111

1000

1010 1011

64

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201964

0000

0011 0110 0111

1000

1010 1011

Hierarchy emission

65

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201965

AABB computation

66

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201966

AABB computation

67

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201967

AABB computation

68

0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201968

AABB computation

69

LBVH
Some reasons LBVH has low quality

A halfway split along a predetermined axis
is probably not the best one

FIXED SPLIT LOCATIONS

LBVH only looks at triangle centroids and
has no idea of their shape: the triangles
below are treated as identical

(One attempt to help this: extended Morton
codes (Vinkler et al. 2017))

SCALE INSENSITIVITY

70

MERGETREE ARCHITECTURE

Sorting subsystem

Scratchpad

Heap

Merge unit
Block sort

units

Hierarchy emitter

& AABB computer

Stack

Heap

Sorted
AABBs
FIFO

DRAM Input AABBs Mergesort temp Nodes, leafs out

71

MERGETREE ARCHITECTURE

Sorting subsystem

Scratchpad

Heap

Merge unit
Block sort

units

Hierarchy emitter

& AABB computer

Stack

Heap

Sorted
AABBs
FIFO

DRAM Input AABBs Mergesort temp Nodes, leafs out

Multi-way mergesort

(optimal for DRAM traffic,

gives outputs in sorted order)

Single pass from sorted

AABBs to output BVH

73

25.7.201973

74

MERGETREE

~10x smaller than silicon area binned SAH; ~5x faster builds, ~3x less DRAM traffic

...But quality is much worse

Straight HW implementation of GPU algorithm would have ~2.5x more traffic

Single pipeline doesn’t quite catch up to a high/end GPU running SW LBVH but comes close
(0.68x speed)

74

75

HARDWARE TREE
BUILDERS: PLOCTREE

76

MODERN GPU BVH BUILDERS

Binned SAH is high-quality but expensive

LBVH is cheap but low-quality

Recent GPU builders often try to start with Morton
code sorting or full LBVH, and then improve quality

E.g. HLBVH (Pantaleoni and Luebke 2010), TRBVH
(Karras 2013), ATRBVH (Domingues and Pedrini
2015), PLOC (Meister and Bittner 2018).

PLOC looks suitable for HW implementation

→Adapt to a HW architecture, PLOCTree

76

Build

speed

Tree

quality

Binned SAH

LBVH

Recent SW

methods

SBVH

77

25.7.201977

PLOC

78

25.7.201978

PLOC

79

25.7.201979

PLOC

80

25.7.201980

PLOC

81

25.7.201981

PLOC

82

25.7.201982

PLOC

83

25.7.201983

PLOC

84

25.7.201984

PLOC

85

25.7.201985

PLOC

86

25.7.201986

PLOC

87

25.7.201987

PLOC

88

25.7.201988

PLOC

89

25.7.201989

PLOC

90

25.7.201990

PLOC

91

25.7.201991

PLOC

92

25.7.201992

PLOC

93

25.7.201993

PLOC

94

25.7.201994

PLOC

95

25.7.201995

PLOC

96

25.7.201996

PLOC

97

25.7.201997

PLOC

98

25.7.201998

PLOC

99

25.7.201999

PLOC

100

25.7.2019100

PLOC

101

25.7.2019101

PLOC

102

25.7.2019102

PLOC

103

25.7.2019103

PLOC

104

25.7.2019104

PLOC

105

25.7.2019105

PLOC

106

25.7.2019106

PLOC

107

25.7.2019107

PLOC

108

25.7.2019108

PLOC

109

25.7.2019109

PLOC

110

25.7.2019110

PLOC

111

25.7.2019111

PLOC

112

25.7.2019112

PLOC

113

25.7.2019113

PLOC

114

25.7.2019114

PLOC

115

25.7.2019115

PLOC

116

25.7.2019116

PLOC

117

25.7.2019117

PLOC

118

25.7.2019118

PLOC

119

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

25.7.2019119

Sorted

input

R

120

25.7.2019120

Input

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

121

25.7.2019121

Input

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

122

25.7.2019122

Input

Sweep 1

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

123

25.7.2019123

Input

Sweep 1 Sweep 2

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

124

Sweep 3

25.7.2019124

Input

Sweep 1 Sweep 2

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

125

Sweep 3

25.7.2019125

Input

Sweep 1 Sweep 2 Sweep 4

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

126

PLOCTREE ARCHITECTURE

Sorting subsystem

Scratchpad

Heap

Merge unit
Block sort

units

Hierarchy emitter

& AABB computer

Stack

Heap

Sorted
AABBs
FIFO

DRAM Input AABBs Mergesort temp Nodes, leafs out

?????

127

PLOC SWEEP PIPELINE

128

PLOC SWEEP PIPELINE

NN search

Compaction
and merging

129

Sweep 3

28.7.2019129

Input

Sweep 1 Sweep 2 Sweep 4

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

Pipeline so far

eliminates the

internal memory

traffic in a sweep

…But leaves the

memory traffic

between sweeps

130

MULTIPLE PIPELINES
And multiple sweeps per pipeline

130

Sweep pipeline

(sweeps 1..4)

Sweep pipeline

(sweeps 5..36)

DRAM

Node output
arbiter

AABBs
out

Merge

sorter

FIFOFIFO

131

HW BVH BUILDER OVERVIEW

Source: Source information is 8 pt, italic

Algorithm
Tree

quality

Area

(mm2)

(scaled to

28nm)

Speedup

(vs. GPU)

DRAM

traffic

savings

(v. GPU)

Area

efficiency

BW

(GB/s)

(Doyle, 2013)
Binned SAH

sweep
High 12.76 9.4x * ~2-3x ** 14780% * 44

MergeTree LBVH Low 1.77 0.68x 3.3x 23435% 42.7

PLOCTree PLOC Medium 2.43 3.9x 7.7x 97901% 42.7

GTX 1080 610 100% 484

* Sopin (2011) on GTX 480

** HLBVH on GTX 480

132

OPEN PROBLEMS

133

OPEN PROBLEMS

Store ~5-6 bit coordinates relative to parent bounding box (Keely 2013, Vaidyanathan 2016)

Problem 1: Have to refit bottom-up, then compress top-down → more expensive refits

Tried to work around this in Viitanen (2017), but it only partly worked out

Problem 2: Nodes are small (8B) relative to cache lines (64B..128B)

→ Have to optimize node placement in cache lines for traversal perf (Liktor 2016)

Keely, Reduced precision hardware for ray tracing, HPG 2013

Vaidyanathan et al., Watertight ray traversal with reduced precision, HPG 2016

Liktor and Vaidyanathan, Bandwidth-efficient BVH layout for incremental hardware traversal, HPG 2016

Viitanen et al., Fast hardware construction and refitting of quantized bounding volume hierarchies, EGSR 2017

Compressed BVHs: Incremental compression

134

OPEN PROBLEMS

Compress wide BVHs; store coordinate origin and scale in each node

(Ylitie 2017, Vaidyanathan 2019)

When shared between enough AABBs, compression ratio is still good

Nodes can be standalone and cache line sized

Problem: How to generate good MBVH layouts fast (even in SW)?

Similar to cache line opt. in incremental compression, but more constraints

…At least does not need to be done on refit

Ylitie et al., Efficient incoherent ray traversal on GPUs through compressed wide BVHs, HPG 2017

Vaidtanathan et al. Wide BVH Traversal with a Short Stack, HPG 2019

Compressed BVHs: The MBVH way Good MBVH

Bad MBVH

135

OPEN PROBLEMS

Designs so far are serial pipelines

Can parallelize by having multiple pipelines work on different BLASes, but

BLAS parallelism is limited and depends on workload

Any way to collaborate on the same instance?

HW builder scaling

136

CONCLUSION

SW BVH construction is fast enough for AAA games with RT effects and getting faster

But does need some dev effort to get there (e.g. asynch overlapping, geometry culling)

And has some corner cases where it’s easy to hit traversal slowdowns (sharp triangles, loose instance
grouping, refit from degen)

BVH hardware might give a speedup, but big hurdles left to clear, mainly:

Compressed BVH output

Scaling to multiple pipelines

→ We aren’t done yet

RTX enabled games look like a gold mine for researchers; very different workloads from classic
builder benchmarks

