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MOTIVATION

BN sampling is good for diminishing overall noise in MC integration
BN sampling is good for improving visual appearance of synthetic images
Advanced BN sampling can be efficiently implemented
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OVERVIEW

Theoretical foundation for BN sampling
Based on Variance Analysis for Monte Carlo Integration, SIGGRAPH 2015

Some efficient implementations  
Based on 

Low-Discrepancy Blue Noise Sampling, SIGGRAPH-ASIA 2016
Sequences with Low-Discrepancy Blue-Noise 2-D Projections, EG2018
A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a 

Blue Noise in Screen Space, SIGGRAPH 2019 Talk
Open Issues
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BLUE NOISE
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[Ulichney 1987]



BN IN NATURE: COMPETITION FOR THE VITAL SPACE
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BN (ORGANIC) VS. ARTIFICIAL (ORDERED) DISTRIBUTIONS
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Sobol PointsBN Points

[de Goes et al. 2012]



BLUE NOISE POWER AND RADIAL SPECTRA IN 2D
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[de Goes et al. 2012]



BN: TARGET BEHAVIOR OF MSE IN INTEGRATION
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THEORETICAL FOUNDATION FOR BN SAMPLING
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VARIANCE FORMULATION BASED ON FOURIER ANALYSIS
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VARIANCE FORMULATION BASED ON FOURIER ANALYSIS
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TAXONOMY OF CONVERGENCY CLASSES
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b: degree of the polynomial
d: dimensions
N: number of samples



LOW FREQUENCY REGION
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Poisson Disk: 𝑂(#
$
) Jittered: 𝑂( #

$√$
)



VERIFICATION OF THE THEORETICAL PREDICTION
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OVERVIEW

Theoretical foundation for BN sampling
Based on Variance Analysis for Monte Carlo Integration, SIGGRAPH 2015

Some efficient implementation  
Based on 

Low-Discrepancy Blue Noise Sampling, SIGGRAPH-ASIA 2016
Sequences with Low-Discrepancy Blue-Noise 2-D Projections, EG2018
A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a 

Blue Noise in Screen Space, SIGGRAPH 2019 Talk
Open Issues
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2D INDEXED LD SETS



DISCREPANCY-PRESERVING REARRANGEMENT



AXIS-WISE 2D REARRANGEMENT DEMO



REFERENCE-MATCHING ALGORITHM



DEMO
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OWEN’S SCRAMBLING

24

00
0

0

01
0

0

10
0

0

11
0

0

00
1

0

01
1

0

10
1

0

11
1

0

00
0

1

01
0

1

10
0

1

11
0

1

00
1

1

01
1

1

10
1

1

11
1

1

0 0 00

0 0 01

0 0 10

0 0 11

0 1 00

0 1 01

0 1 10

0 1 11

1 0 00

1 0 01

1 0 10

1 0 11

1 1 00

1 1 01

1 1 10

1 1 11

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
00

0
0

01
0

0

10
0

0

11
0

0

00
1

0

01
1

0

10
1

0

11
1

0

00
0

1

01
0

1

10
0

1

11
0

1

00
1

1

01
1

1

10
1

1

11
1

1

0 0 00

0 0 01

0 0 10

0 0 11

0 1 00

0 1 01

0 1 10

0 1 11

1 0 00

1 0 01

1 0 10

1 0 11

1 1 00

1 1 01

1 1 10

1 1 11

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15



OWEN’S SCRAMBLING
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OWEN’S SCRAMBLING
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OWEN’S SCRAMBLING
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CONSTRUCTION IN [PERRIER ET AL. 2018]: THE KEY IDEA
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Step 1: Identify all possible 16-point tiles in the original Sobol sets



CONSTRUCTION IN [PERRIER ET AL. 2018]: THE KEY IDEA
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Step 2: For each ID, find Owen’s permutations which maximize min dist



CONSTRUCTION IN [PERRIER ET AL. 2018]: THE KEY IDEA
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Step 2: For each ID, find Owen’s permutations which maximize min dist

Dyadic Partitioning is preserved: 



CONSTRUCTION IN [PERRIER ET AL. 2018]: THE KEY IDEA
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Step 3: Store permuted patterns in a lookup table

Step 4: In runtime, take the pattern from the lookup table, and LSB bits from 
Sobol’s codes:



GENERATED POINTS (4K): SOBOL
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GENERATED POINTS (4K): OWEN’S SCRAMBLING
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GENERATED POINTS (4K): [PERRIER ET AL. 2018]
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POWER SPECTRUM + RADIAL: OWEN VS. [PERRIER ET AL. 2018]
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[PERRIER ET AL. 2018]: CONCLUSIONS

What we Got:
— 2-D Low-Discrepancy Sequences (with Support for Progressive Sampling)
— Improved 2-D Fourier Spectra
— Extendable to 4-D and 6-D
— Supports Adaptive Sampling
— Fast, Low Memory Footprint
— Purely Deterministic, but Can Simulates Quasi-Randomness

Limitations:
— Hard to Get Higher Dimensions
— Power Spectra are “Blueish” rather then “Blue”
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OVERVIEW

Theoretical foundation for BN sampling
Based on Variance Analysis for Monte Carlo Integration, SIGGRAPH 2015

Some efficient implementation  
Based on 

Low-Discrepancy Blue Noise Sampling, SIGGRAPH-ASIA 2016
Sequences with Low-Discrepancy Blue-Noise 2-D Projections, EG2018
A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a 

Blue Noise in Screen Space, SIGGRAPH 2019 Talk
Open Issues

42



WHAT IS WRONG WITH DISCREPANCY AS MEASURE OF 
UNIFORMITY?
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[Christensen et al. 2018]



WHAT IS WRONG WITH DISCREPANCY AS MEASURE OF 
UNIFORMITY?
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Sobol Points



WHAT IS WRONG WITH DISCREPANCY AS MEASURE OF 
UNIFORMITY?
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MY FAVORITE SAMPLER?
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MY FAVORITE SAMPLER?
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The future one!



MY FAVORITE SAMPLER?
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The future one!

- Multi-dimensional
- Guarantees convergence to the true integral
- Prevents aliasing
- Minimizes noise
- Guarantees good frequency content of the noise
- Guarantees good computational efficiency



QUESTIONS?
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