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ACCELERATION DATA STRUCTURE 
HARDWARE (AND SOFTWARE)
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WHAT IS A BVH?
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BOUNDING VOLUME 
HIERARCHY (BVH)
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

… … ……
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

… … ……
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

… … ……
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

… … ……
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

……

… … … …
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

……

… … … …
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

……

… … … …
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BOUNDING VOLUME 
HIERARCHY (BVH)
Each node divides a set of 
triangles into two child subsets

…And stores their bounding 
boxes

Allows roughly O(log 𝑛) ray-scene 
collision tests

...Before tracing rays, we have to
build a BVH

Tree build is an expensive task 
and may sometimes dwarf the 
cost of ray tracing
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TREE QUALITY
Traversal speed (i.e tree quality) 
depends on choice of splits

E.g. random splits →

Quality is related to node AABB 
surface area (or related SAH)

Tradeoff curve between fast, low-
quality and slow, high-quality 
builders
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REFITTING

Given an animation where vertices move but the mesh topology stays the same, we can refit a 
BVH instead of rebuilding: just read the new triangle data and recompute bounding boxes.

For example, in RTX refitting is ~10x faster than a full build.

Quality may degrade over a long animation → sometimes trees are periodically refreshed 
with a rebuild.

14
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BLAS

INSTANCING

Bottom Level Acceleration Structure (BLAS):

BVH of triangles

Top Level Acceleration Structure (TLAS):

BVH of instances with a BLAS reference and 
a transform matrix

TLAS

BLAS

Instance

InstanceInstance

BLAS

Instance
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BLAS

INSTANCING

Static geometry → Build once

Instancing → Share a BLAS between objects

Rigid body animation 

→ Modify the transform matrix

Mesh deformation → Refit

Only run a full rebuild for difficult cases

TLAS

BLAS

Instance

InstanceInstance

BLAS

Instance



17

RTX BVH 
MANAGEMENT
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RTX BVH BUILDER

Supports refits and instancing

Perf rules of thumb:

Refit ~1000Mtris/s

Build ~100Mtris/s

Storage ~33B/tri after compaction

Continual optimization: e.g. ca. +36% average build throughput since launch (in internal 
benchmark) 
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TYPICAL GAME BVH WORKLOAD

60fps game → must fit in small fraction of 
16.66ms

Many BLAS FAST_BUILD refits

Many of the BLASes are small, 10s to 1000s 
of triangles

TLAS build of ~1000...10000 instances

Already the result of heavy optimization: 
geometry culling (BFV), build throttling 
(Metro), overlapping other work with BVH

E.g. In BFV builds took 64 ms on the first 
try, optimized down to 1.15 ms
(Shyshkovtsov 2019)

BLAS refit

BLAS refit

BLAS refit

BLAS build

BLAS refit

BLAS refit

.

.

.

TLAS build

(High quality)

Barrier

10s
...

1000s
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RTX INSTANCED BUILD PERFORMANCE
Toy benchmark
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RTX BUILDER 
PERFORMANCE

A single build needs to be very 
large to utilize the GPU

Toy benchmark
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RTX BUILDER 
PERFORMANCE

A single build needs to be very 
large to utilize the GPU

Groups of smaller BLAS builds stay 
efficient down to ~1000tri 
instances (~5000 for refits). With 
smaller instances, performance 
starts to fall off.

Toy benchmark
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RTX BUILDER 
PERFORMANCE

A single build needs to be very 
large to utilize the GPU

Groups of smaller BLAS builds stay 
efficient down to ~1000tri 
instances (~5000 for refits). With 
smaller instances, performance 
starts to fall off.

Toy benchmark
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RTX BUILDER 
PERFORMANCE

A single build needs to be very 
large to utilize the GPU

Groups of smaller BLAS builds stay 
efficient down to ~1000tri 
instances (~5000 for refits). With 
smaller instances, performance 
starts to fall off.

Toy benchmark
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SMALL BUILD/REFIT
OPTIMIZATIONS

New optimizations in recent driver 
(431.36) : heavily improved 
performance on batches of small 
builds.

So far supports FAST_BUILD refits
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SMALL BUILD/REFIT
OPTIMIZATIONS

New optimizations in recent driver 
(431.36) : heavily improved 
performance on batches of small 
builds.

So far supports FAST_BUILD refits 
(and builds below a size threshold)
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OVERLAPPING

BVH builds have low utilization

Overlap asynchronous compute and graphics 
work to hide BVH maintenance

Used in e.g. BFV, Metro

Improved in Turing: can run graphics and 
compute concurrently in the same SM

BLAS refit

BLAS refit

BLAS refitBLAS refit

BLAS refit

.

.

.

TLAS build

(High quality)

Barrier

10s
...

1000s

Compute/graphics shaders



Difficult cases

RTX BVH MANAGEMENT
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INSTANCE GROUPING

How to group geometry into BVH instances?

Adding RT effects to a rasterized game →
convert drawcalls to instances? Both have 
geometry + shader program.

→1 instance per material shader?



30

INSTANCE PARTITIONING
Group by material, example instances

Instance 1 Instance 2 Instance 3 Instance 4
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INSTANCE GROUPING

Large, overlapping instance bounds with 
much empty space

- Many instance hits (have to transform 
ray to object coordinates for each hit 
instance)

- Bad TLAS quality

Group by material
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INSTANCE GROUPING

BVH instancing works better with discrete 
physical objects as instances

Note: Can still have multiple geometries in 
a BLAS with different material shaders

(Open question: how to make a builder 
robust to instance grouping)

Group by locality
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SHARP TRIANGLES, DISPATCHRAYS() 0.5MS..3MS
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LONG, NARROW 
TRIANGLES

When not axis-aligned, long, narrow triangles have large 
AABBs that catch many false-positive rays

→ A BLAS with enough such triangles can hurt RT perf

Can be mitigated by triangle splitting – but limited split 
budget, so too many sharp triangles overload the mechanism

(Very rare corner case, but hit in one real game workload)
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LONG, NARROW TRIANGLES
Mitigation via app side splitting
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REFIT FROM 
DEGENERATES

Extra difficult case of heavily deformed 
refitting: build degenerate geometry with 
no spatial information whatsoever, then 
refit

Often shows up in game particle effects

Works OK with ~tens of triangles

FRAME 0 FRAME N

Build degenerate geometry Refit into visible triangles

(0,0,0)
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2000 PARTICLES, REBUILD EVERY FRAME, TRACERAYS() 0.5MS
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2000 PARTICLES, REFIT EVERY FRAME, TRACERAYS() 0.5 → 8MS
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RTX BVH SUMMARY

The RTX BVH builder is powering ray tracing in AAA games, and has been improving rapidly

Builds are often almost free due to asynch overlapping

Limitations:

Application side optimization needed; can’t rebuild all geometry every frame

Some corner cases must be currently worked around application side

(Some might in the future be handled by the driver)

→Not done yet! 
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BVH CONSTRUCTION 
HARDWARE
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MOTIVATION

Would always be nice to have much more raw build performance

Fixed-function accelerators can be 2—3 orders of magnitude faster (in perf per silicon area) 
and more energy-efficient than SW on a general-purpose processor (Hameed 2010)

...But we are comparing against GPU SW and running a memory-intensive algorithm, so not 
going to get that much

If HW accelerating a memory-intensive algorithm, might get more efficient on-chip 
computation but the same memory accesses → maybe no gains at all

→ All recent research on ray tracing HW revolves around optimizing DRAM traffic
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DRAM ACCESS COST
Energy and bandwidth usage

0

500

1000

1500

2000

0

2000

4000

6000

8000

10000

12000

14000

2008 2009 2010 2011 2012 2012 2013 2014 2015 2016 2017 2018

High end gaming GPUs 2008-2018
Series2 Series1

4x

13x

Operation Energy

64-bit multiply-add 64 pJ

Read/store register data 6 pJ

Read 64 bits from DRAM 4200 pJ

Read 32 bits from DRAM 2100 pJ

S. Borkar, Intel, 32nm technology ca. 2010

GFLOPS/s MB / s



43

BANDWIDTH-SAVING HARDWARE DESIGN

A CUDA program often has multiple kernel 
launches which communicate through 
intermediate data buffers.

In HW, maybe the same algorithm can be 
expressed as serial HW pipelines communicating 
through on-chip FIFOs, saving DRAM traffic.

(Note: often the CUDA program can be improved 
in the same way)

DRAM Input Buffer Buffer Output

Kernel Kernel Kernel

DRAM Input Output

HW HW HW
FIFO FIFO
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TREE UPDATE HARDWARE

Small field, ~10 papers

k-D tree builders (Nah, 2014; Liu, 2015)

Refitter units (Nah, 2015; Woop, 2006)

Imagination Technologies SHG (McCombe 2014)

Binned SAH sweep unit (Doyle, 2013)

MergeTree (Viitanen, 2015)

PLOCTree (Viitanen, 2018)
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TREE UPDATE HARDWARE

Small field, ~10 papers

k-D tree builders (Nah, 2014; Liu, 2015)

Refitter units (Nah, 2015; Woop, 2006)

Imagination Technologies SHG (McCombe 2014)

Binned SAH sweep unit (Doyle, 2013)

MergeTree (Viitanen, 2015)

PLOCTree (Viitanen, 2018)

k-D tree builds are too expensive

Refitters are interesting, but

not described in much detail –

parts of larger RT systems 

We’ll look at these

Very interesting and exotic

architecture by a GPU vendor –

but not much information out
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HARDWARE TREE BUILDERS: 
BINNED SAH (DOYLE, 2013)
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BINNED SAH SWEEP
(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3



48

BINNED SAH SWEEP
(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3

Best split!
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BINNED SAH SWEEP
(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3
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BINNED SAH HW

Memory optimizations:

Pipeline partitioning with binning and SAH 
computation for the child partitions (one 
pass over input data instead of two)

When partition size drops small enough, 
handle it completely in on-chip memory

Mem traffic 2-3x less than HLBVH, a 
cheaper algorithm; far faster than GPU 
binned SAH

Downside: expensive, many FPUs

(Doyle, 2013)

DRAM
Output

Bin Partition

DRAM Input Output

Partition
Bin&SAH, right

FIFO

Bin AABBs

SAH calc

Split decision

Input

Bin&SAH, left
FIFO

SRAM Split decision
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HARDWARE TREE BUILDERS: 
MERGETREE (VIITANEN, 2015)
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201952
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201953
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201954
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201955
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201956
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

25.7.201957
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201958
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201959
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201960
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201961
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)
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0 0 0 0 1 1 1
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission
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0 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 1 1 0 1 1

0 1 0 1 0 0 1

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

25.7.201964
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0 0 0 0 1 1 1

0 0 1 1 0 0 0
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)
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AABB computation
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0 0 0 0 1 1 1
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)
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AABB computation
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)
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AABB computation
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0 0 0 0 1 1 1
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LBVH ALGORITHM (LAUTERBACH ET AL. 2009)
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AABB computation
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LBVH
Some reasons LBVH has low quality

A halfway split along a predetermined axis 
is probably not the best one 

FIXED SPLIT LOCATIONS

LBVH only looks at triangle centroids and 
has no idea of their shape: the triangles 
below are treated as identical

(One attempt to help this: extended Morton 
codes (Vinkler et al. 2017))

SCALE INSENSITIVITY
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MERGETREE ARCHITECTURE

Sorting subsystem

Scratchpad

Heap

Merge unit
Block sort

units

Hierarchy emitter

& AABB computer

Stack

Heap

Sorted
AABBs
FIFO

DRAM Input AABBs Mergesort temp Nodes, leafs out
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MERGETREE ARCHITECTURE

Sorting subsystem

Scratchpad

Heap

Merge unit
Block sort

units

Hierarchy emitter

& AABB computer

Stack

Heap

Sorted
AABBs
FIFO

DRAM Input AABBs Mergesort temp Nodes, leafs out

Multi-way mergesort

(optimal for DRAM traffic, 

gives outputs in sorted order)

Single pass from sorted

AABBs to output BVH
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MERGETREE

~10x smaller than silicon area binned SAH; ~5x faster builds, ~3x less DRAM traffic

...But quality is much worse

Straight HW implementation of GPU algorithm would have ~2.5x more traffic

Single pipeline doesn’t quite catch up to a high/end GPU running SW LBVH but comes close 
(0.68x speed)

74
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HARDWARE TREE 
BUILDERS: PLOCTREE
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MODERN GPU BVH BUILDERS

Binned SAH is high-quality but expensive

LBVH is cheap but low-quality

Recent GPU builders often try to start with Morton 
code sorting or full LBVH, and then improve quality

E.g. HLBVH (Pantaleoni and Luebke 2010), TRBVH 
(Karras 2013), ATRBVH (Domingues and Pedrini 
2015), PLOC (Meister and Bittner 2018).

PLOC looks suitable for HW implementation

→Adapt to a HW architecture, PLOCTree

76

Build 

speed

Tree

quality

Binned SAH

LBVH

Recent SW

methods

SBVH
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC



111

25.7.2019111

PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC
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PLOC ALGORITHM (MEISTER AND BITTNER 2018)

25.7.2019119

Sorted

input

R
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Input

PLOC ALGORITHM (MEISTER AND BITTNER 2018)
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Input

PLOC ALGORITHM (MEISTER AND BITTNER 2018)
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Input

Sweep 1

PLOC ALGORITHM (MEISTER AND BITTNER 2018)
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Input

Sweep 1 Sweep 2

PLOC ALGORITHM (MEISTER AND BITTNER 2018)
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Sweep 3

25.7.2019124

Input

Sweep 1 Sweep 2

PLOC ALGORITHM (MEISTER AND BITTNER 2018)
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Sweep 3

25.7.2019125

Input

Sweep 1 Sweep 2 Sweep 4

PLOC ALGORITHM (MEISTER AND BITTNER 2018)
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PLOCTREE ARCHITECTURE

Sorting subsystem

Scratchpad

Heap

Merge unit
Block sort

units

Hierarchy emitter

& AABB computer

Stack

Heap

Sorted
AABBs
FIFO

DRAM Input AABBs Mergesort temp Nodes, leafs out

?????
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PLOC SWEEP PIPELINE
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PLOC SWEEP PIPELINE

NN search

Compaction 
and merging
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Sweep 3

28.7.2019129

Input

Sweep 1 Sweep 2 Sweep 4

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

Pipeline so far 

eliminates the 

internal memory 

traffic in a sweep

…But leaves the 

memory traffic 

between sweeps
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MULTIPLE PIPELINES
And multiple sweeps per pipeline

130

Sweep pipeline

(sweeps 1..4)

Sweep pipeline

(sweeps 5..36)

DRAM

Node output
arbiter

AABBs
out

Merge

sorter

FIFOFIFO
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HW BVH BUILDER OVERVIEW

Source: Source information is 8 pt, italic

Algorithm
Tree

quality

Area 

(mm2)

(scaled to 

28nm)

Speedup

(vs. GPU)

DRAM 

traffic 

savings

(v. GPU)

Area 

efficiency

BW

(GB/s)

(Doyle, 2013)
Binned SAH 

sweep
High 12.76 9.4x * ~2-3x ** 14780% * 44

MergeTree LBVH Low 1.77 0.68x 3.3x 23435% 42.7

PLOCTree PLOC Medium 2.43 3.9x 7.7x 97901% 42.7

GTX 1080 610 100% 484

* Sopin (2011) on GTX 480

** HLBVH on GTX 480



132

OPEN PROBLEMS
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OPEN PROBLEMS

Store ~5-6 bit coordinates relative to parent bounding box (Keely 2013, Vaidyanathan 2016)

Problem 1: Have to refit bottom-up, then compress top-down → more expensive refits

Tried to work around this in Viitanen (2017), but it only partly worked out

Problem 2: Nodes are small (8B) relative to cache lines (64B..128B)

→ Have to optimize node placement in cache lines for traversal perf (Liktor 2016)

Keely, Reduced precision hardware for ray tracing, HPG 2013

Vaidyanathan et al., Watertight ray traversal with reduced precision, HPG 2016

Liktor and Vaidyanathan, Bandwidth-efficient BVH layout for incremental hardware traversal, HPG 2016

Viitanen et al., Fast hardware construction and refitting of quantized bounding volume hierarchies, EGSR 2017

Compressed BVHs: Incremental compression
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OPEN PROBLEMS

Compress wide BVHs; store coordinate origin and scale in each node 

(Ylitie 2017, Vaidyanathan 2019)

When shared between enough AABBs, compression ratio is still good

Nodes can be standalone and cache line sized

Problem: How to generate good MBVH layouts fast (even in SW)?

Similar to cache line opt. in incremental compression, but more constraints

…At least does not need to be done on refit

Ylitie et al., Efficient incoherent ray traversal on GPUs through compressed wide BVHs, HPG 2017

Vaidtanathan et al. Wide BVH Traversal with a Short Stack, HPG 2019

Compressed BVHs: The MBVH way Good MBVH

Bad MBVH
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OPEN PROBLEMS

Designs so far are serial pipelines

Can parallelize by having multiple pipelines work on different BLASes, but

BLAS parallelism is limited and depends on workload

Any way to collaborate on the same instance?

HW builder scaling
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CONCLUSION

SW BVH construction is fast enough for AAA games with RT effects and getting faster

But does need some dev effort to get there (e.g. asynch overlapping, geometry culling)

And has some corner cases where it’s easy to hit traversal slowdowns (sharp triangles, loose instance 
grouping, refit from degen)

BVH hardware might give a speedup, but big hurdles left to clear, mainly:

Compressed BVH output

Scaling to multiple pipelines

→ We aren’t done yet

RTX enabled games look like a gold mine for researchers; very different workloads from classic 
builder benchmarks




