© IVIDIA.

My favorite Samples

Alexander Keller

Schedule

Course web page at https://sites.google.com/view/myfavoritesamples

- 9:00 My favorite Samples
- Alexander Keller, NVIDIA
- 9:40 Progressive Multi-Jittered Sequences
- Per Christensen, Pixar
- 10:15 Warp and Effect
- Matt Pharr, NVIDIA
- break
- 11:05 Low-Discrepancy Blue Noise Sampling
- Abdalla Ahmed, King Abdulla University and Victor Ostromoukhov, Université Claude Bernard Lyon 1
- 11:40 Blue-Noise Dithered Sampling
- Iliyan Georgiev, Autodesk

My favorite Samples

For modeling

- discrete density approximation

Figure 3: Comparison of different input distributions with a point distribution and a grayscale ramp. From top to bottom: Poisson distribution, Halton sequence, Sobol sequence and hierarchical Poisson disk sequence.

Figure 7: Rendering of the Lena image using hatching and cross hatching. Primary strokes are aligned perpendicular to the gradient in regions of strong gradients and at a 45° angle in areas where the gradient is small.

My favorite Samples

For approximation

- displays and textures represented by rank-1 lattices

- Image Synthesis by Rank-1 Lattices
- Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

My favorite Samples

For approximation

- displays and textures represented by rank-1 lattices

- Image Synthesis by Rank-1 Lattices
- Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

My favorite Samples

For simulation

- Fourier transform on rank-1 lattices

- Simulation on Rank-1 Lattices

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x
$$

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

My favorite Samples

For integration

- Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
\int_{[0,1)^{s}} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

My favorite Samples

For integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Random or Deterministic?

What matters

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize

Random or Deterministic?

What matters

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- unbiased
- zero difference between expectation and mathematical object
- not sufficient for convergence

Random or Deterministic?

What matters

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- biased
- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency

Random or Deterministic?

What matters

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- biased
- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency
- consistent
- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm

Random or Deterministic?

What matters

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- biased
- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency
- consistent
- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm

Numerical Integration and Integro-Approximation

Sampling

- transform your problem onto the s-dimensional unit cube $[0,1)^{s}$
- generate uniformly distributed points in $[0,1)^{s}$
- pseudo random numbers
- points with blue noise characteristic (on the unit torus)
- compute your averages

Numerical Integration and Integro-Approximation

Sampling

- transform your problem onto the s-dimensional unit cube $[0,1)^{s}$
- generate uniformly distributed points in $[0,1)^{s}$
- pseudo random numbers
- points with blue noise characteristic (on the unit torus)
- radical inverse based points
- rank-1 lattice
- compute your averages

Numerical Integration and Integro-Approximation

Sampling

- transform your problem onto the s-dimensional unit cube $[0,1)^{s}$
- generate uniformly distributed points in $[0,1)^{s}$
- pseudo random numbers
- points with blue noise characteristic (on the unit torus)
- radical inverse based points and randomizations
- rank-1 lattice and randomizations
- compute your averages

Quasi-Monte Carlo Points

Quasi-Monte Carlo Points

Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

- random

Quasi-Monte Carlo Points

Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

- random

- stratified random

Quasi-Monte Carlo Points

Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

- random

- stratified random

- deterministic low discrepancy

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
\Phi_{b}: \mathbb{N}_{0} & \rightarrow \mathbb{Q} \cap[0,1) \\
i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} & \mapsto
\end{aligned} \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1} .
$$

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
\Phi_{b}: \mathbb{N}_{0} & \rightarrow \mathbb{Q} \cap[0,1) \\
i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} & \mapsto \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1}, \text { e.g. } \Phi_{2}(i) \equiv
\end{aligned}
$$

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
& \Phi_{b}: \mathbb{N}_{0} \rightarrow \mathbb{Q} \cap[0,1) \\
& i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} \mapsto \\
& \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1}, \text { e.g. } \Phi_{2}(i) \equiv
\end{aligned}
$$

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
& \Phi_{b}: \mathbb{N}_{0} \rightarrow \mathbb{Q} \cap[0,1) \\
& i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} \mapsto \\
& \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1}, \text { e.g. } \Phi_{2}(i) \equiv
\end{aligned}
$$

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
\Phi_{b}: \mathbb{N}_{0} & \rightarrow \mathbb{Q} \cap[0,1) \\
i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} & \mapsto \quad \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1}, \text { e.g. } \Phi_{2}(i) \equiv
\end{aligned}
$$

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
\Phi_{b}: \mathbb{N}_{0} & \rightarrow \mathbb{Q} \cap[0,1) \\
i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} & \mapsto \quad \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1}, \text { e.g. } \Phi_{2}(i) \equiv
\end{aligned}
$$

- properties
- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
\Phi_{b}: \mathbb{N}_{0} & \rightarrow \mathbb{Q} \cap[0,1) \\
i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} & \mapsto \quad \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1} \text {, e.g. } \Phi_{2}(i) \equiv 0
\end{aligned}
$$

- properties
- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
\Phi_{b}: \mathbb{N}_{0} & \rightarrow \mathbb{Q} \cap[0,1) \\
i=\sum_{l=0}^{\infty} a_{l}(i) b^{\prime} & \mapsto \quad \Phi_{b}(i):=\sum_{l=0}^{\infty} a_{l}(i) b^{-l-1}, \text { e.g. } \Phi_{2}(i) \equiv
\end{aligned}
$$

- properties
- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)
- contiguous blocks of stratified points x_{i} for $k b^{m} \leq i<(k+1) b^{m}-1$
- for each block the $\Phi_{b}(i)$ are equidistant
- for each block the integers $\left\lfloor b^{m} \Phi_{b}(i)\right\rfloor$ are a permutation of $\left\{0, \ldots, b^{m}-1\right\}$

Quasi-Monte Carlo Points

Radical inversion

- van der Corput sequence in base b

$$
\begin{aligned}
& \Phi_{b}: \mathbb{N}_{0} \rightarrow \mathbb{Q} \cap[0,1)
\end{aligned}
$$

- properties
- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)
- contiguous blocks of stratified points x_{i} for $k b^{m} \leq i<(k+1) b^{m}-1$
- for each block the $\Phi_{b}(i)$ are equidistant
- for each block the integers $\left\lfloor b^{m} \Phi_{b}(i)\right\rfloor$ are a permutation of $\left\{0, \ldots, b^{m}-1\right\}$

Quasi-Monte Carlo Points

Halton sequence and Hammersley points

- let the b_{j} be co-prime, for example the j-th prime number

Halton sequence

$$
x_{i}:=\left(\Phi_{b_{1}}(i), \ldots, \Phi_{b_{s}}(i)\right)
$$

$$
\left(\Phi_{2}(i), \Phi_{3}(i)\right)_{i=0}^{63}
$$

- contiguous blocks of stratified points x_{i} for $k \prod_{j=1}^{s} b_{j}^{m_{j}} \leq i<(k+1) \prod_{j=1}^{s} b_{j}^{m_{j}}-1$

Quasi-Monte Carlo Points

Halton sequence and Hammersley points

- let the b_{j} be co-prime, for example the j-th prime number

Halton sequence

$$
x_{i}:=\left(\Phi_{b_{1}}(i), \ldots, \Phi_{b_{s}}(i)\right)
$$

$\left(\Phi_{2}(i), \Phi_{3}(i)\right)_{i=0}^{63}$

Hammersley point sets

$$
x_{i}:=\left(\frac{i}{n}, \Phi_{b_{1}}(i), \ldots, \Phi_{b_{s-1}}(i)\right)
$$

$$
\left(\frac{i}{64}, \Phi_{2}(i)\right)_{i=0}^{63}
$$

- contiguous blocks of stratified points x_{i} for $k \prod_{j=1}^{s} b_{j}^{m_{j}} \leq i<(k+1) \prod_{j=1}^{s} b_{j}^{m_{j}}-1$

Quasi-Monte Carlo Points

Halton sequence and Hammersley points

- let the b_{j} be co-prime, for example the j-th prime number

Halton sequence

$$
x_{i}:=\left(\Phi_{b_{1}}(i), \ldots, \Phi_{b_{s}}(i)\right)
$$

$$
\left(\Phi_{17}(i), \Phi_{19}(i)\right)_{i=0}^{63}
$$

Hammersley point sets

$$
x_{i}:=\left(\frac{i}{n}, \Phi_{b_{1}}(i), \ldots, \Phi_{b_{s-1}}(i)\right)
$$

$$
\left(\frac{i}{64}, \Phi_{2}(i)\right)_{i=0}^{63}
$$

- correlations in low dimensional projections

Quasi-Monte Carlo Points

Halton sequence and Hammersley points

- let the b_{j} be co-prime, for example the j-th prime number

Halton sequence

$$
x_{i}:=\left(\Phi_{b_{1}}(i), \ldots, \Phi_{b_{s}}(i)\right)
$$

$$
\left(\Phi_{17}(i), \Phi_{19}(i)\right)_{i=0}^{63}
$$

Hammersley point sets

$$
x_{i}:=\left(\frac{i}{n}, \Phi_{b_{1}}(i), \ldots, \Phi_{b_{s-1}}(i)\right)
$$

$$
\left(\frac{i}{64}, \Phi_{2}(i)\right)_{i=0}^{63}
$$

- correlations in low dimensional projections

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

- stratification invariant under scrambling
- many variants, simplifications, and generalizations
- example: unit square $[0,1)^{2}$

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

- stratification invariant under scrambling
- many variants, simplifications, and generalizations
- example: xor-scrambling bit 1 of x

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

- stratification invariant under scrambling
- many variants, simplifications, and generalizations
- example: xor-scrambling bit 2 of x

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

- stratification invariant under scrambling
- many variants, simplifications, and generalizations
- example: xor-scrambling bit 3 of x

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

- stratification invariant under scrambling
- many variants, simplifications, and generalizations
- example: xor-scrambling all bits of x

Quasi-Monte Carlo Points

Scrambling

- algorithm: start with $H=I^{s}$ and for each axis j

1. slice H into b_{j} equally sized volumes $H_{1}, H_{2}, \ldots, H_{b_{j}}$ along the axis
2. permute these volumes
3. for each H_{h} recursively repeat the procedure with $H=H_{h}$

- stratification invariant under scrambling
- many variants, simplifications, and generalizations
- example: xor-scrambling all bits of x and y

Quasi-Monte Carlo Points

Scrambled radical inversion

- example: deterministic permutations σ_{b} by Faure

$$
i=\sum_{j=0}^{\infty} a_{j}(i) b^{j} \mapsto \sum_{j=0}^{\infty} \sigma_{b}\left(a_{j}(i)\right) b^{-j-1}
$$

Quasi-Monte Carlo Points

Scrambled radical inversion

- example: deterministic permutations σ_{b} by Faure

$$
i=\sum_{j=0}^{\infty} a_{j}(i) b^{j} \mapsto \sum_{j=0}^{\infty} \sigma_{b}\left(a_{j}(i)\right) b^{-j-1}
$$

- b is even: Take $2 \sigma_{\frac{b}{2}}$ and append $2 \sigma_{\frac{b}{2}}+1$
- b is odd: Take σ_{b-1}, increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

Quasi-Monte Carlo Points

Scrambled radical inversion

- example: deterministic permutations σ_{b} by Faure

$$
i=\sum_{j=0}^{\infty} a_{j}(i) b^{j} \mapsto \sum_{j=0}^{\infty} \sigma_{b}\left(a_{j}(i)\right) b^{-j-1}
$$

- b is even: Take $2 \sigma_{\frac{b}{2}}$ and append $2 \sigma_{\frac{b}{2}}+1$
- b is odd: Take σ_{b-1}, increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

$$
\begin{array}{ccc}
\sigma_{2} & = & (0,1) \\
\sigma_{3} & = & (0,1,2) \\
\sigma_{4} & = & (0,2,1,3) \\
\sigma_{5} & = & (0,3,2,1,4) \\
\sigma_{6} & = & (0,2,4,1,3,5)
\end{array}
$$

Quasi-Monte Carlo Points

Scrambled radical inversion

- example: deterministic permutations σ_{b} by Faure

$$
i=\sum_{j=0}^{\infty} a_{j}(i) b^{j} \mapsto \sum_{j=0}^{\infty} \sigma_{b}\left(a_{j}(i)\right) b^{-j-1}
$$

- b is even: Take $2 \sigma_{\frac{b}{2}}$ and append $2 \sigma_{\frac{b}{2}}+1$
- b is odd: Take σ_{b-1}, increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

σ_{2}	$=$	$(0,1)$
σ_{3}	$=$	$(0,1,2)$
σ_{4}	$=$	$(0,2,1,3)$
$\rightarrow \quad \sigma_{5}$	$=(0,3,2,1,4)$	
σ_{6}	$=$	$(0,2,4,1,3,5)$

Quasi-Monte Carlo Points

Efficient generation of the Faure-scrambled radical inverse

```
double RadicalInverse(const int Base, int i)
{
    double Digit, Radical, Inverse = 0.0;
    Digit = Radical = 1.0 / (double) Base;
    while(i)
    {
        Inverse += Digit * (double) (i % Base);
        Digit *= Radical;
        i /= Base;
    }
    return Inverse;
}
```


Quasi-Monte Carlo Points

Efficient generation of the Faure-scrambled radical inverse

```
double IntegerRadicalInverse(int Base, int i)
{
    int numPoints, inverse;
    numPoints = 1;
    for(inverse = 0; i > 0; i /= Base)
    {
        inverse = inverse * Base + (i % Base);
        numPoints = numPoints * Base;
    }
    return (double) inverse / (double) numPoints;
}
```


Quasi-Monte Carlo Points

Efficient generation of the Faure-scrambled radical inverse

- compact branchless code using one look-up table for multiple digits
- example: $\sigma_{5}=(0,3,2,1,4)$

$$
\sigma_{5} \times \sigma_{5}=\left(\begin{array}{ccccc}
(0,0) & (0,3) & (0,2) & (0,1) & (0,4) \\
(3,0) & (3,3) & (3,2) & (3,1) & (3,4) \\
(2,0) & (2,3) & (2,2) & (2,1) & (2,4) \\
(1,0) & (1,3) & (1,2) & (1,1) & (1,4) \\
(4,0) & (4,3) & (4,2) & (4,1) & (4,4)
\end{array}\right)
$$

Quasi-Monte Carlo Points

Efficient generation of the Faure-scrambled radical inverse

- compact branchless code using one look-up table for multiple digits
- example: $\sigma_{5}=(0,3,2,1,4)$

$$
\sigma_{5} \times \sigma_{5}=\left(\begin{array}{ccccc}
(0,0) & (0,3) & (0,2) & (0,1) & (0,4) \\
(3,0) & (3,3) & (3,2) & (3,1) & (3,4) \\
(2,0) & (2,3) & (2,2) & (2,1) & (2,4) \\
(1,0) & (1,3) & (1,2) & (1,1) & (1,4) \\
(4,0) & (4,3) & (4,2) & (4,1) & (4,4)
\end{array}\right) \cong\left(\begin{array}{ccccc}
0 & 3 & 2 & 1 & 4 \\
25 & 28 & 27 & 26 & 29 \\
10 & 13 & 12 & 11 & 14 \\
5 & 8 & 7 & 6 & 9 \\
20 & 23 & 22 & 21 & 24
\end{array}\right)
$$

Quasi-Monte Carlo Points

Efficient generation of the Faure-scrambled radical inverse

- compact branchless code using one look-up table for multiple digits
- example: $\sigma_{5}=(0,3,2,1,4)$, for $b=5$ and 3 digits, i.e. $\sigma_{5} \times \sigma_{5} \times \sigma_{5}$

```
static const unsigned short perm5[] = { 0, 75, 50, 25, 100, 15, 90, 65, 40, 115, 10, 85, 60, 35, 110, 5, 80, 55, \(30,105,20,95,70,45,120,3,78,53,28,103,18,93,68,43,118,13,88,63,38,113,8,83,58,33,108\), \(23,98,73,48,123,2,77,52,27,102,17,92,67,42,117,12,87,62,37,112,7,82,57,32,107,22,97\), \(72,47,122,1,76,51,26,101,16,91,66,41,116,11,86,61,36,111,6,81,56,31,106,21,96,71,46\), \(121,4,79,54,29,104,19,94,69,44,119,14,89,64,39,114,9,84,59,34,109,24,99,74,49,124\}\);
```

inline float halton5(const unsigned index)
\{
return (perm5[index \% 125u] * 1953125u + perm5[(index / 125u) \% 125u] * 15625u + perm5[(index / 15625u) \% 125u] * 125u + perm5[(index / 1953125u) \% 125u]) * (0x1.fffffep-1 / 244140625u); // For results < 1.
\}

Quasi-Monte Carlo Points

(t, s)-sequences and (t, m, s)-nets in base b

- elementary interval

$$
E:=\prod_{j=1}^{s}\left[\frac{a_{j}}{b^{l_{j}}}, \frac{a_{j}+1}{b^{l_{j}}}\right) \subseteq I^{s} \text { for integers } l_{j} \geq 0 \text { and } 0 \leq a_{j}<b^{l_{j}}
$$

with volume $\lambda_{s}(E)=\prod_{j=1}^{S} \frac{1}{b^{1_{j}}}=\frac{1}{b^{\Sigma_{j=1 / j}^{s}}}$

Quasi-Monte Carlo Points

(t, s)-sequences and (t, m, s)-nets in base b

- elementary interval

$$
E:=\prod_{j=1}^{s}\left[\frac{a_{j}}{b_{j}^{\prime}}, \frac{a_{j}+1}{b^{\prime}}\right) \subseteq I^{s} \text { for integers } l_{j} \geq 0 \text { and } 0 \leq a_{j}<b^{l_{j}}
$$

with volume $\lambda_{S}(E)=\prod_{j=1}^{S} \frac{1}{b^{\prime}}=\frac{1}{b^{b_{j=1}^{s}=1_{j}^{\prime}}}$

- For two integers $0 \leq t \leq m$, a finite point set of b^{m} points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume $\lambda_{s}(E)=b^{t-m}$ contains exactly b^{t} points.

Quasi-Monte Carlo Points

(t, s)-sequences and (t, m, s)-nets in base b

- elementary interval

$$
E:=\prod_{j=1}^{s}\left[\frac{a_{j}}{b^{\prime}}, \frac{a_{j}+1}{b^{\prime}}\right) \subseteq I^{s} \text { for integers } l_{j} \geq 0 \text { and } 0 \leq a_{j}<b^{k_{j}}
$$

with volume $\lambda_{s}(E)=\prod_{j=1}^{S} \frac{1}{b^{j}}=\frac{1}{b^{S_{j=1}^{s} 1^{1 /}}}$

- For two integers $0 \leq t \leq m$, a finite point set of b^{m} points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume $\lambda_{S}(E)=b^{t-m}$ contains exactly b^{t} points.
- For $t \geq 0$, an infinite point sequence is called a (t, s)-sequence in base b, if for all $k \geq 0$ and

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

	-	-	-	-	-	-	
-		-	-		-	σ	-
-		-	-	-	-	\square	-
	-	-	-	-		\bigcirc	

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

Quasi-Monte Carlo Points

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' $(0,2)$-sequence in base 2
- the sequence of $(0,3,2)$-nets

- the sequence of $(0,4,2)$-nets

- all components of the Sobol' sequence are $(0,1)$-sequences in base $2 \Rightarrow$ deterministic LHS

Quasi-Monte Carlo Points

Digital (t, s)-sequences in base \mathbf{b}

- use one $m \times m$ generator matrix C_{j} for each component

$$
x_{i}^{(j)}=\left(\begin{array}{c}
b^{-1} \\
\vdots \\
b^{-m}
\end{array}\right)^{T} \underbrace{C_{j}\left(\begin{array}{c}
a_{0}(i) \\
\vdots \\
a_{m-1}(i)
\end{array}\right)}_{\text {multiplication in } F_{b}}
$$

Quasi-Monte Carlo Points

Digital (t, s)-sequences in base \mathbf{b}

- use one $m \times m$ generator matrix C_{j} for each component

$$
\begin{aligned}
& x_{i}^{(j)}=\left(\begin{array}{c}
b^{-1} \\
\vdots \\
b^{-m}
\end{array}\right)^{T} \underbrace{C_{j}\left(\begin{array}{c}
a_{0}(i) \\
\vdots \\
a_{m-1}(i)
\end{array}\right)}_{\text {multiplication in } F_{b}} \\
& \text { double } x_{-} \text {base_2(uint } i \text {, uint } r=0 \text {) } \\
& \text { \{ } \\
& \text { for (uint } k=0 \text {; } i \text {; } i \gg=1,++k \text {) } \\
& \text { if (i \& 1) } \\
& r^{\wedge}=C[k] ; / / S I M D \text { addition of column } \\
& \text { return (double) r/(double) (1《m); } \\
& \text { \} }
\end{aligned}
$$

- optimized implementation similar to scrambled radical inverse as before

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points
Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points

Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

- generator vectors

- Korobov form (1, a, $\left.a^{2}, a^{3}, \ldots\right)$
- rare constructions
- example: Fibonacci lattice with $n=F_{k}$ and $\left(g_{0}, g_{1}\right)=\left(1, F_{k-1}\right)$

Quasi-Monte Carlo Points

Rank-1 lattices

- given generator vector $\left(g_{0}, \ldots, g_{s-1}\right) \in \mathbb{N}^{s}$

$$
x_{i}:=\frac{i}{n}\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

- generator vectors

- Korobov form (1, a, a^{2}, a^{3}, \ldots)
- rare constructions
- example: Fibonacci lattice with $n=F_{k}$ and $\left(g_{0}, g_{1}\right)=\left(1, F_{k-1}\right)$
- usually tabulated coefficients a or g_{j}
- search by certain criteria, e.g. maximized minimum distance, projections, ...
- component by component construction (CBC)

Quasi-Monte Carlo Points

Rank-1 lattice sequences

- replace $\frac{i}{n}$ by radical inverse

$$
x_{i}=\phi_{b}(i) \cdot\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}
$$

Quasi-Monte Carlo Points

Rank-1 lattice sequences

- replace $\frac{i}{n}$ by radical inverse
$x_{i}=\phi_{b}(i) \cdot\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}$, where $g_{j}={ }_{b} \cdots g_{j, 3} g_{j, 2} g_{j, 1} g_{j, 0}$ are infinite sequences of digits

Quasi-Monte Carlo Points

Rank-1 lattice sequences

- replace $\frac{i}{n}$ by radical inverse

$$
x_{i}=\phi_{b}(i) \cdot\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}, \text { where } g_{j}={ }_{b} \cdots g_{j, 3} g_{j, 2} g_{j, 1} g_{j, 0} \text { are infinite sequences of digits }
$$

- $\vec{x}_{k b^{m}}, \ldots, \vec{x}_{(k+1) b^{m}-1}$ form a shifted lattice
- shift Δ in the $k+1$ st block for $n=b^{m}$

$$
\begin{aligned}
\phi_{b}\left(i+k b^{m}\right) \cdot \vec{g} & =\left(\phi_{b}(i)+\phi_{b}\left(k b^{m}\right)\right) \cdot \vec{g} \\
& =\phi_{b}(i) \cdot \vec{g}+\underbrace{\phi_{b}(k) b^{-m-1} \vec{g}}_{=: \Delta}
\end{aligned}
$$

Quasi-Monte Carlo Points

Rank-1 lattice sequences

- replace $\frac{i}{n}$ by radical inverse

$$
x_{i}=\phi_{b}(i) \cdot\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}, \text { where } g_{j}={ }_{b} \cdots g_{j, 3} g_{j, 2} g_{j, 1} g_{j, 0} \text { are infinite sequences of digits }
$$

- $\vec{x}_{k b^{m}}, \ldots, \vec{x}_{(k+1) b^{m}-1}$ form a shifted lattice
- shift Δ in the $k+1$ st block for $n=b^{m}$

$$
\begin{aligned}
\phi_{b}\left(i+k b^{m}\right) \cdot \vec{g} & =\left(\phi_{b}(i)+\phi_{b}\left(k b^{m}\right)\right) \cdot \vec{g} \\
& =\phi_{b}(i) \cdot \vec{g}+\underbrace{\phi_{b}(k) b^{-m-1} \vec{g}}_{=: \Delta}
\end{aligned}
$$

Quasi-Monte Carlo Points

Rank-1 lattice sequences

- replace $\frac{i}{n}$ by radical inverse

$$
x_{i}=\phi_{b}(i) \cdot\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}, \text { where } g_{j}={ }_{b} \cdots g_{j, 3} g_{j, 2} g_{j, 1} g_{j, 0} \text { are infinite sequences of digits }
$$

- $\vec{x}_{k b^{m}}, \ldots, \vec{x}_{(k+1) b^{m}-1}$ form a shifted lattice
- shift Δ in the $k+1$ st block for $n=b^{m}$

$$
\begin{aligned}
\phi_{b}\left(i+k b^{m}\right) \cdot \vec{g} & =\left(\phi_{b}(i)+\phi_{b}\left(k b^{m}\right)\right) \cdot \vec{g} \\
& =\phi_{b}(i) \cdot \vec{g}+\underbrace{\phi_{b}(k) b^{-m-1} \vec{g}}_{=: \Delta}
\end{aligned}
$$

Quasi-Monte Carlo Points

Rank-1 lattice sequences

- replace $\frac{i}{n}$ by radical inverse

$$
x_{i}=\phi_{b}(i) \cdot\left(g_{0}, \ldots, g_{s-1}\right) \bmod [0,1)^{s}, \text { where } g_{j}={ }_{b} \cdots g_{j, 3} g_{j, 2} g_{j, 1} g_{j, 0} \text { are infinite sequences of digits }
$$

- $\vec{x}_{k b^{m}}, \ldots, \vec{x}_{(k+1) b^{m}-1}$ form a shifted lattice
- shift Δ in the $k+1$ st block for $n=b^{m}$

$$
\begin{aligned}
\phi_{b}\left(i+k b^{m}\right) \cdot \vec{g} & =\left(\phi_{b}(i)+\phi_{b}\left(k b^{m}\right)\right) \cdot \vec{g} \\
& =\phi_{b}(i) \cdot \vec{g}+\underbrace{\phi_{b}(k) b^{-m-1} \vec{g}}_{=: \Delta}
\end{aligned}
$$

- similar to (t, s)-sequences

- for b and g_{j} relatively prime, $\phi_{b}(i) g_{j} \bmod [0,1)$ are $(0,1)$-sequences

Light transport simulation using a rank-1 lattice sequence based on primitive polynomials

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T
- low discrepancy

$$
D^{*}\left(P_{n}\right):=\sup _{A=\prod_{j=1}^{s}\left[0, a_{j}\right) \subseteq[0,1)^{s}}\left|\int_{[0,1)^{s}} \chi_{A}(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} \chi_{A}\left(x_{i}\right)\right| \in \mathscr{O}\left(\frac{\log ^{s} n}{n}\right)
$$

Quasi-Monte Carlo Points

Uniformity of a point set $P_{n}:=\left\{x_{0}, \ldots, x_{n-1}\right\} \in[0,1)^{s}$

- maximum minimum distance $d_{\min }\left(P_{n}\right):=\min _{0 \leq i<n} \min _{i<j<n}\left\|x_{j}-x_{i}\right\|_{T}$ on torus T
- low discrepancy

$$
D^{*}\left(P_{n}\right):=\sup _{A=\prod_{j=1}^{s}\left[0, a_{j}\right) \subseteq[0,1)^{s}}\left|\int_{[0,1)^{s}} \chi_{A}(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} \chi_{A}\left(x_{i}\right)\right| \in \mathscr{O}\left(\frac{\log ^{s} n}{n}\right)
$$

- Let (X, \mathscr{B}, μ) be an arbitrary probability space and let \mathscr{M} be a nonempty subset of \mathscr{B}. A point set P_{n} of n elements of X is called (\mathscr{M}, μ)-uniform if

$$
\sum_{i=0}^{n-1} \chi_{M}\left(\vec{x}_{i}\right)=\mu(M) \cdot n \quad \text { for all } M \in \mathscr{M}
$$

where $\chi_{M}\left(\vec{x}_{i}\right)=1$ if $\vec{x}_{i} \in M$, zero otherwise.

Quasi-Monte Carlo Points

Error bounds depend on function classes

- Lipschitz continuous functions

$$
\left|\int_{[0,1]^{s}} f(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)\right| \leq L \cdot r(n, g)
$$

- maximum minimum distance $r(n, g)$ of rank-1 lattice

Quasi-Monte Carlo Points

Error bounds depend on function classes

- Lipschitz continuous functions

$$
\left|\int_{[0,1]^{s}} f(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)\right| \leq L \cdot r(n, g)
$$

- maximum minimum distance $r(n, g)$ of rank-1 lattice
- Koksma-Hlawka inequality for functions of bounded variation

$$
\left|\int_{[0,1)^{s}} f(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)\right| \leq V(f) D^{*}\left(P_{n}\right)
$$

- variation often unbounded in practical settings

Quasi-Monte Carlo Points

Error bounds depend on function classes

- Lipschitz continuous functions

$$
\left|\int_{[0,1]^{s}} f(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)\right| \leq L \cdot r(n, g)
$$

- maximum minimum distance $r(n, g)$ of rank-1 lattice
- Koksma-Hlawka inequality for functions of bounded variation

$$
\left|\int_{[0,1)^{s}} f(x) d x-\frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)\right| \leq V(f) D^{*}\left(P_{n}\right)
$$

- variation often unbounded in practical settings
- functions with sufficiently fast vanishing Fourier coefficients
- another bound for rank-1 lattices

Quasi-Monte Carlo Points

More uniform than random points can be

Quasi-Monte Carlo Points

Searching for (t, m, s)-nets in base $b=2$

- verifying the $t=0$ property for a point with integer coordinates $(i, j) \in\left[0,2^{m}\right)^{2}$

```
for (k = 1; k < m; k++)
{
    // combine k bits of i and m-k bits of j to form index
    idx = (i >> (m - k)) + (j & (0xFFFFFFFF << k));
    if(elementaryInterval[k][idx]++) // already one point there?
        break; // t > 0 !
}
```

- (t, m, s)-Nets and Maximized Minimum Distance
- (t, m, s)-Nets and Maximized Minimum Distance, Part II

Questions over Questions

Low- or High-Dimensional?

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
& L_{r}\left(x, \omega_{r}\right) \\
& \quad=\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

Low- or High-Dimensional?

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
& L_{r}\left(x, \omega_{r}\right) \\
& =\int_{\mathscr{L}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\lim _{r(x) \rightarrow 0} \int_{\mathscr{L}^{2}(x)} \frac{\int_{B(x)} w\left(x, x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) d x^{\prime}}{\int_{B(x)} w\left(x, x^{\prime}\right) d x^{\prime}} f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

Low- or High-Dimensional?

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\lim _{r(x) \rightarrow 0} \int_{\mathscr{S}_{-}^{2}(x)} \frac{\int_{B(x)} w\left(x, x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) d x^{\prime}}{\int_{B(x)} w\left(x, x^{\prime}\right) d x^{\prime}} f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y
\end{aligned}
$$

Low- or High-Dimensional?

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\lim _{r(x) \rightarrow 0} \int_{\mathscr{S}_{-}^{2}(x)} \frac{\int_{B(x)} w\left(x, x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) d x^{\prime}}{\int_{B(x)} w\left(x, x^{\prime}\right) d x^{\prime}} f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y, \omega))}{\pi r(x)^{2}} L_{i}(h(y, \omega), \omega) f_{r}\left(\omega_{r}, h(y, \omega), \omega\right) \cos \theta_{y} d \omega d y
\end{aligned}
$$

Low- or High-Dimensional?

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
& L_{r}\left(x, \omega_{r}\right) \\
& \quad=\int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

$$
=\lim _{r(x) \rightarrow 0} \int_{\mathscr{S}^{2}(x)} \frac{\int_{B(x)} w\left(x, x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) d x^{\prime}}{\int_{B(x)} w\left(x, x^{\prime}\right) d x^{\prime}} f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
$$

$$
=\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y
$$

$$
=\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y, \omega))}{\pi r(x)^{2}} L_{i}(h(y, \omega), \omega) f_{r}\left(\omega_{r}, h(y, \omega), \omega\right) \cos \theta_{y} d \omega d y
$$

- actually an integro-approximation problem: Integrals depend on x and reflection direction ω_{r}

Low- or High-Dimensional?
Light transport simulation

- radiance L is light sources L_{e} plus transported radiance $T_{f} L$

$$
L=L_{e}+T_{f} L
$$

Low- or High-Dimensional?

Light transport simulation

- radiance L is light sources L_{e} plus transported radiance $T_{f} L$

$$
L=L_{e}+T_{f} L=\sum_{i=0}^{\infty} T^{i} L_{e}
$$

Low- or High-Dimensional?

Light transport simulation

- radiance L is light sources L_{e} plus transported radiance $T_{f} L$

$$
L=L_{e}+T_{f} L=\sum_{i=0}^{\infty} T^{i} L_{e}
$$

- reinforcement learning to compute low-dimensional approximation

$$
L_{c}^{\prime}=(1-\alpha) L_{c}+\alpha\left(L_{e}+T_{f} L_{c}\right)
$$

Low- or High-Dimensional?

Light transport simulation

- radiance L is light sources L_{e} plus transported radiance $T_{f} L$

$$
L=L_{e}+T_{f} L=\sum_{i=0}^{\infty} T^{i} L_{e}
$$

- reinforcement learning to compute low-dimensional approximation

$$
L_{c}^{\prime}=(1-\alpha) L_{c}+\alpha\left(L_{e}+T_{f} L_{c}\right)
$$

to guide high-dimensional paths

- itself using approximation instead of tracing paths with higher variance

approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Low- or High-Dimensional?

Simultaneous Simulation of Markov Chains

- reordering to benefit from uniformity

Low- or High-Dimensional?

Simultaneous Simulation of Markov Chains

- reordering to benefit from uniformity

- algorithm
- simultaneously trace multiple paths bounce by bounce
- enumerate points along route of proximity (e.g. Z-curve) to make sub-sequence property work

What do you want to see?

Anti-aliasing

- given $\alpha \in(0,1]$, integrating

$$
f(x)= \begin{cases}1 & x<1-\alpha \\ \frac{1}{\alpha} & \text { else }\end{cases}
$$

seems simple

What do you want to see?

Anti-aliasing

- given $\alpha \in(0,1]$, integrating

$$
f(x)= \begin{cases}1 & x<1-\alpha \\ \frac{1}{\alpha} & \text { else }\end{cases}
$$

seems simple

$$
\int_{0}^{1} f(x) d x=(1-\alpha) \cdot 1+\alpha \frac{1}{\alpha}=2-\alpha
$$

What do you want to see?

Anti-aliasing

- given $\alpha \in(0,1]$, integrating

$$
f(x)= \begin{cases}1 & x<1-\alpha \\ \frac{1}{\alpha} & \text { else }\end{cases}
$$

seems simple

$$
\int_{0}^{1} f(x) d x=(1-\alpha) \cdot 1+\alpha \frac{1}{\alpha}=2-\alpha \approx \frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)
$$

but numerical integration becomes increasingly difficult for $a \rightarrow 0$

What do you want to see?

Anti-aliasing

- given $\alpha \in(0,1]$, integrating

$$
f(x)= \begin{cases}1 & x<1-\alpha \\ \frac{1}{\alpha} & \text { else }\end{cases}
$$

seems simple

$$
\int_{0}^{1} f(x) d x=(1-\alpha) \cdot 1+\alpha \frac{1}{\alpha}=2-\alpha \approx \frac{1}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)
$$

but numerical integration becomes increasingly difficult for $a \rightarrow 0$

- example: each sample $f\left(x_{i}\right)$ of brightness $\frac{1}{\alpha}=10^{26}$ (e.g. the sun) requires at least $n \sim 10^{26}$ more samples to average out

What do you want to see?

Anti-aliasing

- 1 random sample per pixel

- artifacts covered by noise

What do you want to see?

Anti-aliasing

- 1 random sample per pixel

- artifacts covered by noise
- however, freckled edges

What do you want to see?

Anti-aliasing

- 16 random samples per pixel

- slower
- reduced variance
- looks better

What do you want to see?

Anti-aliasing

- 4×4 stratified random samples per pixel

- often converges faster

What do you want to see?

Anti-aliasing

- 1024×1024 stratified random samples per pixel

What do you want to see?

Anti-aliasing

- 1024×1024 stratified random samples per pixel, looking at 2×2 pixels

- at the horizon

What do you want to see?

Anti-aliasing

- 1024×1024 stratified random samples per pixel, looking at 2×2 pixels

- at the horizon

- in the middle

What do you want to see?

Anti-aliasing

- 1024×1024 stratified random samples per pixel, looking at 2×2 pixels

- at the horizon

- in the middle

- in the front

What do you want to see?

Anti-aliasing

- isotropic vs. anisotropic rank-1 lattices select by project normal

- Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

Images or Pixels?

Independence of pixels vs. independence of samples

- anti-aliasing a zone plate at 4 samples per pixel

jittered sampling

(t, s)-sequence

rank-1 lattice

Images or Pixels?

Independence of pixels vs. independence of samples

- anti-aliasing a zone plate at 4 samples per pixel

jittered sampling

(t, s)-sequence

rank-1 lattice
- error bounds depend on a function class

Ambient occlusion at 16 rank-1 lattice samples per pixel

Ambient occlusion at 16 random samples per pixel

Ambient occlusion at 16 rank-1 lattice samples per pixel with Cranley-Patterson-rotation

My favorite Samples

My favorite Samples

Quasi-Monte Carlo points

- deterministic low discrepancy sequences
- especially rank-1 lattice sequences
- proceedings of the MCQMC conference series
- Quasi-Monte Carlo image synthesis in a nutshell
- Myths of Computer Graphics
- The Iray light transport simulation and rendering system

My favorite Samples

Quasi-Monte Carlo points

- deterministic low discrepancy sequences
- especially rank-1 lattice sequences
- proceedings of the MCQMC conference series
- Quasi-Monte Carlo image synthesis in a nutshell
- Myths of Computer Graphics
- The Iray light transport simulation and rendering system
'For every randomized algorithm, there is a clever deterministic one.'
Harald Niederreiter, Claremont, 1998.

My favorite Samples

Schedule

- 9:40 Progressive Multi-Jittered Sequences
- Per Christensen, Pixar
- 10:15 Warp and Effect
- Matt Pharr, NVIDIA
- break
- 11:05 Low-Discrepancy Blue Noise Sampling
- Abdalla Ahmed, King Abdulla University and Victor Ostromoukhov, Université Claude Bernard Lyon 1
- 11:40 Blue-Noise Dithered Sampling
- Iliyan Georgiev, Autodesk
- check https://sites.google.com/view/myfavoritesamples

