’\.

<ANVIDIA. ¢

ACCELERATION DATA STRUCTURE
HARDWARE (AND SOFTWARE)

Timo Viitanen, Jul 27. 2019, SIGGRAPH 2019, LA, USA

OUTLINE _

What is a BVH?
RTX BVH maintenance
State of the art in BVH build hardware

Open problems

DOWN -

2 NVIDIA.

WHAT IS A BVH?

BOUNDING VOLUME
HIERARCHY (BVH)

EETEREr
a e
B
EERRmE s
Aprnanns
o v P
i P
By
AN
P rara
a

2t
A
e
o

S
B i P i Pt P PPy w0 08 o e
i P P P ot

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

BOUNDING VOLUME
HIERARCHY (BVH)

Each node divides a set of
triangles into two child subsets

...And stores their bounding
boxes

Allows roughly O(logn) ray-scene
collision tests

...Before tracing rays, we have to
build a BVH

Tree build is an expensive task
and may sometimes dwarf the
cost of ray tracing

TREE QUALITY

Traversal speed (i.e tree quality)
depends on choice of splits

E.g. random splits >

Quality is related to node AABB
surface area (or related SAH)

Tradeoff curve between fast, low-
quality and slow, high-quality
builders

rd ~
'
.
h—'
-~
.-° .
' Y
- -
¢S ¢ 1 .
] 1 Ao.
"""""" L I8 ~
. AT ~’ e
’ 1 : LN
- ~
: .l ' P s S
[] o I R |
1 ' RS [
- ' 4 LI |
] L]
J]

Given an animation where vertices move but the mesh topology stays the same, we can refit a
BVH instead of rebuilding: just read the new triangle data and recompute bounding boxes.

For example, in RTX refitting is ~10x faster than a full build.

Quality may degrade over a long animation - sometimes trees are periodically refreshed
with a rebuild.

14 NVIDIA.

INSTANCING

Bottom Level Acceleration Structure (BLAS):

BVH of triangles

Top Level Acceleration Structure (TLAS):

BVH of instances with a BLAS reference and
a transform matrix

Instance

Instance

Instance

Instance

INSTANCING

Static geometry - Build once

Instancing - Share a BLAS between objects
Rigid body animation

- Modify the transform matrix

Mesh deformation - Refit

Only run a full rebuild for difficult cases

Instance

Instance

Instance

Instance

RTX BVH
MANAGEMENT

RTX BVH BUILDER

Supports refits and instancing
Perf rules of thumb:

Refit ~1000Mtris/s

Build ~100Mtris/s
Storage ~33B/tri after compaction

Continual optimization: e.g. ca. +36% average build throughput since launch (in internal
benchmark)

18 NVIDIA.

TYPICAL GAME BVH WORKLOAD

60fps game - must fit in small fraction of
16.66ms

Many BLAS FAST_BUILD refits

Many of the BLASes are small, 10s to 1000s
of triangles

TLAS build of ~1000...10000 instances

Already the result of heavy optimization:
geometry culling (BFV), build throttling
(Metro), overlapping other work with BVH

» E.g. In BFV builds took 64 ms on the first
try, optimized down to 1.15 ms
(Shyshkovtsov 2019)

10s
1000s

A

Barrier

BLAS refit

BLAS refit
BLAS refit
BLAS bu1ld
BLAS reflt

BLAS reflt

TLAS build
(High quality)

19

<A NVIDIA.

RTX INSTANCED BUILD PERFORMANCE

Toy benchmark

-)

RTX BUILDER
PERFORMANCE

A single build needs to be very
large to utilize the GPU

2500

2000

1500

Perf (Mtris/s)

1000

500

¢ e o e ¢ o e ¢ —

Build performance (Mtris/s)

/
/
/
/
/
/
/
7/
~
- . =
R -
1000 10000 100000

Instance size (tris)

— - =Single HQ build — - =Single LQ refit

.— 170.3

1000000

Build performance (BLAS+TLAS) (Mtris/s)

2500

RTX BUILDER
PERFORMANCE

1500

Perf (Mtris/s)

A single build needs to be very 1000
large to utilize the GPU

Groups of smaller BLAS builds stay 500
efficient down to ~1000tri

instances (~5000 for refits). With

smaller instances, performance

starts to fall off. 0

10 100 1000 10000 100000 1000000
Instance size (tris)

— - =Single LQrefit ——— LQ refits, 500k tris

2500

RTX BUILDER
PERFORMANCE

Toy benchmark 1500

Perf (Mtris/s)

A single build needs to be very
large to utilize the GPU

1000

Groups of smaller BLAS builds stay 500
efficient down to ~1000tri

instances (~5000 for refits). With

smaller instances, performance

starts to fall off. 0

10

Build performance (BLAS+TLAS) (Mtris/s)

100

e C emmm ¢ e ¢ e ¢ G ¢ e ¢ Smm— e

1000

. —

10000

Instance size (tris)

— - =Single LQ refit

— LQ refits, 500k tris

100000

1000000

Build performance (BLAS+TLAS) (Mtris/s)

2500

RTX BUILDER
PERFORMANCE

Toy benchmark 1500

Perf (Mtris/s)

A single build needs to be very
large to utilize the GPU

1000

Groups of smaller BLAS builds stay 500
efficient down to ~1000tri

instances (~5000 for refits). With

smaller instances, performance

starts to fall off. 0

as™
10 100 1000 10000 100000 1000000
Instance size (tris)

— - =Single LQ refit ——— LQ refits, 500k tris

500K tri build perf (BLAS+TLAS) (Mtris/s)

2500

Efficient refits in

SMALL BUILD/REFIT== 431.36
OPTIMIZATIONS

1500

Perf (Mtris/s)

New optimizations in recent driver
(431.36) : heavily improved 1000
performance on batches of small

builds.

500

So far supports FAST_BUILD refits

10 100 1000 10000 100000 1000000
Instance size (tris)

----- LQ refits, 500k tris e | () refits, 500k tris, batching

500K tri build perf (BLAS+TLAS) (Mtris/s)

Efficient builds in 431.36
\

SMALL BUILD/REFIT" |
OPTIMIZATIONS ..

300

Perf (Mtris/s)

New optimizations in recent driver
(431.36) : heavily improved
performance on batches of small 200
builds.

100

So far supports FAST_BUILD refits
(and builds below a size threshold) _-7

-
- =
= =

10 100 1000 10000 100000 1000000
Instance size (tris)

— — = LQ builds, 500k tris == | Q builds, 500k tris, batching

OVERLAPPING

BVH builds have low utilization

Overlap asynchronous compute and graphics
work to hide BVH maintenance

> Used in e.g. BFV, Metro

Improved in Turing: can run graphics and
compute concurrently in the same SM

10s
1000s

Barrier

BLAS refit
BLAS refit
BLAS refit

BLAS refit

TLAS build

(High quality)

Compute/graphics shaders

27

<A NVIDIA.

£
.

-
<ANVvIDIA. ¢

RTX BVH MANAGEMENT

Difficult cases

INSTANCE GROUPING

How to group geometry into BVH instances?

Adding RT effects to a rasterized game >
convert drawcalls to instances? Both have
geometry + shader program.

-1 instance per material shader?

INSTANCE PARTITIONING

Group by material, example instances

- W HHHHHH A7
e aaend paaA
/ ‘-..l =0 I‘ %ﬂﬂﬂ %

‘ L
. S Els e e

Instance 1 Instance 2 Instance 3 Instance 4

INSTANCE GROUPING

Group by material

Large, overlapping instance bounds with
much empty space

Many instance hits (have to transform
ray to object coordinates for each hit
instance)

Bad TLAS quality

INSTANCE GROUPING

BVH instancing works better with discrete
physical objects as instances

Note: Can still have multiple geometries in
a BLAS with different material shaders

(Open question: how to make a builder
robust to instance grouping)

Base

600 800

400
Frame

200

(sw) awy sAeyyoiedsiq

ot . 14 I _Ml
3}. DT u_ r :\ 5

il

Loy LT | I D _D
AN N o

A | v (3 : \ n |
- { | \ |)
A | f / | | | N N
o 1] Bm?] | | T I X
e] ! | |
| Ui | ||
| { \ ({
{ { il |
; Al 4 ALY / il { \ 5 } N
4 /]

Base

SHARP TRIANGLES, DISPATCHRAYS() 0.5MS..3MS

LONG, NARROW
TRIANGLES

When not axis-aligned, long, narrow triangles have large
AABBs that catch many false-positive rays

— A BLAS with enough such triangles can hurt RT perf

Can be mitigated by triangle splitting - but limited split
budget, so too many sharp triangles overload the mechanism

(Very rare corner case, but hit in one real game workload)

LONG, NARROW TRIANGLES

93
rx
T
)
—_
©
e
O

ﬂ.’.]uﬁgnjﬂ!@.
nbBEDG0D
D-Dmuumm
hD 3 N _j D\D ju
EEFDDDt

DQIHUID

SP{pnig ey gy
Dmﬂmﬂuma

T

REFIT FROM
DEGENERATES

Extra difficult case of heavily deformed
refitting: build degenerate geometry with
no spatial information whatsoever, then
refit

Often shows up in game particle effects

Works OK with ~tens of triangles

(0,0,0)

Build degenerate geometry

Refit into visible triangles

2000 PARTICLES, REBUILD EVERY FRAME, TRACERAYS() 0.5MS

2000 PARTICLES, EVERY FRAME, TRACERAYS() 0.5 »>

RTX BVH SUMMARY

The RTX BVH builder is powering ray tracing in AAA games, and has been improving rapidly
Builds are often almost free due to asynch overlapping

Limitations:
Application side optimization needed; can’t rebuild all geometry every frame

Some corner cases must be currently worked around application side
(Some might in the future be handled by the driver)

—~>Not done yet!

39 NVIDIA.

BVH CONSTRUCTION
HARDWARE

MOTIVATION

Would always be nice to have much more raw build performance

Fixed-function accelerators can be 2—3 orders of magnitude faster (in perf per silicon area)
and more energy-efficient than SW on a general-purpose processor (Hameed 2010)

...But we are comparing against GPU SW and running a memory-intensive algorithm, so not
going to get that much

If HW accelerating a memory-intensive algorithm, might get more efficient on-chip
computation but the same memory accesses - maybe no gains at all

- All recent research on ray tracing HW revolves around optimizing DRAM traffic

41 NVIDIA.

DRAM ACCESS COST

Energy and bandwidth usage

64-bit multiply-add 64 pJ
Read/store register data 6 pJ
Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

S. Borkar, Intel, 32nm technology ca. 2010

High end gaming GPUs 2008-2018

—=—GFLOPS/s —e—MB /s
14000

12000
10000
8000
6000
4000

2000

A

0

2000

1500

1000

%500
y

0

2008 2009 2010 2011 2012 2012 2013 2014 2015 2016 2017 2018

42

<A NVIDIA.

BANDWIDTH-SAVING HARDWARE DESIGN

A CUDA program often has multiple kernel
launches which communicate through Kernel @ Kernel i Kernel
intermediate data buffers.

In HW, maybe the same algorithm can be DRAM Input = Buffer | Buffer | Output
expressed as serial HW pipelines communicating

through on-chip FIFOs, saving DRAM traffic.

(Note: often the CUDA program can be improved DRAM Input
in the same way)

43 <ANVIDIA.

TREE UPDATE HARDWARE

Small field, ~10 papers
k-D tree builders (Nah, 2014; Liu, 2015)
Refitter units (Nah, 2015; Woop, 2006)
Imagination Technologies SHG (McCombe 2014)
Binned SAH sweep unit (Doyle, 2013)
MergeTree (Viitanen, 2015)
PLOCTree (Viitanen, 2018)

44 NVIDIA.

Small field, ~10 papers

>

»

»

v

v

v

TREE UPDATE

k-D tree builders (Nah, 2014; Liu, 2015)
Refitter units (Nah, 2015; Woop, 2006)
Imagination Technologies SHG (McCombe 2014)
Binned SAH sweep unit (Doyle, 2013)
MergeTree (Viitanen, 2015)

PLOCTree (Viitanen, 2018)

HARDWARE

k-D tree builds are too expensive

Refitters are interesting, but
not described in much detail -
parts of larger RT systems

Very interesting and exotic

architecture by a GPU vendor -
but not much information out

= We’ll look at these

45 <ANVIDIA.

HARDWARE TREE BUILDERS:
» BINNED SAH (DOYLE, 2013)

BINNED SAH SWEEP

(4 bins)

Split candidate 1

Split candidate 2

Split candidate 3

BINNED SAH SWEEP

(4 bins)

Split candidate 1

Split candidate 2

Split candidate 3

BINNED SAH SWEEP

(4 bins)

Split candidate 1 Split candidate 2 Split candidate 3

Partition

Bin AABBs Split decision

Input Output

BINNED SAH HW

(Doyle, 2013)

Memory optimizations: SRAM

Split decision

Pipeline partitioning with binning and SAH
computation for the child partitions (one
pass over input data instead of two) Bin&SAH, left

When partition size drops small enough, Partiti
: : hi artition
handle it completely in on-chip memory Bin&SAH, right

Mem traffic 2-3x less than HLBVH, a

cheaper algorithm; far faster than GPU
binned SAH DRAM Input = Output

Downside: expensive, many FPUs

HARDWARE TREE BUILDERS:
sMERGETREE (VIITANEN, 2015)

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

.4
« b

AABB computation

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation
Sorting
Hierarchy emission

AABB computation

<

A
-
4

A

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation

Sorting

Hierarchy emission

AABB computation

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation
Sorting
Hierarchy emission

AABB computation

e]

e e = e ———

e e A e e

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Morton code computation
Sorting
Hierarchy emission

AABB computation

0000

.| 0001 | i | 0100 | | | 0101

56

<A NVIDIA.

LBVH ALGORITHM (LAUTERBACH ET

Morton code computation
Sorting
Hierarchy emission

AABB computation

AL. 2009)
0000 | |
. i
W 1 1
___________? ______________________ __‘_‘f _____________
: 0110 % | | 0111
s L
_\‘-‘/*\‘.‘, _____
1000 | =
%
----------- }—PP—
1010 % 1011 .

<A NVIDIA.

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission

0000
o 0 0 0 1 1 1 .
010111110100 B dadics: (Gl
o 1 1 1 0 1 1 —
o 1 0 1 0 o0 1| Ll | ARy s |

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission 0000

O | 1O | =
_ e O ==

1
0
0
0

o O O O

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission 0000

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission 0000

0110

0111

0 O
o 1
1 1
1 0

1010 1011 g

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission 0000

0110

0111

0 O
o 1
1 1
1 0

----------- }-- B e~ o IS A
1010 £% 1011 %, i

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission
0O 0 O0om
O N1 1
1 1
1 1

1
0

0000

1010 1011 g

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

Hierarchy emission

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

AABB computation

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

AABB computation

0}(1
I/ﬁ
Loy ol

PRI

- \O O

1
0
1
1

o/ O -

o O O O

—

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

AABB computation

0 0 0 om1 1 1
0 0%1 1 W 0 0
i N
0% 1 M 1 O0&1 1

N
o/\1 o=1 o 0= 1

a

LBVH ALGORITHM (LAUTERBACH ET AL. 2009)

AABB computation

LBVH

A halfway split along a predetermined axis LBVH only looks at triangle centroids and
is probably not the best one has no idea of their shape: the triangles
below are treated as identical

(One attempt to help this: extended Morton
codes (Vinkler et al. 2017))

69 NVIDIA.

MERGETREE ARCHITECTURE

Sorting subsystem
Hierarchy emitter

Sorted
AABBs
Block ¢ FIFO
OCK SO Merge unit (1T Stack
units

DRAM Input AABBs Mergesort temp Nodes, leafs out

MERGETREE ARCHITECTURE

Sorting subsystem
Hierarchy emitter

& AABB computer
Sorted

AABBs
FIFO

— 1T} —
Single pass from sorted
AABBs to output BVH

- Multi-way mergesort
(optimal for DRAM traffic,
gives outputs in sorted order)

DRAM Input AABBs Mergesort temp Nodes, leafs out

71

<A NVIDIA.

Streaming Hierarchy Emission

MERGETREE

~10x smaller than silicon area binned SAH; ~5x faster builds, ~3x less DRAM traffic
...But quality is much worse
Straight HW implementation of GPU algorithm would have ~2.5x more traffic

Single pipeline doesn’t quite catch up to a high/end GPU running SW LBVH but comes close
(0.68x speed)

74 NVIDIA.

HARDWARE TREE
BUILDERS: PLOCTREE

MODERN GPU BVH BUILDERS

Binned SAH is high-quality but expensive SBVH Recent SW
| @ methods
LBVH is cheap but low-quality Binned SAH
®

Recent GPU builders often try to start with Morton
code sorting or full LBVH, and then improve quality

Tree
E.g. HLBVH (Pantaleoni and Luebke 2010), TRBVH quality
(Karras 2013), ATRBVH (Domingues and Pedrini LBVH
2015), PLOC (Meister and Bittner 2018). -

PLOC looks suitable for HW implementation

Build

—>Adapt to a HW architecture, PLOCTree speed

76 NVIDIA.

PLOC pass: 1 Input size: 69666

PLOC

PLOC pass: 2 Input size: 40184

PLOC

PLOC pass: 3 Input size: 29322

PLOC

PLOC pass: 4 Input size: 22614

PLOC

PLOC pass: 5 Input size: 17726

PLOC

PLOC pass: 6 Input size: 13833

PLOC

PLOC pass: 7 Input size: 10879

PLOC

PLOC pass: 8 Input size: 8535

PLOC

PLOC pass: 9 Input size: 6652

PLOC

PLOC pass: 10 Input size: 5182

PLOC

PLOC pass: 11 Input size: 4064

PLOC

PLOC pass: 12 Input size: 3179

PLOC

[

2me
T

PLOC pass: 13 Input size: 2504

PLOC

il i

oo e g

PLOC pass: 14 Input size: 1977

PLOC

PLOC pass: 15 Input size: 1557

PLOC

PLOC pass: 16 Input size: 1218

PLOC

PLOC pass: 17 Input size: 959

PLOC

PLOC pass: 18 Input size: 742

PLOC

| TELL 1) LS
VARV O R

iR
& =

PLOC pass: 19 Input size: 585

PLOC

=

PLOC pass: 20 Input size: 454

PLOC

PLOC pass: 21 Input size: 349

PLOC

PLOC pass: 22 Input size: 259

PLOC

PLOC pass: 23 Input size: 200

PLOC

PLOC pass: 24 Input size: 150

PLOC

PLOC pass: 25 Input size: 112

PLOC

—i T

PLOC pass: 26 Input size: 87

PLOC

PLOC pass: 27 Input size: 69

PLOC

PLOC pass: 28 Input size: 55

PLOC

PLOC pass: 29 Input size: 43

PLOC

PLOC pass: 30 Input size: 34

PLOC

PLOC pass: 31 Input size: 25

PLOC

PLOC pass: 32 Input size: 20

PLOC

PLOC pass: 33 Input size: 17

PLOC

PLOC

PLOC pass: 35 Input size: 13

PLOC

PLOC pass: 36 Input size: 11

PLOC

PLOC

PLOC pass: 37

Input size: 9

|
/]

{/—

AN

PLOC pass: 38 Input size: 7

PLOC

X

==

|
/]

PLOC pass: 39 Input size: 5

PLOC

PLOC pass: 40

PLOC

PLOC pass: 41 Input size: 2

PLOC

PLOC

dPLOC ALGORITHM (MEISTER AND BITTNER 2018)

input \«Ie’ R
4

l

20014 A |
$

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

W e

Input

>444‘>>4>
YT

IIIIIIIIII

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

N\

Input g

N\e‘ge 00((\
A—A

20014 A |
$

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

A\ N\e‘g

Input

o

2R 14 |
¥

Sweep 1

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

Input ROY (& &
o <© 2 Q o 2 %‘\e(ge Oo“\Qa

2R 14 |

Sweep 1 Sweep 2

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

Input 28 & S
> >
$$ < \ e(ge C)O((\Q $$ ® \ e(g OO‘(\Q

»

»

2R 14 |
$

Sweep 1 Sweep 2 Sweep 3

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

Input RN & & £ 5
$ $ ge “\e‘g 0 $ $ 68'3 \‘\e(g Oo ‘(\Qa $$ =2 @G‘g C 0 $$ 154 @e‘ge

Sweep 1 Sweep 2 Sweep 3 Sweep 4

2R 14 |

PLOCTREE ARCHITECTURE

Sorting subsystem

Scratchpad Sorted
AABBs
Block sort FIFO
OCH SOF Merge unit EEE eeen —]
units

DRAM Input AABBs Mergesort temp Nodes, leafs out

PLOC SWEEP PIPELINE

PLOC sweep pipeline

Output nodes
to memory

11

Output leafs
to memory

Output AABBs
to memory /
next pipeline

Window memory Distance metric Comparator
subsystem evaluators tree Postprocessing
SRAMs Barrel shifter
(17KB) network
sram] B N] » T >
% W W £ I S N
- HIH I/ «
Input AABBs =g] 4/ = neighbor
from sorter [—)ﬂ[’ | | _\L el ﬂ// » memaory
memory / -F =] > > (2KB)
prev pipeline LA L= »>
: i > > gA% = > oin boxes or Request
A] = - > loi q
meZ =] » = »| bypass to next [node/leaf g W
g ¥ ~—] > > > iteration address [
| > > y
> > AABB
1] W > \ > memory
Hran B B BSS > \ > (32KB)
. L k-
L 0
Y

to address counter unit

127 NVIDIA.

PLOC SWEEP PIPELINE

PLOC sweep pipeline

Input AABBs
from sorter /
memory /
prev pipeline

T+

Window memory Distance metric Comparator
subsystem evaluators tree Postprocessing
SRAMs Barrel shifter
(17KB) network
sram > T (] > dme >
> AT >—F >
> || | | \\i > ﬂr > Nearest
ol i ~ > W > neighbor Output nodes
L. . k- p
o |)r | \L > //// : "}f;fl?glf)' to memory
.:_ :/ : ::‘-;t ; ; >{111
> %] 3 > Output leafs
> | TACA | > » Join boxes or Request to memory
L. H’f\- L. . L.
all | | N~ r > bypass to next > node/leaf >[1T1]
- b k. . N
- Hygva ~—| = = » iteration address [Output AABBs
>4 W : sext et
> — > T > AABB pip
> | | | > i\ > memory >[11]
> U > \ > (32KkB)
k. . k.

to address counter unit

128 <A NVIDIA.

PLOC ALGORITHM (MEISTER AND BITTNER 2018)

Input R < S & &
2 o
O 00‘°Q W e o W e 00‘“Q W e

...But leaves the
memory traffic
between sweeps

Pipeline so far
eliminates the

internal memory
traffic in a sweep

2R 14 |
) 4

Sweep 1 Sweep 2 Sweep 3 Sweep 4

129 < NVIDIA.

Merge
sorter

MULTIPLE PIPELINES

And multiple sweeps per pipeline

FIFO

Sweep pipeline
(sweeps 1..4)

FIFO Sweep pipeline AABBs

(sweeps 5..36) out

Node output
arbiter

HW BVH BUILDER OVERVIEW

(Doyle, 2013) A High 12.76 9.4x * ~2-3x ** 14780% * 44
sweep

MergeTree LBVH Low 1.77 0.68x 3.3x 23435% 42.7

2.43 3.9x 7.7x 97901% 42.7

PLOCTree Medium

GTX 1080 610 100% 484

* Sopin (2011) on GTX 480

**HLBVH on GTX 480

Source: Source information is 8 pt, italic

OPEN PROBLEMS

OPEN PROBLEMS

Store ~5-6 bit coordinates relative to parent bounding box (Keely 2013, Vaidyanathan 2016)
Problem 1: Have to refit bottom-up, then compress top-down - more expensive refits

Tried to work around this in Viitanen (2017), but it only partly worked out
Problem 2: Nodes are small (8B) relative to cache lines (64B..128B)

- Have to optimize node placement in cache lines for traversal perf (Liktor 2016)

Keely, Reduced precision hardware for ray tracing, HPG 2013

Vaidyanathan et al., Watertight ray traversal with reduced precision, HPG 2016

Liktor and Vaidyanathan, Bandwidth-efficient BVH layout for incremental hardware traversal, HPG 2016
Viitanen et al., Fast hardware construction and refitting of quantized bounding volume hierarchies, EGSR 2017

133

NVIDIA.

OPEN PROBLEMS

Compressed BVHs: The MBVH way

Compress wide BVHs; store coordinate origin and scale in each node
(Ylitie 2017, Vaidyanathan 2019)
When shared between enough AABBs, compression ratio is still good
Nodes can be standalone and cache line sized
Problem: How to generate good MBVH layouts fast (even in SW)?
Similar to cache line opt. in incremental compression, but more constraints

...At least does not need to be done on refit

Ylitie et al., Efficient incoherent ray traversal on GPUs through compressed wide BVHs, HPG 2017

Vaidtanathan et al. Wide BVH Traversal with a Short Stack, HPG 2019

Good MBVH

Bad MBVH

Z
b2 e

134 <A NVIDIA.

OPEN PROBLEMS

Designs so far are serial pipelines
Can parallelize by having multiple pipelines work on different BLASes, but
BLAS parallelism is limited and depends on workload

Any way to collaborate on the same instance?

135 NVIDIA.

CONCLUSION

SW BVH construction is fast enough for AAA games with RT effects and getting faster
But does need some dev effort to get there (e.g. asynch overlapping, geometry culling)

And has some corner cases where it’s easy to hit traversal slowdowns (sharp triangles, loose instance
grouping, refit from degen)

BVH hardware might give a speedup, but big hurdles left to clear, mainly:
Compressed BVH output
Scaling to multiple pipelines

- We aren’t done yet

RTX enabled games look like a gold mine for researchers; very different workloads from classic
builder benchmarks

136

NVIDIA.

R J

<ANVIDIA

N

\

&
i

|
:
! l |
4 / : A - | . i
/ N
A4 S X
\‘\ 4 7
h -
>
// '
4./ ““\(
’ ,
/
‘ ,
,
7,
| A/‘r-n —
»

