

Alexander Keller

Schedule

Course web page at https://sites.google.com/view/myfavoritesamples

- 9:00 My favorite Samples
 - Alexander Keller, NVIDIA
- 9:40 Progressive Multi-Jittered Sequences
 - Per Christensen, Pixar
- 10:15 Warp and Effect
 - Matt Pharr, NVIDIA
- break
- 11:05 Low-Discrepancy Blue Noise Sampling
 - Abdalla Ahmed, King Abdulla University and Victor Ostromoukhov, Université Claude Bernard Lyon 1
- 11:40 Blue-Noise Dithered Sampling
 - Iliyan Georgiev, Autodesk

For modeling

discrete density approximation

Figure 3: Comparison of different input distributions with a point distribution and a grayscale ramp. From top to bottom: Poisson distribution, Halton sequence, Sobol sequence and hierarchical Poisson disk sequence.

Figure 7: Rendering of the Lena image using hatching and cross hatching. Primary strokes are aligned perpendicular to the gradient in regions of strong gradients and at a 45° angle in areas where the gradient is small.

Fast primitive distribution for illustration

For approximation

displays and textures represented by rank-1 lattices

Image Synthesis by Rank-1 Lattices

> Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

For approximation

displays and textures represented by rank-1 lattices

Image Synthesis by Rank-1 Lattices

> Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

For simulation

- Fourier transform on rank-1 lattices

Simulation on Rank-1 Lattices

$$\int_{[0,1)^s} f(x) dx$$

For integration

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

For integration

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$\int_{[0,1)^s} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

For integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

What matters

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize

What matters

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize
- unbiased
 - zero difference between expectation and mathematical object
 - not sufficient for convergence

What matters

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize
- biased
 - allows for ameliorating the problem of insufficient techniques
 - can tremendously increase efficiency

What matters

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize
- biased
 - allows for ameliorating the problem of insufficient techniques
 - can tremendously increase efficiency
- consistent
 - error vanishes with increasing set of samples
 - no persistent artifacts introduced by algorithm

Quasi-Monte Carlo image synthesis in a nutshell

The Iray light transport simulation and rendering system

What matters

deterministic

- may improve speed of convergence
- reproducible and simple to parallelize

biased

- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency

consistent

- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm

Quasi-Monte Carlo image synthesis in a nutshell

The Iray light transport simulation and rendering system

Numerical Integration and Integro-Approximation Sampling

transform your problem onto the s-dimensional unit cube [0,1)^s

- generate uniformly distributed points in [0,1)^s
 - pseudo random numbers
 - points with blue noise characteristic (on the unit torus)

compute your averages

Non-uniform random variate generation
 Massively parallel construction of radix tree forests for the efficient sampling of discrete probability distributions
 Neural importance sampling

Numerical Integration and Integro-Approximation

Sampling

- transform your problem onto the s-dimensional unit cube [0,1)^s
- generate uniformly distributed points in [0,1)^s
 - pseudo random numbers
 - points with blue noise characteristic (on the unit torus)
 - radical inverse based points
 - rank-1 lattice
- compute your averages

Non-uniform random variate generation
 Massively parallel construction of radix tree forests for the efficient sampling of discrete probability distributions

Neural importance sampling

Numerical Integration and Integro-Approximation

Sampling

- transform your problem onto the s-dimensional unit cube [0,1)^s
- generate uniformly distributed points in [0,1)^s
 - pseudo random numbers
 - points with blue noise characteristic (on the unit torus)
 - radical inverse based points and randomizations
 - rank-1 lattice and randomizations
- compute your averages

Non-uniform random variate generation
 Massively parallel construction of radix tree forests for the efficient sampling of discrete probability distributions
 Neural importance sampling

Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

random

Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

random

stratified random

Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

random

stratified random

deterministic low discrepancy

Radical inversion

$$\Phi_b : \mathbb{N}_0 \to \mathbb{Q} \cap [0, 1)$$

 $i = \sum_{l=0}^{\infty} a_l(i)b^l \mapsto \Phi_b(i) := \sum_{l=0}^{\infty} a_l(i)b^{-l-1}$

Radical inversion

$$\Phi_b : \mathbb{N}_0 \to \mathbb{Q} \cap [0, 1)$$

 $i = \sum_{l=0}^{\infty} a_l(i)b^l \mapsto \Phi_b(i) := \sum_{l=0}^{\infty} a_l(i)b^{-l-1}, \text{ e.g. } \Phi_2(i) \equiv 0$

Radical inversion

$$\Phi_b : \mathbb{N}_0 \quad \to \quad \mathbb{Q} \cap [0, 1)$$

$$i = \sum_{l=0}^{\infty} a_l(i)b^l \quad \mapsto \quad \Phi_b(i) := \sum_{l=0}^{\infty} a_l(i)b^{-l-1}, \text{ e.g. } \Phi_2(i) \equiv \bullet^{0} \qquad \bullet^{1}$$

Radical inversion

$$\Phi_b : \mathbb{N}_0 \quad \to \quad \mathbb{Q} \cap [0, 1)$$

$$i = \sum_{l=0}^{\infty} a_l(i)b^l \quad \mapsto \quad \Phi_b(i) := \sum_{l=0}^{\infty} a_l(i)b^{-l-1}, \text{ e.g. } \Phi_2(i) \equiv \textcircled{0}_{0} \xrightarrow{2} 1$$

Radical inversion

$$\Phi_b : \mathbb{N}_0 \longrightarrow \mathbb{Q} \cap [0, 1)$$

$$i = \sum_{l=0}^{\infty} a_l(i)b^l \mapsto \Phi_b(i) := \sum_{l=0}^{\infty} a_l(i)b^{-l-1}, \text{ e.g. } \Phi_2(i) \equiv \bullet^{0} \bullet^{2} \bullet^{1} \bullet^{3} \bullet^{3} \bullet^{-1} \bullet^{3} \bullet^{-1} \bullet^{3} \bullet^{-1} \bullet^{$$
Radical inversion

van der Corput sequence in base b

properties

- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)

Radical inversion

van der Corput sequence in base b

properties

- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)

Radical inversion

van der Corput sequence in base b

$$\Phi_b : \mathbb{N}_0 \to \mathbb{Q} \cap [0, 1)$$

= $\sum_{l=0}^{\infty} a_l(i)b^l \mapsto \Phi_b(i) := \sum_{l=0}^{\infty} a_l(i)b^{-l-1}$, e.g. $\Phi_2(i) \equiv \Phi_2(i) = \Phi_2(i)$

properties

- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)
- contiguous blocks of stratified points x_i for $kb^m \le i < (k+1)b^m 1$
 - for each block the $\Phi_b(i)$ are equidistant
 - for each block the integers $\lfloor b^m \Phi_b(i) \rfloor$ are a permutation of $\{0, \ldots, b^m 1\}$

Radical inversion

van der Corput sequence in base b

properties

- subsequent points that "fall into biggest holes"
- not completely uniform distributed (CUD)
- contiguous blocks of stratified points x_i for $kb^m \le i < (k+1)b^m 1$
 - · for each block the $\Phi_b(i)$ are equidistant
 - for each block the integers $\lfloor b^m \Phi_b(i) \rfloor$ are a permutation of $\{0, \ldots, b^m 1\}$

Halton sequence and Hammersley points

let the b_i be co-prime, for example the j-th prime number

Halton sequence

$$x_i := (\Phi_{b_1}(i), \ldots, \Phi_{b_s}(i))$$

- contiguous blocks of stratified points x_i for $k \prod_{j=1}^s b_j^{m_j} \le i < (k+1) \prod_{j=1}^s b_j^{m_j} - 1$

Halton sequence and Hammersley points

let the b_i be co-prime, for example the j-th prime number

Halton sequenceHammersley point sets $x_i := (\Phi_{b_1}(i), \dots, \Phi_{b_s}(i))$ $x_i := \left(\frac{i}{n}, \Phi_{b_1}(i), \dots, \Phi_{b_{s-1}}(i)\right)$

- contiguous blocks of stratified points x_i for $k \prod_{j=1}^s b_j^{m_j} \le i < (k+1) \prod_{j=1}^s b_j^{m_j} - 1$

Halton sequence and Hammersley points

let the b_i be co-prime, for example the j-th prime number

Halton sequence

Hammersley point sets

$$x_i := (\Phi_{b_1}(i), \ldots, \Phi_{b_s}(i))$$

- correlations in low dimensional projections

Halton sequence and Hammersley points

let the b_i be co-prime, for example the j-th prime number

Halton sequence

Hammersley point sets

$$x_i := (\Phi_{b_1}(i), \ldots, \Phi_{b_s}(i))$$

- correlations in low dimensional projections

- algorithm: start with $H = I^s$ and for each axis j
 - 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
 - 2. permute these volumes
 - 3. for each H_h recursively repeat the procedure with $H = H_h$

- algorithm: start with H = I^s and for each axis j
- 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
- 2. permute these volumes
- 3. for each H_h recursively repeat the procedure with $H = H_h$
- stratification invariant under scrambling
- many variants, simplifications, and generalizations
 - example: unit square $[0, 1)^2$

- algorithm: start with H = I^s and for each axis j
- 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
- 2. permute these volumes
- 3. for each H_h recursively repeat the procedure with $H = H_h$
- stratification invariant under scrambling
- many variants, simplifications, and generalizations
 - example: xor-scrambling bit 1 of x

- algorithm: start with H = I^s and for each axis j
- 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
- 2. permute these volumes
- 3. for each H_h recursively repeat the procedure with $H = H_h$
- stratification invariant under scrambling
- many variants, simplifications, and generalizations
 - example: xor-scrambling bit 2 of x

- algorithm: start with H = I^s and for each axis j
- 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
- 2. permute these volumes
- 3. for each H_h recursively repeat the procedure with $H = H_h$
- stratification invariant under scrambling
- many variants, simplifications, and generalizations
 - example: xor-scrambling bit 3 of x

- algorithm: start with H = I^s and for each axis j
- 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
- 2. permute these volumes
- 3. for each H_h recursively repeat the procedure with $H = H_h$
- stratification invariant under scrambling
- many variants, simplifications, and generalizations
 - example: xor-scrambling all bits of x

- algorithm: start with H = I^s and for each axis j
- 1. slice *H* into b_j equally sized volumes $H_1, H_2, \ldots, H_{b_j}$ along the axis
- 2. permute these volumes
- 3. for each H_h recursively repeat the procedure with $H = H_h$
- stratification invariant under scrambling
- many variants, simplifications, and generalizations
 - example: xor-scrambling all bits of x and y

Scrambled radical inversion

• example: deterministic permutations σ_b by Faure

$$i = \sum_{j=0}^{\infty} a_j(i) b^j \mapsto \sum_{j=0}^{\infty} \sigma_b(a_j(i)) b^{-j-1}$$

Scrambled radical inversion

i

• example: deterministic permutations σ_b by Faure

$$f = \sum_{j=0}^\infty a_j(i) b^j \mapsto \sum_{j=0}^\infty \sigma_b(a_j(i)) b^{-j-1}$$

- *b* is even: Take $2\sigma_{rac{b}{2}}$ and append $2\sigma_{rac{b}{2}}+1$
- *b* is odd: Take σ_{b-1} , increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

Scrambled radical inversion

• example: deterministic permutations σ_b by Faure

$$i = \sum_{j=0}^{\infty} a_j(i)b^j \mapsto \sum_{j=0}^{\infty} \sigma_b(a_j(i))b^{-j-1}$$

- *b* is even: Take $2\sigma_{\frac{b}{2}}$ and append $2\sigma_{\frac{b}{2}}+1$
- *b* is odd: Take σ_{b-1} , increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

σ_2	=	(0,1)
σ_3	=	(0,1,2)
σ_4	=	(0,2,1,3)
σ_5	=	(0, 3, 2, 1, 4)
σ_6	=	(0,2,4,1,3,5)
	:	

Scrambled radical inversion

• example: deterministic permutations σ_b by Faure

$$f = \sum_{j=0}^{\infty} a_j(i) b^j \mapsto \sum_{j=0}^{\infty} \sigma_b(a_j(i)) b^{-j-1}$$

- *b* is even: Take $2\sigma_{\frac{b}{2}}$ and append $2\sigma_{\frac{b}{2}}+1$

- *b* is odd: Take σ_{b-1} , increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

Efficient generation of the Faure-scrambled radical inverse

```
double RadicalInverse(const int Base, int i)
ſ
  double Digit, Radical, Inverse = 0.0;
  Digit = Radical = 1.0 / (double) Base;
  while(i)
  ł
    Inverse += Digit * (double) (i % Base);
   Digit *= Radical;
   i /= Base;
  }
```

return Inverse;

}

16 📀 NVIDIA

Efficient generation of the Faure-scrambled radical inverse

```
double IntegerRadicalInverse(int Base, int i)
ſ
 int numPoints, inverse;
 numPoints = 1;
 for(inverse = 0; i > 0; i /= Base)
 ł
   inverse = inverse * Base + (i % Base);
   numPoints = numPoints * Base:
 }
 return (double) inverse / (double) numPoints:
}
```


Efficient generation of the Faure-scrambled radical inverse

compact branchless code using one look-up table for multiple digits

- example: $\sigma_5 = (0, 3, 2, 1, 4)$

$$\sigma_5 \times \sigma_5 = \begin{pmatrix} (0,0) & (0,3) & (0,2) & (0,1) & (0,4) \\ (3,0) & (3,3) & (3,2) & (3,1) & (3,4) \\ (2,0) & (2,3) & (2,2) & (2,1) & (2,4) \\ (1,0) & (1,3) & (1,2) & (1,1) & (1,4) \\ (4,0) & (4,3) & (4,2) & (4,1) & (4,4) \end{pmatrix}$$

Efficient generation of the Faure-scrambled radical inverse

- compact branchless code using one look-up table for multiple digits
 - example: $\sigma_5 = (0, 3, 2, 1, 4)$

$$\sigma_{5} \times \sigma_{5} = \begin{pmatrix} (0,0) & (0,3) & (0,2) & (0,1) & (0,4) \\ (3,0) & (3,3) & (3,2) & (3,1) & (3,4) \\ (2,0) & (2,3) & (2,2) & (2,1) & (2,4) \\ (1,0) & (1,3) & (1,2) & (1,1) & (1,4) \\ (4,0) & (4,3) & (4,2) & (4,1) & (4,4) \end{pmatrix} \cong \begin{pmatrix} 0 & 3 & 2 & 1 & 4 \\ 25 & 28 & 27 & 26 & 29 \\ 10 & 13 & 12 & 11 & 14 \\ 5 & 8 & 7 & 6 & 9 \\ 20 & 23 & 22 & 21 & 24 \end{pmatrix}$$

Efficient generation of the Faure-scrambled radical inverse

- compact branchless code using one look-up table for multiple digits
 - example: $\sigma_5 = (0,3,2,1,4)$, for b = 5 and 3 digits, i.e. $\sigma_5 \times \sigma_5 \times \sigma_5$

static const unsigned short perm5[] = { 0, 75, 50, 25, 100, 15, 90, 65, 40, 115, 10, 85, 60, 35, 110, 5, 80, 55, 30, 105, 20, 95, 70, 45, 120, 3, 78, 53, 28, 103, 18, 93, 68, 43, 118, 13, 88, 63, 38, 113, 8, 83, 58, 33, 108, 23, 98, 73, 48, 123, 2, 77, 52, 27, 102, 17, 92, 67, 42, 117, 12, 87, 62, 37, 112, 7, 82, 57, 32, 107, 22, 97, 72, 47, 122, 1, 76, 51, 26, 101, 16, 91, 66, 41, 116, 11, 86, 61, 36, 111, 6, 81, 56, 31, 106, 21, 96, 71, 46, 121, 4, 79, 54, 29, 104, 19, 94, 69, 44, 119, 14, 89, 64, 39, 114, 9, 84, 59, 34, 109, 24, 99, 74, 49, 124 };

inline float halton5(const unsigned index)

{

return (perm5[index % 125u] * 1953125u +
 perm5[(index / 125u) % 125u] * 15625u +
 perm5[(index / 15625u) % 125u] * 125u +
 perm5[(index / 1953125u) % 125u]) * (0x1.fffffep-1 / 244140625u); // For results < 1.</pre>

}

(t, s)-sequences and (t, m, s)-nets in base b

elementary interval

$$E := \prod_{j=1}^s \left[rac{a_j}{b^{l_j}}, rac{a_j + 1}{b^{l_j}}
ight) \subseteq l^s$$
 for integers $l_j \ge 0$ and $0 \le a_j < b^{l_j}$

with volume $\lambda_s(E) = \prod_{j=1}^s rac{1}{b^{j_j}} = rac{1}{b^{\sum_{j=1}^s l_j'}}$

(t, s)-sequences and (t, m, s)-nets in base b

elementary interval

$$\mathsf{E} := \prod_{j=1}^s \left[rac{a_j}{b^{l_j}}, rac{a_j+1}{b^{l_j}}
ight) \subseteq I^s$$
 for integers $l_j \ge 0$ and $0 \le a_j < b^{l_j}$

with volume $\lambda_s(E) = \prod_{j=1}^s \frac{1}{b^{j_j}} = \frac{1}{b^{\sum_{j=1}^s l_j}}$

For two integers 0 ≤ t ≤ m, a finite point set of b^m points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume λ_s(E) = b^{t-m} contains exactly b^t points.

(t, s)-sequences and (t, m, s)-nets in base b

elementary interval

$$\mathsf{E} := \prod_{j=1}^s \left[rac{a_j}{b^{l_j}}, rac{a_j+1}{b^{l_j}}
ight) \subseteq I^s$$
 for integers $l_j \ge 0$ and $0 \le a_j < b^{l_j}$

with volume $\lambda_s(E) = \prod_{j=1}^s \frac{1}{b^{j_j}} = \frac{1}{b^{\sum_{j=1}^s l_j}}$

- For two integers 0 ≤ t ≤ m, a finite point set of b^m points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume λ_s(E) = b^{t-m} contains exactly b^t points.
- For $t \ge 0$, an infinite point sequence is called a (t, s)-sequence in base b, if for all $k \ge 0$ and $m \ge t$, the vectors $x_{kb^m}, \ldots, x_{(k+1)b^m-1} \in I^s$ form a (t, m, s)-net.

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t,s)-sequences are sequences of (t,m,s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

(t, s)-sequences are sequences of (t, m, s)-nets in base b

- example: stratification properties of the Sobol' (0,2)-sequence in base 2
 - the sequence of (0,3,2)-nets

- the sequence of (0,4,2)-nets

- all components of the Sobol' sequence are (0,1)-sequences in base 2 \Rightarrow deterministic LHS

Digital (t, s)-sequences in base b

• use one $m \times m$ generator matrix C_i for each component

Sobol sequence generator matrices

▶ Fast Sobol' sequence generator (including pixel enumeration), inverse matrices, and Faure scrambled Halton sampler

Digital (t, s)-sequences in base b

use one m×m generator matrix C_i for each component

optimized implementation similar to scrambled radical inverse as before

Sobol sequence generator matrices

▶ Fast Sobol' sequence generator (including pixel enumeration), inverse matrices, and Faure scrambled Halton sampler

Rank-1 lattices

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

Rank-1 lattices

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

Rank-1 lattices

• given generator vector
$$(g_0, \ldots, g_{s-1}) \in \mathbb{N}^s$$

$$x_i := rac{i}{n} (g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

0

Rank-1 lattices

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) moded{model} moded{model} [0, 1)^s$$

Rank-1 lattices

$$x_i := rac{i}{n} (g_0, \dots, g_{s-1}) moded{model} moded{model} [0, 1)^s$$

Rank-1 lattices

• given generator vector $(g_0, \dots, g_{s-1}) \in \mathbb{N}^s$ $\mathbf{x}_i := \frac{i}{2}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

Rank-1 lattices

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

Rank-1 lattices

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

- generator vectors
 - Korobov form $(1, a, a^2, a^3, \ldots)$
 - rare constructions
 - example: Fibonacci lattice with $n = F_k$ and $(g_0, g_1) = (1, F_{k-1})$

Rank-1 lattices

$$x_i := rac{i}{n}(g_0, \dots, g_{s-1}) \mod [0, 1)^s$$

- Korobov form $(1, a, a^2, a^3, \ldots)$
- rare constructions
 - example: Fibonacci lattice with $n = F_k$ and $(g_0, g_1) = (1, F_{k-1})$
- usually tabulated coefficients a or g_i
 - · search by certain criteria, e.g. maximized minimum distance, projections, ...
 - · component by component construction (CBC)

Rank-1 lattice sequences

• replace $\frac{i}{n}$ by radical inverse

 $x_i = \phi_b(i) \cdot (g_0, \dots, g_{s-1}) \mod [0, 1)^s$

Rank-1 lattice sequences

• replace $\frac{i}{n}$ by radical inverse

Rank-1 lattice sequences

• replace $\frac{i}{n}$ by radical inverse

- $\vec{x}_{kb^m}, \dots, \vec{x}_{(k+1)b^m-1}$ form a shifted lattice
 - shift Δ in the k + 1st block for $n = b^m$

$$\phi_b(i+kb^m) \cdot \vec{g} = (\phi_b(i) + \phi_b(kb^m)) \cdot \vec{g}$$

= $\phi_b(i) \cdot \vec{g} + \underbrace{\phi_b(k)b^{-m-1}\vec{g}}_{=:\Delta}$

Rank-1 lattice sequences

• replace $\frac{i}{n}$ by radical inverse

- $\vec{x}_{kb^m}, \dots, \vec{x}_{(k+1)b^m-1}$ form a shifted lattice
 - shift Δ in the k + 1st block for $n = b^m$

$$\phi_b(i+kb^m) \cdot \vec{g} = (\phi_b(i) + \phi_b(kb^m)) \cdot \vec{g}$$

= $\phi_b(i) \cdot \vec{g} + \underbrace{\phi_b(k)b^{-m-1}\vec{g}}_{=:\Delta}$

Rank-1 lattice sequences

• replace $\frac{i}{n}$ by radical inverse

- $\vec{x}_{kb^m}, \dots, \vec{x}_{(k+1)b^m-1}$ form a shifted lattice
 - shift Δ in the k + 1st block for $n = b^m$

$$\phi_b(i+kb^m) \cdot \vec{g} = (\phi_b(i) + \phi_b(kb^m)) \cdot \vec{g}$$
$$= \phi_b(i) \cdot \vec{g} + \underbrace{\phi_b(k)b^{-m-1}\vec{g}}_{=:\Delta}$$

Rank-1 lattice sequences

• replace $\frac{i}{n}$ by radical inverse

 $x_i = \phi_b(i) \cdot (g_0, \dots, g_{s-1}) \mod [0, 1)^s$, where $g_j = b \cdots g_{j,3} g_{j,2} g_{j,1} g_{j,0}$ are infinite sequences of digits

- $\vec{x}_{kb^m}, \dots, \vec{x}_{(k+1)b^m-1}$ form a shifted lattice
 - shift Δ in the k + 1st block for $n = b^m$

$$\phi_b(i+kb^m) \cdot \vec{g} = (\phi_b(i) + \phi_b(kb^m)) \cdot \vec{g}$$

= $\phi_b(i) \cdot \vec{g} + \underbrace{\phi_b(k)b^{-m-1}\vec{g}}_{=:\Delta}$

- similar to (t, s)-sequences
 - for *b* and g_j relatively prime, $\phi_b(i)g_j \mod [0,1)$ are (0,1)-sequences

Lattice rule generating vectors

Construction of a rank-1 lattice sequence based on primitive polynomials

Light transport simulation using a rank-1 lattice sequence based on primitive polynomials

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

- maximum minimum distance $d_{\min}(P_n) := \min_{0 \le i < n} \min_{i < j < n} ||x_j x_i||_T$ on torus T
- Iow discrepancy

$$D^{*}(P_{n}) := \sup_{A = \prod_{j=1}^{s} [0,a_{j}) \subseteq [0,1)^{s}} \left| \int_{[0,1)^{s}} \chi_{A}(x) dx - \frac{1}{n} \sum_{i=0}^{n-1} \chi_{A}(x_{i}) \right| \in \mathscr{O}\left(\frac{\log^{s} n}{n}\right)$$

Uniformity of a point set $P_n := \{x_0, ..., x_{n-1}\} \in [0, 1)^s$

- maximum minimum distance $d_{\min}(P_n) := \min_{0 \le i < n} \min_{i < j < n} ||x_j x_i||_T$ on torus T
- Iow discrepancy

$$D^*(P_n) := \sup_{A = \prod_{j=1}^s [0,a_j) \subseteq [0,1)^s} \left| \int_{[0,1)^s} \chi_A(x) dx - \frac{1}{n} \sum_{j=0}^{n-1} \chi_A(x_j) \right| \in \mathscr{O}\left(\frac{\log^s n}{n}\right)$$

• Let (X, \mathcal{B}, μ) be an arbitrary probability space and let \mathcal{M} be a nonempty subset of \mathcal{B} . A point set P_n of *n* elements of X is called (\mathcal{M}, μ) -uniform if

$$\sum_{i=0}^{n-1}\chi_{M}(ec{x}_{i})=\mu(M)\cdot n \qquad ext{ for all } M\in\mathscr{M},$$

where $\chi_M(\vec{x}_i) = 1$ if $\vec{x}_i \in M$, zero otherwise.

Error bounds depend on function classes

Lipschitz continuous functions

$$\left|\int_{[0,1]^s} f(x)dx - \frac{1}{n}\sum_{i=0}^{n-1} f(x_i)\right| \leq L \cdot r(n,g)$$

- maximum minimum distance r(n,g) of rank-1 lattice

Error bounds depend on function classes

Lipschitz continuous functions

$$\left| \int_{[0,1]^s} f(x) dx - \frac{1}{n} \sum_{i=0}^{n-1} f(x_i) \right| \le L \cdot r(n,g)$$

- maximum minimum distance r(n,g) of rank-1 lattice
- Koksma-Hlawka inequality for functions of bounded variation

$$\left|\int_{[0,1)^s} f(x) dx - \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)\right| \le V(f) D^*(P_n)$$

- variation often unbounded in practical settings

Error bounds depend on function classes

Lipschitz continuous functions

$$\left| \int_{[0,1]^s} f(x) dx - \frac{1}{n} \sum_{i=0}^{n-1} f(x_i) \right| \le L \cdot r(n,g)$$

- maximum minimum distance r(n,g) of rank-1 lattice
- Koksma-Hlawka inequality for functions of bounded variation

$$\left|\int_{[0,1)^s} f(x) dx - \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)\right| \le V(f) D^*(P_n)$$

- variation often unbounded in practical settings
- functions with sufficiently fast vanishing Fourier coefficients
 - another bound for rank-1 lattices

More uniform than random points can be


```
Searching for (t, m, s)-nets in base b = 2
```

• verifying the t = 0 property for a point with integer coordinates $(i,j) \in [0,2^m)^2$

```
for (k = 1; k < m; k++)
{
    // combine k bits of i and m-k bits of j to form index
    idx = (i >> (m - k)) + (j & (0xFFFFFFF << k));
    if(elementaryInterval[k][idx]++) // already one point there?
        break; // t > 0 !
}
```

(t,m,s)-Nets and Maximized Minimum Distance
 (t,m,s)-Nets and Maximized Minimum Distance, Part II

Questions over Questions

Light transport simulation

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

Light transport simulation

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

$$= \lim_{r(x)\to 0} \int_{\mathscr{S}^{2}(x)} \frac{\int_{B(x)} w(x,x') L_{i}(x',\omega) dx'}{\int_{B(x)} w(x,x') dx'} f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

Light transport simulation

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \lim_{r(x)\to 0} \int_{\mathscr{S}^{2}(x)} \frac{\int_{B(x)} w(x,x') L_{i}(x',\omega) dx'}{\int_{B(x)} w(x,x') dx'} f_{r}(\omega_{r}, x,\omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

Light transport simulation

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \lim_{r(x)\to 0} \int_{\mathscr{S}^{2}_{-}(x)} \frac{\int_{\mathcal{B}(x)} w(x,x') L_{i}(x',\omega) dx'}{\int_{\mathcal{B}(x)} w(x,x') dx'} f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}^{2}_{-}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}} L_{i}(h(y,\omega), \omega) f_{r}(\omega_{r}, h(y,\omega), \omega) \cos \theta_{y} d\omega dy$$

Light transport simulation

• ways to formulate the radiance *L_r* reflected in a surface point *x*

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \lim_{r(x)\to 0} \int_{\mathscr{S}^{2}_{-}(x)} \frac{\int_{B(x)} w(x,x') L_{i}(x',\omega) dx'}{\int_{B(x)} w(x,x') dx'} f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}^{2}_{-}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}} L_{i}(h(y,\omega), \omega) f_{r}(\omega_{r}, h(y,\omega), \omega) \cos \theta_{y} d\omega dy$$

actually an integro-approximation problem: Integrals depend on x and reflection direction ω_r

Light transport simulation

radiance L is light sources L_e plus transported radiance T_fL

 $L = L_e + T_f L$

Light transport simulation

radiance L is light sources L_e plus transported radiance T_fL

$$L = L_e + T_f L = \sum_{i=0}^{\infty} T^i L_e$$

Light transport simulation

radiance L is light sources L_e plus transported radiance T_fL

$$L = L_e + T_f L = \sum_{i=0}^{\infty} T^i L_e$$

reinforcement learning to compute low-dimensional approximation

$$L_c' = (1-\alpha)L_c + \alpha \left(L_e + T_f L_c\right)$$

Light transport simulation

radiance L is light sources L_e plus transported radiance T_fL

$$L = L_e + T_f L = \sum_{i=0}^{\infty} T^i L_e$$

reinforcement learning to compute low-dimensional approximation

$$L_c' = (1 - \alpha)L_c + \alpha \left(L_e + T_f L_c\right)$$

to guide high-dimensional paths

- itself using approximation instead of tracing paths with higher variance

approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Simultaneous Simulation of Markov Chains

reordering to benefit from uniformity

Simultaneous Simulation of Markov Chains

reordering to benefit from uniformity

- algorithm
 - simultaneously trace multiple paths bounce by bounce
 - enumerate points along route of proximity (e.g. Z-curve) to make sub-sequence property work

Anti-aliasing

• given $\alpha \in (0, 1]$, integrating

$$f(x) = egin{cases} 1 & x < 1 - lpha \ rac{1}{lpha} & ext{else} \end{cases}$$

seems simple

Anti-aliasing

• given $\alpha \in (0, 1]$, integrating

$$f(x) = egin{cases} 1 & x < 1 - lpha \ rac{1}{lpha} & ext{else} \end{cases}$$

seems simple

$$\int_0^1 f(x) dx = (1-\alpha) \cdot 1 + \alpha \frac{1}{\alpha} = 2 - \alpha$$

Anti-aliasing

• given $\alpha \in (0, 1]$, integrating

$$f(x) = egin{cases} 1 & x < 1 - lpha \ rac{1}{lpha} & ext{else} \end{cases}$$

seems simple

$$\int_0^1 f(x) dx = (1-\alpha) \cdot 1 + \alpha \frac{1}{\alpha} = 2 - \alpha \approx \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)$$

but numerical integration becomes increasingly difficult for a
ightarrow 0

Anti-aliasing

• given $\alpha \in (0, 1]$, integrating

$$f(x) = egin{cases} 1 & x < 1 - lpha \ rac{1}{lpha} & ext{else} \end{cases}$$

seems simple

$$\int_0^1 f(x) dx = (1-\alpha) \cdot 1 + \alpha \frac{1}{\alpha} = 2 - \alpha \approx \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)$$

but numerical integration becomes increasingly difficult for a
ightarrow 0

- example: each sample $f(x_i)$ of brightness $\frac{1}{\alpha} = 10^{26}$ (e.g. the sun) requires at least $n \sim 10^{26}$ more samples to average out

Anti-aliasing

• 1 random sample per pixel

- artifacts covered by noise

Anti-aliasing

• 1 random sample per pixel

- artifacts covered by noise
- however, freckled edges

Anti-aliasing

• 16 random samples per pixel

- slower
- reduced variance
- looks better

Anti-aliasing

• 4 × 4 stratified random samples per pixel

- often converges faster

Anti-aliasing

• 1024×1024 stratified random samples per pixel

Anti-aliasing

= 1024 \times 1024 stratified random samples per pixel, looking at 2 \times 2 pixels

- at the horizon

Anti-aliasing

= 1024 \times 1024 stratified random samples per pixel, looking at 2 \times 2 pixels

- at the horizon

- in the middle

Anti-aliasing

= 1024 \times 1024 stratified random samples per pixel, looking at 2 \times 2 pixels

- at the horizon

- in the middle

- in the front

Anti-aliasing

isotropic vs. anisotropic rank-1 lattices select by project normal

▶ Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

Images or Pixels?

Independence of pixels vs. independence of samples

anti-aliasing a zone plate at 4 samples per pixel

43 📀 NVIDIA.

Images or Pixels?

Independence of pixels vs. independence of samples

anti-aliasing a zone plate at 4 samples per pixel

jittered sampling

(*t*,*s*)-sequence

- error bounds depend on a function class

Ambient occlusion at 16 rank-1 lattice samples per pixel

Ambient occlusion at 16 random samples per pixel

Ambient occlusion at 16 rank-1 lattice samples per pixel with Cranley-Patterson-rotation

Quasi-Monte Carlo points

- deterministic low discrepancy sequences
 - especially rank-1 lattice sequences

- ► proceedings of the MCQMC conference series
- Quasi-Monte Carlo image synthesis in a nutshell
 - Myths of Computer Graphics
- The Iray light transport simulation and rendering system

Quasi-Monte Carlo points

- deterministic low discrepancy sequences
 - especially rank-1 lattice sequences

proceedings of the MCQMC conference series
Quasi-Monte Carlo image synthesis in a nutshell
Myths of Computer Graphics
The Iray light transport simulation and rendering system

'For every randomized algorithm, there is a clever deterministic one.' Harald Niederreiter, Claremont, 1998.

Schedule

- 9:40 Progressive Multi-Jittered Sequences
 - Per Christensen, Pixar
- 10:15 Warp and Effect
 - Matt Pharr, NVIDIA
- break
- 11:05 Low-Discrepancy Blue Noise Sampling
 - Abdalla Ahmed, King Abdulla University and Victor Ostromoukhov, Université Claude Bernard Lyon 1
- 11:40 Blue-Noise Dithered Sampling
 - Iliyan Georgiev, Autodesk
- Check https://sites.google.com/view/myfavoritesamples

