
MONTE-CARLO METHODS

IN GLOBAL ILLUMINATION

Script written by

Szirmay-Kalos Lászĺo
in WS of 1999/2000

Institute of Computer Graphics
Vienna University of Technology

i

Contents

1 Introduction 1
1.1 Global pass . 2
1.2 Local pass . 2
1.3 Tone mapping . 2

2 Global illumination problem 5
2.1 The rendering equation . 5
2.2 Measuring the radiance. 8
2.3 The potential equation . 8
2.4 Measuring the potential. 9
2.5 The rendering problem . 10

2.5.1 Geometry of the surfaces 10
2.5.2 Bi-directional Reflection Distribution Functions . 11
2.5.3 Lightsources . 11
2.5.4 Measuring devices . .. 12

2.6 Numerical solution of the rendering equation . 14
2.6.1 Error measures for numeric techniques . 14
2.6.2 Properties of the rendering equation . 15

2.7 Classification of the solution techniques . 15

3 Optical material models 18
3.1 Diffuse reflection . 18
3.2 Ideal, mirror-like reflection . 19
3.3 Ideal refraction . 21
3.4 Non-ideal, specular reflection . 21

3.4.1 Phong reflection model and its modifications 21
3.4.2 Cook-Torrance model. 24

4 Solution strategies for the global illumination problem 28
4.1 Inversion . 28
4.2 Expansion . 28

4.2.1 Expansion of the rendering equation: gathering walks . 28
4.2.2 Expansion of the potential equation: shooting walks . 30
4.2.3 Merits and disadvantages of expansion methods . .. 31

4.3 Iteration . 31
4.3.1 Analysis of the iteration . 32

4.4 Analytical solution of the rendering equation . 33
4.4.1 Scenes with constant radiance. 34
4.4.2 Scenes with constant reflected radiance . .. 34

5 Finite-element methods for the Global Illumination Problem 35
5.1 Galerkin’s method . 37
5.2 Point collocation method . 37
5.3 Finite element methods for the diffuse global illumination problem. 37

5.3.1 Geometric methods for form factor computation .. 39

ii

CONTENTS iii

6 Numerical quadrature for high dimensional integrals 41
6.1 Monte-Carlo quadrature . 42
6.2 Quasi-Monte Carlo quadrature . 42

6.2.1 Error Analysis for integrands of finite variation: Koksma-Hlawka Inequality 43
6.2.2 Generation of the sample points . 46
6.2.3 Generation of low-discrepancy sequences . 47

6.3 Importance sampling . 49
6.3.1 Generation of a random variable with a prescribed probability density 49
6.3.2 Importance sampling in quasi-Monte Carlo integration 50
6.3.3 Metropolis sampling . 51
6.3.4 Application of the VEGAS algorithm . 52

7 Random walk solution of the global illumination problem 53
7.1 Why should we use Monte-Carlo expansion methods? 53
7.2 Quasi-Monte Carlo quadrature for the rendering equation . 54

7.2.1 Integrating functions of unbounded variation 54
7.3 Importance sampling for the rendering equation . 57

7.3.1 BRDF sampling . 58
7.3.2 Lightsource sampling . 60
7.3.3 Sampling the lightsources in gathering random walks 60
7.3.4 Importance sampling in colored scenes . 61
7.3.5 Multiple importance sampling. 61

7.4 Handling infinite-dimensional integrals . 62
7.4.1 Russian roulette . 62
7.4.2 Russian roulette in quasi-Monte Carlo quadrature . 63

8 Review of random walk algorithms 66
8.1 Gathering-type random walk algorithms 66

8.1.1 Ray-casting . 67
8.1.2 Visibility ray-tracing .. 68
8.1.3 Distributed ray-tracing . 69
8.1.4 Path-tracing . 70

8.2 Shooting-type walks methods .. 71
8.2.1 Photon tracing . 72
8.2.2 Light-tracing . 73
8.2.3 Random walks for the radiosity setting . .. 74

8.3 Bi-directional random walk algorithms. 76
8.3.1 Bi-directional path-tracing . 76
8.3.2 Metropolis light transport . 79
8.3.3 Photon-map . 80
8.3.4 Instant radiosity . 81

8.4 Global methods 82
8.4.1 Multi-path method using global random lines 82
8.4.2 Global ray-bundle tracing . .. 82
8.4.3 Preprocessing the point lightsources . 83

9 Iteration solution of the global illumination problem 85
9.1 Why should we use Monte-Carlo iteration methods?. 86
9.2 Formal definition of stochastic iteration 86

9.2.1 Other averaging techniques . 88
9.2.2 Can we use quasi-Monte Carlo techniques in iteration? 88

10 Review of stochastic iteration algorithms 90
10.1 Stochastic iteration for the diffuse radiosity . 90

10.1.1 Stochastic radiosity . 91
10.1.2 Transillumination radiosity . .. 91
10.1.3 Stochastic ray-radiosity . 92

10.2 Definition of the random transport operator for the non-diffuse finite-element case 92
10.2.1 Single ray based transport operator . 93
10.2.2 Stochastic iteration using ray-bundles 95

CONTENTS iv

11 Implementation of the path-tracing algorithm 97
11.1 Vector module 99

11.1.1 Point3D class . 99
11.1.2 Transformation class . 99

11.2 Container module 99
11.3 Color module 100
11.4 Material models . 100

11.4.1 Diffuse material class . 101
11.4.2 Ideal mirror class . 101
11.4.3 Ideal refracting material class . 102
11.4.4 Specular material class . 103
11.4.5 General material class . 103

11.5 Light module 104
11.5.1 Emitter class .. 104
11.5.2 Positional light class . 104

11.6 Model module 105
11.6.1 Primitive class . 105
11.6.2 Object class . 105
11.6.3 Virtual world class . 106

11.7 Camera module 106
11.8 Scene module 107

11.8.1 Scene class . 107
11.9 Dynamic model of path tracing . 107

11.9.1 Finding the visible primitive . 107
11.9.2 Detecting the visible lightsources . 107
11.9.3 Direct lightsource computation . 109
11.9.4 Path tracing . 109
11.9.5 Rendering complete images . 110

BIBLIOGRAPHY 111

SUBJECT INDEX 116

Chapter 1

Introduction

The ultimate objective ofimage synthesisor rendering is to provide the user with the illusion of watching real
objects on the computer screen (figure 1.1). The image is generated from an internal model which is called the
virtual world . To provide the illusion of watching the real world, the color sensation of an observer looking at the
artificial image generated by the graphics system must be approximately equivalent to the color perception which
would be obtained in the real world. The color perception of humans depends on thelight power reaching the
eye from a given direction and on the operation of the eye. The power, in turn, is determined from theradiance
of the visible points. The radiance depends on the shape and optical properties of the objects and on the intensity
of the lightsources. In order to model this complex phenomenon, both the physical-mathematical structure of the
light-object interaction and the operation of the eye must be understood.

Tone
mapping

R

G

B

radiance

power

radiance

power

λ

λ

λ

λ

power

λ

color perception
in the nerve cells

real world

windowmeasuring
device

monitor virtual world

rendering
observer of the
computer screen

observer of the
real world

Figure 1.1: Tasks of rendering

The image synthesis uses an internal model consisting of thegeometry of the virtual world , optical material
properties and the description of thelighting in the scene (figure 1.2). From these, applying the laws of physics
(e.g. Maxwell equations) the real world optical phenomena can be simulated to find the light distribution in the
scene. This step is called the view-independent step or theglobal passof rendering. Then ameasurement device,
called theeyeor camera, is placed into the scene and the light distribution is measured from a given location and
orientation. This is called the view-dependent step or thelocal pass. Note that not all rendering algorithms make a
clear distinction between the determination of the view-independent light distribution and the measurement of this

1

1.1. GLOBAL PASS 2

distribution by the camera, but simultaneously compute the light distribution and its effect on the camera.
Rendering results in a representation of the perceived image, which is usually the collection of pixel colors or

some discrete sampling of the radiance function. The exact simulation of the light perceived by the eye is impos-
sible, since it would require endless computational process. On the other hand, it is not even worth doing since the
possible distributions which can be produced by computer screens are limited in contrast to the infinite variety of
real world light distributions. Consequently, color perception is approximated instead of having a completely ac-
curate simulation. The accuracy of this approximation is determined by the ability of the eye to make a distinction
between two light distributions.

Computer screens can produce controllable electromagnetic waves, or colored light, mixed from three separate
wavelengths for their observers. Thus in the final step of image synthesistone mapping is needed which converts
the computed color or radiance information to theR,G,B intensities that can be produced by the color monitor.

geometry of
the virtual world

material
properties

lighting

global
rendering
(global pass)

image
calculation
(local pass)

radiance of
surface points

radiance of
pixels

tone
mapping R,G,B of pixels

camera

Figure 1.2: Dataflow of rendering

1.1 Global pass

Theglobal passdetermines the light reflected off the surface points at different directions. Since light is an electro-
magnetic wave, light distribution in a point and at a given direction can be represented by a wavelength-dependent
function [Ábr97, Kón85]. Rendering algorithms usually evaluate this functions at a few representative wave-
lengths. On a given wavelength the intensity of the light is described by theradiance. In scenes not incorporating
participating media it is enough to calculate the radiance at surface points. The radiance reflected off a surface
point is affected by the emission of this point (lighting), the illumination provided by other surface points and the
optical properties of the material at this point (material properties). Formally this dependence is characterized by
a Fredholm type integral equation of the second kind, which is called therendering equation. From mathematical
point of view, global pass is the solution of this integral equation for the representative wavelengths.

1.2 Local pass

The local passmeans the measurement of the global radiance function by a camera. A camera is a collection of
light measuring devices which usually correspond to pixels in the image. A certain measuring device is character-
ized by a sensitivity function that describes which points and directions may affect the device.

1.3 Tone mapping

Light is an electromagnetic wave, and itscolor is determined by the eye’s perception of its spectral energy distri-
bution. Due to its internal structure, the eye is a very poor spectrometer since it actually samples and integrates
the energy in three overlapping frequency ranges by three types of photopigments according to a widely accepted
(but also argued) model. As a consequence of this, any color perception can be represented by three scalars (called
tristimulus values) instead of complete functions [Ábr97, Kón85, Nem90].

A convenient way to define the axes of a coordinate system in the three-dimensional space of color sensations
is to select three wavelengths where one type of photopigments is significantly more sensitive than the other two
[SK99c]. This method has been devised by Grassmann, who also specified a criterion for separating the three
representative wavelengths.Grassmann lawsstate that the representative wavelengths should be selected such
that no one of them can be matched by the mixture of the other two in terms of color sensation (this criterion is

1.3. TONE MAPPING 3

similar to the concept of linear independence.) An appropriate collection of the representative wavelengths is:

�red = 645 nm; �green = 526 nm; �blue = 444 nm: (1.1)

Now let us suppose that monochromatic light of wavelength� is perceived by the eye. The equivalent portions
of red, green and blue light, or (r, g, b) tristimulus values, can be generated by threecolor matching functions
(r(�), g(�) andb(�)) which are based on physiological measurements. Note the negative section ofr(�) (and to a
less extent ing(�)) in figure 1.3. It means that not all colors can be represented by positive (r, g, b) values.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

400 450 500 550 600 650 700

r,
g,

b

lambda[nm]

R=645nm, G=526nm, B=444nm matching functions

r(lambda)
g(lambda)
b(lambda)

Figure 1.3: Mean 10-deg color matching functions of Stiles and Burch:r(�), g(�), b(�).

If the perceived color is not monochromatic, but is described by anL(�) distribution, the tristimulus coordinates
are computed using the assumption that the sensation is produced by an additive mixture of the perceptions of
elemental monochromatic components:

r =

Z
�

L(�) � r(�) d�; g =

Z
�

L(�) � g(�) d�; b =

Z
�

L(�) � b(�) d�: (1.2)

For computer generated images, the color sensation of an observer watching a virtual world on the screen
must be approximately equivalent to the color sensation obtained in the real world. Since color sensations are
represented by (r, g, b), it means that the tristimulus values should be identical. If two energy distributions are
associated with the same tristimulus coordinates, they produce the same color sensation, and are calledmetamers.

In computer monitors and in television screens three phosphor layers can be stimulated to produce red, green
and blue light. The objective, then, is to find the necessary stimulus to produce a metamer of the real energy
distribution of the light [Sch96, BS95]. This stimulus can be controlled by the (R, G, B) values of the actual
pixel. The (r, g, b) matching functions of figure 1.3 depend on the wavelength of the selected primaries, which are
not necessarily identical to the wavelengths on which our monitor can emit light. This requires the conversion of
tristimulus values by a linear transformation.

The calculation of pixelR;G;B values thus consists of the following steps. First the spectrum associated with
the pixel is computed. Then the spectrum is matched by three standard color matching functions defined by three
primaries. Finally, the standard color coordinates are transformed to the monitor color coordinates taking into
account the monitor properties. In practice, the standard color system is usually theCIE XYZ system [WS82]
which uses three hypothetical primaries to allow the definition of any color by positive weights.

The linear transformation that converts from theXYZ system to the monitorRGB system can be obtained
from theX;Y; Z coordinates of the emissions of the three phosphors and of the white point of the monitor. For a
monitor withstandard NTSC phosphorsandwhite point, the following transformation can be used [Gla95]:2

4 R

G

B

3
5 =

2
4 1:967 �0:548 �0:297
�0:955 1:938 �0:027
0:064 �0:130 0:982

3
5 �
2
4 X

Y

Z

3
5 : (1.3)

1.3. TONE MAPPING 4

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

400 450 500 550 600 650 700

X
,Y

,Z

lambda[nm]

X,Y,Z matching functions

X(lambda)
Y(lambda)
Z(lambda)

Figure 1.4: Mean 10-deg colorXY Z matching functions of Stiles and Burch:X(�), Y (�), Z(�)

The whole computation of the (R,G,B) values in order for the monitor color to be a metamer of the calculated
spectrum is calledtone mapping. The (R, G, B) values are positive numbers usually in the range of [0...255]
if 8 bits are available to represent them. Unfortunately, not all colors can be reproduced on the computer screen,
because of the negative sections of the color matching functions and due to the fact that the number of available
intensity levels is usually much less than can be perceived in the real world. Thus tone mapping is also responsible
for optimally selecting from the available intensity levels for color reproduction. The mapping from the computed
levels to the available ones can be either linear or logarithmic. The latter takes advantage of the logarithmic
characteristics of the human perception system [PP98].

Chapter 2

Global illumination problem

In this chapter the mathematical model of the light-surface interaction is presented. This mathematical model is an
integral equation, which has to be solved to obtain physically accurate images.

2.1 The rendering equation

Hereinafter, monochromatic light of a representative wavelength� will be assumed, since the complete color
calculation can be broken down to these representative wavelengths. The parameters of the equations usually
depend on the wavelength, but for notational simplicity, we do not always include the� variable in them.

In this section, we briefly review the measures of the light transport and the mathematical formulation that can
compute them.

θ

φ

x

y

z ω

θ

φ
x

y

z ω

d

d

sin dθ φ

θd

Figure 2.1: Definition of directions in a spherical coordinate system (left) and calculation of differential solid angles (right)

The directional property of the light energy emission is described in a so-calledillumination sphere
 or in
illumination hemisphere
H which contain those solid angles to where the surface point can emit energy. The
surface of transparent materials can emit in any directions of a sphere, while the surface of opaque materials can
transfer energy only to the hemisphere that is “above” the surface.

Setting up aspherical coordinate system(figure 2.1), a direction! can be defined by two angles�; �, where
� is the angle between the given direction and thez-axis, and� is the angle between the projection of the given
direction onto thex; y plane and thex-axis.

Sets of directions are defined by solid angles. By definition, asolid angleis a cone or a pyramid, with its size
determined by its subtended area of a unit sphere centered around the apex (figure 2.2). A differential (infinitesimal)
solid angle can also be given by a vectord~!, where the vector equals to a direction of the differential set.

A differential solid angle can also be expressed by the�; � angles. Suppose that� is modified byd� and� is
by d�. During this the directional vector scans a differential rectangle havingd� vertical andsin � � d� horizontal
sizes (right of figure 2.1), thus the size of the solid angle is

d! = sin � � d�d�: (2.1)

The solid angle, in which a differentialdA surface can be seen from point~p, is the projected (visible) area
per the square of the distance of the surface (figure 2.2). If the angle between the surface normal ofdA and the

5

2.1. THE RENDERING EQUATION 6

dA

ωd

r

θ

Figure 2.2: Definition of the solid angle

directional vector fromdA to ~p is �, and the distance fromdA to ~p is r, then this solid angle is:

d! =
dA � cos �

r2
: (2.2)

The intensity of the energy transfer is characterized by several metrics in computer graphics depending on
whether or not the directional and positional properties are taken into account.

The lightpower or flux � is the energy radiated through a boundary per unit time over a given range of the
spectrum (say[�; � + d�]). Since aphoton has�h=� energy where�h is the Planck-constant, the power can be
supposed to be propotional to the number of photons that go through the boundary in a unit time. The power is
not always a convenient measure since it also needs the definition of a boundary. We can get rid of this additional
information if the boundary is defined in a differential way focusing on a single surface point and a single direction.
The resulting measure is called the radiance.

Theradiance or intensity L(~x; !) is the differential light flux�(~x; dA; !; d!) leaving a surface elementdA
around~x in a differential solid angled! around! per the projected area of the surface elementdA and the size of
the solid angled!. If the angle of the surface normal and the direction of interest is�, then the projected area is
dA � cos �, hence the radiance is:

L(~x; !) =
d�(~x; dA; !; d!)

dA � d! � cos � : (2.3)

Since a differential surface area can also be seen as a vectord ~A, which is parallel to the surface normal at the given
point, the radiance can also be obtained in a simpler form

L(~x; !) =
d�(~x; dA; !; d!)

d ~A � d~!
: (2.4)

dA

ωθ θ’
d

r

dA’

..

Figure 2.3: Energy transfer between two differential surface elements

Having introduced the most important metrics, we turn to their determination in the simplest case, where there
are only two differential surface elements in the 3D space, one (dA) emits light energy and the other (dA0) absorbs
it (figure 2.3). According to the definition of the radiance (equation (2.3)), ifdA0 is visible fromdA in solid angle
d! and the radiance of the surface elementdA isL in this direction, then the flux leavingdA and reachingdA0 is:

d� = L � dA � d! � cos �: (2.5)

Using equation (2.2), the solid angle can be expressed from the projected area ofdA0, thus we get:

d� = L � dA � cos � � dA
0 � cos �0

r2
: (2.6)

2.1. THE RENDERING EQUATION 7

This formula is called thefundamental law of photometry.
Note that if equation (2.2) is used again for the emitter, the transferred power can also be written in the following

form:

d� = L � dA � cos � � dA
0 � cos �0

r2
= L � dA0 � d!0 � cos �0: (2.7)

Thus similar formula applies for the patch that receives the power as for the patch that emits it.
In light-surface interaction the surface illuminated by an incident beam may reflect a portion of the incoming

energy in various directions or it may absorb the rest. It has to be emphasized that a physically correct model must
maintain energy equilibrium, that is, the reflected and the transmitted (or absorbed) energy must be equal to the
incident energy.

Optically perfect or smooth surfaces will reflect or transmit onlycoherent components governed by the laws
of geometric optics, including the law of reflection and the Snellius–Descartes law of refraction. The surface
irregularities, however, reflect or refract the incident light incoherently in any direction. Since the exact nature of
these irregularities is not known, light-surface interaction is modeled by means of probability theory.

Assume that a photon comes from the direction denoted by!0 to point ~x. The probability of reflection or
refraction at~x into solid angled! around! is expressed by the following probability density function, also called
astransfer probability density :

w(!0; ~x; !) � d! = Prfphoton is reflected or refracted tod! around! j coming from!0g: (2.8)

Note that this probability distribution is a mixed, discrete-continuous distribution, since the probability that the
light is reflected exactly to the ideal reflection direction may be non-zero.

x

h(x, -

L(x,)

ω

ω

ω

’

θ

’

’
ω

L(h(x, - ω ω’ ’

’

,

)

))

Figure 2.4: Geometry of the rendering equation

The light flux (�out) leaving the surface at solid angled! around! consists of the emission and reflected (or
refracted) components.

In order to obtain thereflected/refracted component, let us assume that photons are coming to areadA around
~x from solid angled!0 around!0 and their total represented power is�in(~x; dA; !0; d!0). The probability that a
photon is reflected tod! isw(!0; ~x; !) � d! thus the expected power leaving the surface element after reflection or
refration is:

w(!0; ~x; !) d! ��in(~x; !0; d!0):

To obtain the total reflected/refracted power, all the possible incoming directions!0 should be taken into ac-
count and their contributions should be integrated:Z

(w(!0; ~x; !) d!)�in(~x; !0; d!0): (2.9)

If the surface itself emits energy, i.e. if it is a lightsource, then theemissionalso contributes to the output flux:

�e(~x; !) = Le(~x; !) � dA � cos � � d!: (2.10)

Adding the possible contributions we obtain:

�out(~x; !) = �e(~x; !) +

Z

(w(!0; ~x; !) d!)�in(~x; !0; d!0): (2.11)

2.2. MEASURING THE RADIANCE 8

The fluxes can be expressed by the radiant intensities according to equations (2.5) and (2.7), thus:

�in(~x; !0; d!0) = Lin(~x; !0) � dA � cos �0 � d!0;
�out(~x; !; d!) = L(~x; !) � dA � cos � � d!: (2.12)

Substituting these terms into equation 2.11 and dividing both sides bydA � d! � cos � we get:

L(~x; !) = Le(~x; !) +

Z

Lin(~x; !0) � cos �0 � w(!
0; ~x; !)

cos �
d!0: (2.13)

Let us realize thatLin(~x; !0) is equal toL(~y; !0) if ~y is the point that is visible from~x at direction�!0, usually
expressed by the so calledvisibility function h (i.e. ~y = h(~x;�!0)).

Using these equations and introducing thebi-directional reflection/refraction function — or BRDF for short
— as defined by the following formula

fr(!
0; ~x; !) =

w(!0; ~x; !)

cos �
; (2.14)

we obtain the following fundamental law, called therendering equation:

L(~x; !) = Le(~x; !) +

Z

L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0: (2.15)

Introducing the following notation for the integral operator

(T L)(~x; !) =
Z

L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0; (2.16)

the short form of the rendering equation can also be established:

L = Le + T L: (2.17)

In fact, every color calculation problem consists of several rendering equations, one for each representative
wavelength. Optical parameters (Le; fr) obviously vary in the different equations, but the geometry represented
by functionh does not.

2.2 Measuring the radiance

Having solved the rendering equation, the radiance can be determined for any point and direction. To obtain an
image, the power that affect different parts of light sensitive material (retina or the film of a camera) must be
determined. Mathematically each distinct part is associated with a measuring device, thus the collection of these
devices is, in fact, the model of the human eye or cameras.

A measuring device is characterized by asensitivity function W e(~y; !0), which gives ascaling valueC if a
light-beam of unit power leaving~y in direction!0 contributes to the measured value and 0 otherwise (for example,
this device can measure the power going through a single pixel of the image and landing at the eye, or leaving a
surface element at any direction).

Since the power leaving surface aread~y around~y in solid angled! around! is L(~y; !)d~y cos �d!, the mea-
sured value by a certain device is:Z

Z
S

d�(~y; !) �W e(~y; !) =

Z

Z
S

L(~y; !) cos � �W e(~y; !) d~y d! =ML: (2.18)

OperatorM is called theradiance measuring operator.

2.3 The potential equation

Looking at the light propagation as an interaction between an emitter and a receiver, the radiance describes this
interaction from the point of view of the emitter. The same phenomenon can also be explained from the point of
view of the receiver, when the appropriate measure is called thepotential. By definition, the potentialW (~y; !0)

2.4. MEASURING THE POTENTIAL 9

h(y,

W(y,)

ω

ω

ω

’

’

’
ω

W(h(y, ω ω’ ,

)

))

y

θ

Figure 2.5: Geometry of the potential equation

expresses the effect of that portion of the unit power light-beam emitted by point~y in direction!0, which actually
lands at a given measuring device either directly or indirectly after some reflections or refractions. Using proba-
bilistic terms the potential is the product of the scaling valueC and the probability that a light-beam emitted by a
point in a given direction reaches the measuring device.

If only direct contribution is considered, thenW (~y; !0) = W e(~y; !0). To take into account light reflections,
we can establish thepotential equation [PM95]:

W =W e + T 0W: (2.19)

In this equation integral operatorT 0 — which is the adjoint ofT — describes the potential transport

(T 0W)(~y; !0) =

Z

W (h(~y; !0); !) � fr(!0; h(~y; !0); !) � cos � d!; (2.20)

where� is the angle between the surface normal and the outgoing direction!.
To prove this equation, we can use the probabilistic interpretation of the potential. Denoting the “unit power light-beam

that is leaving~x at direction!” by �(~x; !), we can write:

W (~y; !0) = C � Prf�(~y; !0) lands at the deviceg =

C � Prf�(~y; !0) goes directly to the deviceg+C � Prf�(~y; !0) lands at the device after at least one reflectiong: (2.21)

The first term is equal to the sensitivity function. Considering the second term, we can obtain:

C � Prf�(~y; !0) lands at the device after at least one reflectiong =Z

C � Prf�(h(~y; !0); !) lands at the deviceg � Prf�(~y; !0) is reflected tod! around! ath(~y; !0)g =

Z

W (h(~y; !0); !) � fr(!
0
; h(~y; !0); !) � cos � d!: (2.22)

2.4 Measuring the potential

Alternatively to the radiance, the power arriving at the measuring device can also be computed from the potential.
Since

d�e(~y; !0) = Le(~y; !0) � cos � d~y d!0
is proportional to the power of the light-beam emitted byd~y in d!0 and the probability that the photons of this
beam really go either directly or indirectly to the measuring device isW (~y; !0)=C, the total measured value that
takes into account all possible emission points and directions is

C �
Z

Z
S

d�e(~y; !0) � W (~y; !0)

C
=

Z

Z
S

W (~y; !0) � Le(~y; !0) � cos � d~y d!0 =M0W; (2.23)

whereM0 is thepotential measuring operator. Note that unlike the radiance measuring operator, the potential
measuring operator integrates on the lightsource.

2.5. THE RENDERING PROBLEM 10

2.5 The rendering problem

Generally, therendering problem is a quadruple [Kel97]:

hS; fr(!0; ~x; !); Le(~x; !);We(~x; !)i
whereS is the geometry of surfaces,fr is the BRDF of surface points,Le is the emitted radiance of surface points
at different directions andWe is a collection of measuring functions. Rendering algorithms aim at modeling and
simulation of light-surface interactions to find out the power emitted by the surfaces and landing at the measuring
devices. The light-surface interaction can be formulated by therendering equationor alternatively by thepotential
equation. Since according to the definition of the radiance the total power of the scene is the integral of the radiance
function

� =

Z

Z
S

L(~y; !) d~y d~!;

we are interested only in those solutions where the total integral of the radiance function is finite. Formally the
solution is searched in theL1 function space.

Recall that the measured value can be computed by the measuring function from the radianceZ

Z
S

L(~y; !) cos � �W e(~y; !) d~y d! =ML; (2.24)

whereM is theradiance measuring operator. Let us introduce thescalar product hu; vi

hu; vi =
Z

Z
S

u(~y; !) � v(~y; !) d~y d~! =

Z

Z
S

u(~y; !) � v(~y; !) d~y cos � d!;

where� is the angle between the surface normal and direction! and thusd~y cos � is the infinitesimal visible area
from direction!. Using this scalar product, we can obtain an alternative form of the measuring operator:

ML = hL;W ei:
Thepotential measuring operatorcan also be given in a scalar product form:

M0W = hLe;W i: (2.25)

Let us examine a single reflection of the light. The measured value taking into account a single reflection can be
expressed in two ways:

hT Le;W ei = hLe; T 0W ei: (2.26)

Thus the radiance and potential transport operators areadjoint operators [Mát81].

2.5.1 Geometry of the surfaces

A surface is a set of 3D points which are defined by an equation [SK99c]. Those points are said to be in this set,
which satisfy the definition equation. The equation can produce the points on the surface either implicitly, when
the general form is

F (x; y; z) = 0;

or explicitly, which is preferred in rendering algorithms. The general form of an explicit surface definition is:

~r = ~r(u; v); u 2 [0; 1]; v 2 [0; 1]: (2.27)

Points on the surface can be generated by selectingu; v parameters from the unit interval and substituting their
values into the function~r(u; v). For example, a sphere of radiusR and of center(x0; y0; z0) can be defined either
by the followingexplicit equation:

x = x0 +R � cos 2�u � sin�v; y = y0 +R � sin 2�u � sin�v; z = z0 +R � cos�v; u; v 2 [0; 1];

or by animplicit equation :
(x� x0)

2 + (y � y0)
2 + (z � z0)

2 �R2 = 0:

Some rendering algorithms do not work with the original geometry but approximate the surfaces bytriangle
meshes. This approximation — also called thetessellation— can be realized by selectingn � m points in
parameter spaceu 2 [0; 1]; v 2 [0; 1] and adding the

[~r(ui; vj); ~r(ui+1; vj); ~r(ui+1; vj+1)] and [~r(ui; vj); ~r(ui+1; vj+1); ~r(ui; vj+1)]

triangles for alli = 1 : : : n� 1 andj = 1 : : :m� 1 indices to the resulting list (figure 2.6). For the discussion of
surface definition methods using forward and reverse engineering and of transformations refer to [SK99c, Chi88,
VMC97, RVW98] and to [SKe95, Kra89, Her91, Lan91], respectively.

2.5. THE RENDERING PROBLEM 11

original surface with isolines selecting points and triangles result of tessellation

Figure 2.6: Tessellation process

2.5.2 Bi-directional Reflection Distribution Functions

TheBi-directional Reflection Distribution Functions (orBRDFs) characterize the optical material properties.
Photorealistic rendering algorithms require the BRDFs not to violate physics. Such BRDF models must satisfy
both reciprocity and energy balance, and are calledphysically plausible[Lew93].

Reciprocity that was recognized by Helmholtz is the symmetry property of the BRDF characterizing reflec-
tions, which is defined by the following equation [Min41]:

fr(!; ~x; !
0) = fr(!

0; ~x; !); (2.28)

where!0 is the vector pointing towards the incoming light and vector! defines the viewing direction. Reciprocity
is important because it allows for the backward tracing of the light as happens in visibility ray-tracing algorithms.
Note that reciprocity is valid if the incoming and outgoing beams are in the same material, that is, reflection BRDFs
are expected to be reciprocal but refraction BRDFs are not.

Suppose that the surface is illuminated by a beam from direction!0. Energy balancemeans that the number
of outgoing photons cannot be more than how many were received. To examine it formally, we can introduce the
albedo [Lew93] that is the ratio of the total reflected power and incoming power, or equivalently, the probability
of the reflection to any direction. Energy balance means that the albedo cannot be greater than 1:

a(~x; !0) = Prfphoton is reflectedj coming from!0g =
Z

H

w(!0; ~x; !) d! =

Z

H

fr(!
0; ~x; !) � cos � d! � 1: (2.29)

If the BRDF is reciprocal, then the albedo can also be interpreted as the optical response of the surface to
homogeneous sky-light illumination of unit intensity:

T 1 =
Z

H

1 � fr(!0; ~x; !) � cos �0 d!0 = a(~x; !): (2.30)

Using the definition of the transfer probability densityw in equation (2.8), we can obtain the following proba-
bilistic interpretation of the BRDF:

fr(!
0; ~x; !) � cos � = 1

d!
� Prfphoton is reflected or refracted tod! around! j it comes from!0g:

Different BRDF models are discussed in [SKe95, SK99c, SK99a, Pho75, Bli77, CT81, War92, HTSG91,
ON94, Sch93, NNSK99b, NNSK99a, CSK98].

2.5.3 Lightsources

Thelightsources are surfaces that have non-zeroLe emission. Rendering algorithms also use abstract lightsources
that are not associated with surfaces [SKe95]. The most important types of theseabstract lightsource models are
the following:

� a point-lightsource is located at a given point of the virtual world and its size is zero. The direction of
the illumination provided by this lightsource at a point is the vector from the point to the location of the
lightsource and the intensity of the illumination decreases with the square of the distance. An example of
this category is an electric bulb.

2.5. THE RENDERING PROBLEM 12

� a directional-lightsource is located at infinity in a given direction. The direction and the intensity of its
illumination are constant everywhere. A directional-lightsource is, in fact, equivalent to an infinitely distant
plane emitter. The sun can be considered as a directional-lightsource.

� sky-light illumination provides constant illumination at any point and at any direction.

2.5.4 Measuring devices

In order to establish models for thecamera, the operation of thehuman eyecan be analyzed when the human is
looking at the real world and when he is watching the computer screen.

e∆
ω

y
Ωp

p

Ωp

y - e
watching the real world watching the computer screen

e

pixel

Φ

θ Lp

Φp
e∆

||

Figure 2.7: A model of the human eye

The human eye contains a lens called thepupil of size�e (figure 2.7). We shall assume that the pupil is small,
which is often referred as thepinhole camera model. When the human is watching the computer screen, a pixel
p is visible in a small solid angle
p. To provide the illusion that the screen is a replacement of the real world, the
�p power emitted by the pixel towards the eye should be similar to that� power which would come from the real
world and would land at the pupil from solid angle
p. If the emission intensity of the pixel isLp, then the power
landing at the eye from this pixel is

�p = Lp ��e � cos �e �
p;
where�e is the angle between the surface normal on the pupil and the direction of the pixel.

We have to find a camera model that computes a measured valueP which is stored in theimage-buffer to
control the monitor. The response ofmonitors can be characterized by a functionB � R, whereB represents
a scaling according to the brightness settings andR might be non-linear. In order to compensate the monitor’s
non-linearity, thelook-up table is set to distort the values of the image-buffer with the inverse of this non-linear
mapping, that is byR�1. This distortion is calledgamma-correction. Using gamma-correction, the radiant
intensity of the pixel is:

Lp = B � R(R�1(P)) = B � P:
Since we require that�p = �, our model camera is expected to provide the following measured value:

P = R
�
R�1

�
Lp

B

��
=
Lp

B
=

�

�e � cos �e �
p � B
: (2.31)

Let us assign a measuring device for this pixel. This device is sensitive to those surface points that are visible
in this pixel — i.e. in
p — and to those directions that point from the surface points to the pupil. Mathematically,
this can be represented by the following measuring function

W e(~y; !) =

(
C if ~y is visible in
p and! points from~y through�e;

0 otherwise,
(2.32)

where
C =

1

�e � cos �e �
p �B
:

The measuring device provides the following value:

P =ML =

Z

Z
S

L(~y; !) �W e(~y; !) � cos � d~yd!: (2.33)

2.5. THE RENDERING PROBLEM 13

Applying equation (2.2), we can use the following substitutions:

d! = d~e � cos �e

j~y � ~ej2 ; d~y =
j~y � ~ej2
cos �

� d!p;

whered~e is a differential area on the pupil andj~y � ~ej is the distance between the pupil and the visible surface.
Substituting these and taking advantage that the pupil�e is small, we obtain

P =

Z

p

Z
�e

L(h(~e;�!p); !p) � C �
cos �e
j~y � ~ej2

�
j~y � ~ej2

cos �
� cos � d~ed!p =

Z

p

Z
�e

L(h(~e;�!p); !p) � C � cos �e d~ed!p �

Z

p

L(h(~eye;�!p); !p) � C � cos �e ��e d!p =
Z

p

L(h(~eye;�!p); !p) � 1

p � B
d!p; (2.34)

where ~eye is the position of the very small pupil, and!p is the direction which points from~y to the eye position.
Note that the measured value is independent of both the distance and the orientation of the visible surface! This

is explained by the fact that as we move farther from a surface, although the power coming from a unit surface area
decreases with the square of the distance, the area that can be visible in a given solid angle increases with the same
speed. The two factors compensate each other. Similarly, when we look at a surface from a non perpendicular
direction, the radiance is weighted by the cosine of this angle in the power, but the surface area that can be seen is
inversely proportional to the cosine of the same angle.

ω
p

Ωp

f

eye

θ

d p

window

pixel

p

: focal distance

ω
y

Ωp

y - eye

eye

θ

||

d p

Figure 2.8: Evaluation of the measured value as an integral on the pixel (left) and on the surface (right)

Since
p is the collection of those directions that go through the pixel, the measured value can also be expressed
as an integral over the pixel areaSp (figure 2.8). Let~p be the running point on the pixel,�p be the angle between
the pixel normal and vector~p� ~eye, and�pix be equal to�p in the center of the pixel. Sincej~p� ~eyej = f= cos �p
wheref is thefocal distance, i.e. the distance between the eye and the plane of the window, we can establish the
following correspondance:

d!p =
d~p � cos �p
j~p� ~eyej2 =

d~p � cos3 �p
f2

: (2.35)

Substituting this to equation (2.34), the measured value becomes

P =

Z
Sp

L(h(~p;�!~p); !~p) �
1

p �B
� cos

3 �p

f2
d~p: (2.36)

Let us introducecamera parameterc(~p) by

c(~p) =
Sp

p � B � cos
3 �p

f2
: (2.37)

Since

p =

Z

p

d!p =

Z
Sp

cos3 �p

f2
d~p � Sp � cos3 �pix

f2
; (2.38)

the camera parameter can also be expressed in the following exact and approximating forms:

c(~p) =
Sp � cos3 �p

B � R
Sp

cos3 �p d~p
� cos3 �p

B � cos �3pix
� 1

B
: (2.39)

2.6. NUMERICAL SOLUTION OF THE RENDERING EQUATION 14

The approximations are accurate if the pixel is small compared to the focal distance. If image spacefiltering is
also applied, thenSp may be greater than the pixel and the camera parameter is not necessarily constant but follows
the shape of a reconstruction filter [SKe95, SK95]. Summarizing the measured value is an integral on the pixel:

P =

Z
Sp

L(h(~p;�!~p); !~p) �
c(~p)

Sp
d~p: (2.40)

Equation (2.34) can also be evaluated on object surfaces. Using the notations of figure 2.8, we can obtain:

d!p =
d~y � cos �
j~y � ~eyej2 (2.41)

where~y is a surface point visible in the pixel. Let the indicator function of those points that are visible in
p be
V
p(~y). The measured value is then:

P =

Z
S

L(~y; !~y! ~eye) � V
p(~y) �
1

p � B
� cos �

j~y � ~eyej2 d~y: (2.42)

Let us introducesurface dependent camera parameterg(~y) by

g(~y) =
1

p � B � j~y � ~eyej2 =
f2

B � j~y � ~eyej2 � R
Sp

cos3 �p d~p
� f2

B � j~y � ~eyej2 � Sp � cos3 �pix
(2.43)

using formula (2.38) that expresses
p. Thus the final form of the measured value is:

P =

Z
S

L(~y; !~y! ~eye) � V
p(~y) � g(~y) � cos � d~y: (2.44)

Comparing this formula with equation (2.33), the following sensitivity function can be derived:

W e(~y; !) =

(
�(! � !~y! ~eye) � g(~y) if ~y is visible through the pixel;

0 otherwise.
(2.45)

2.6 Numerical solution of the rendering equation

2.6.1 Error measures for numeric techniques

When solving the rendering problem numerically, the required radiance, potential or measured power can only
be approximated. To characterize the accuracy of the approximation,error measures are needed. The errors of
radiance or potential are calledobject-space error measures. The error of the measured power is calledimage-
space error measure. A good error measure should be invariant to changes that modify neither the object space
nor the camera. Particularly, the error should not change when a surface is subdivided to two surfaces or the
complete scene is scaled — i.e. it should be tessellation and scaling independent —, or when a pixel is subdivided
to increase the image resolution — i.e. it should be resolution independent.

Tessellation and scaling independent measures can be defined if the norm of the error function is divided by
the total surface area. Thenorm [Mát81, ST93] is selected from the following possibilities:

jjf jj1 =
Z

Z
S

jf(~x; !)j d~x d~!; jjf jj2 =
vuutZ

Z
S

(f(~x; !))2 d~x d~!; jjf jj1 = max
~x;!

jf(~x; !)j: (2.46)

Using any of these, ifL is the calculated radiance and~L is the real radiance, then an absolute object-space error�a
and a relative object-space error�r are

�a =
jjL� ~Ljj

S
; �r =

jjL� ~Ljj
jj~Ljj : (2.47)

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 15

Image space norms are based on the powers that go through different pixelsp = 1; 2; : : : ; NP .

jj�jj1 =
NPX
p=1

j�pj; jj�jj2 =

vuutNPX
p=1

j�pj2; jj�jj1 = max
p
j�pj: (2.48)

Resolution independent measures divide the total error of pixels by the number of pixels (P). If the calculated and
real powers that go through pixelp are�p and~�p, respectively, then an absolute and a relative image space error
measures are

�a =
jj�� ~�jj
NP

; �r =
jj�� ~�jj
jj~�jj : (2.49)

2.6.2 Properties of the rendering equation

The integral operators of both the rendering and the potential equations arecontractions. This statement can be
proven from the fact that for physically plausible models, the albedo is less than 1. Here, the1-norm is used:

kT Lk1 = max jT Lj � max jLj �max jT 1j = max jLj �max ja(~x; !)j = kLk1 �max ja(~x; !)j:
For the potential, similar results can be obtained:

kT 0Wk1 = max jT 0W j � max jW j �max jT 01j = max jW j �max ja(h(~y; !0); !0)j =
kWk1 �max ja(~x; !)j:

2.7 Classification of the solution techniques

In order to find the color of a pixel, the radiance has to be evaluated for that surface which is visible through the
given pixel. The determination of this surface is called thehidden surface problemor visibility calculation .
Having solved the visibility problem, the surface visible in the given pixel is known, and the radiance may be
calculated on the representative wavelengths by the rendering equation.

eye

pixel

surface 1

surface 2

surface 3

Figure 2.9: Multiple reflections of light

Due to multiple reflections of light beams, the calculation of the radiance of the light leaving a point on a surface
in a given direction requires the radiances of other surfaces visible from this point, which generates new visibility
and shading problems to solve (figure 2.9). To calculate those radiances, other surfaces should be evaluated, and
our original point on the given surface might contribute to those radiances. As a consequence of that, the rendering
equation has complicated coupling between its left and right sides, making the evaluation difficult.

There are three general and widely accepted approaches to attack this coupling:

1. Local illumination methods

Local illumination methods take a drastic approach and simplify or disregard completely all the terms caus-
ing problems. The unknown radiance inside the integral of the rendering equation is replaced by some ap-
proximation of the emission function. Formally, these methods evaluate the following simplified rendering
equation to obtain the radiance:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0; (2.50)

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 16

whereLlightsource may be a simplification of the emission functionLe. Abstract lightsources, such as point
or directional lightsources are preferred here, since their radiance is a Dirac-delta like function, which sim-
plifies the integral of equation (2.50) to a sum.

These methods take into account only a single reflection of the light coming from the abstract lightsources.
Ideal mirrors and refracting objects cannot be rendered with these methods.

2. Recursive ray-tracing

Another alternative is to eliminate from the rendering equation those energy contributions which cause the
difficulties, and thus give ourselves a simpler problem to solve. For example, if limited level, sayn, coupling
caused by ideal reflection and refraction were allowed, and we were to ignore the other non-ideal compo-
nents coming from non-abstract lightsources, then the number of surface points which would need to be
evaluated to calculate a pixel color can be kept under control. Since the illumination formula contains two
terms regarding the coherent components (reflective and refracting lights), the maximum number of surfaces
involved in the color calculation of a pixel is two to the power of the given depth, i.e.2n. An implementation
of this approach is calledvisibility ray-tracing which uses the following illumination formula:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0+

kr(!r; ~x; !) � L(h(~x;�!r); !r) + kt(!t; ~x; !) � L(h(~x;�!t); !t); (2.51)

where!r and!t are the ideal reflection and refraction directions, andkr andkt are the integrated BRDF
components representing the ideal reflection and refraction, respectively.

3. Global illumination solution

Local illumination and recursive ray-tracing apply brutal simplifications and thus provide physically inac-
curate images. Thus these methods cannot be reliably used in engineering applications, such as in lighting
design. These application areas require the rendering equation to be solved without relevant simplifications,
that leads to the family ofglobal illumination methods. Global illumination methods rely on numerical
techniques to resolve the coupling in the rendering or potential equations and to solve the integral equation
without unacceptable simplifications.

The three different approaches represent three levels of the compromise between image generation speed and
quality. By ignoring more and more terms in the illumination formula, its calculation can be speeded up, but the
result inevitably becomes more and more artificial.

The ignoration of the terms, however, violates the energy equilibrium, and causes portions of objects to come
out extremely dark, sometimes unexpectedly so. These artifacts can be reduced by reintroducing the ignored terms
in simplified form, calledambient light. The ambient light represents the ignored energy contribution in such
a way as to satisfy the energy equilibrium. Since this ignored part is not calculated, nothing can be said of its
positional and directional variation, hence it is supposed to be constant in all directions and everywhere in the
3D space. From this aspect, the role of ambient light also shows the quality of the shading algorithm. The more
important a role it has, the poorer quality picture it will generate.

In order to formally express the capabilities of a certain algorithm, Heckbert has developed a notation that is
based on the regular expressions originally proposed for the syntax of formal languages [Hec91]. The elements of
the notation are as follows:

� E is the eye,

� L is the lightsource,

� D is a non-ideal — i.e. incoherent — reflection or refraction,

� S is an ideal reflection or refraction,

� � is the sign of iteration, that is, it can mean0; 1; 2; : : : applications of the given operator,

� [] represents optionality,

� j means selection.

A global illumination algorithm is expected to model all types of lightpaths, that is, it must haveL[DjS]�E
type. Visibility ray-tracing allows multiple steps only for the ideal reflection or refraction, thus it can model only
L[DS�]E path. Finally, local illumination models simulate only a single non-ideal reflection and fall into the
L[D]E category.

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 17

local illumination method local illumination method with shadow computation

recursive ray-tracing global illumination method

Figure 2.10: Comparison of local illumination method, recursive ray-tracing and global illumination method. Ambient light
was also added when the local illumination method and recursive ray-tracing were computed. The images have been
generated by a path tracing program [SK99c]. Note that local illumination methods cannot render ideal reflection or

refraction, thus there are no transparent and mirror like objects. Recursive ray-tracing, on the other hand, is unable to follow
multiple non-ideal reflections, thus the illumination diffusely reflected from the back wall is missing on the spheres. The

running times are 90 seconds, 95 seconds, 135 seconds, 9 hours, respectively, which clearly shows the price we should pay for
a physically accurate simulation.

Chapter 3

Optical material models

In order to render realistic images, we have to use realistic material models, also called BRDFs. A realistic
BRDF model is expected not to violate physics laws including theHelmholtz-symmetry, and the law ofenergy
conservation, and to mimic the features of real materials.

The Helmholtz principle states that the incoming and outgoing directions can be exchanged in the BRDF:

fr(!; ~x; !
0) = fr(!

0; ~x; !): (3.1)

According to energy conservation, a surface — provided that it is not a lightsource — cannot reflect more
photons (more power) than what have been received, thus the albedo defined by

a(~x; !0) =

Z

H

fr(!
0; ~x; !) � cos � d!

cannot be greater than 1. Forisotropic models, reflections of illuminations from incident directions having the
same�0 have rotational symmetry, thus the albedo of a given point depends only on incident angle�0. To emphasize
this, the albedo will be denoted bya(�0).

When introducing the BRDF models, the following notations are used:~N is the unit normal vector of the
surface,~L is a unit vector pointing towards the lightsource,~V is a unit vector pointing towards the camera,~R is
the mirror vector of~L onto ~N , ~H is a unit vector that is halfway between~L and~V , �0 is the angle between~L and
~N , � is the angle between~V and ~N , and is the angle between~R and~V .

3.1 Diffuse reflection

First of all, consider diffuse — optically very rough — surfaces reflecting a portion of the incoming light with
radiance uniformly distributed in all directions. Looking at the wall, sand, etc. the perception is the same regardless
of the viewing direction.

L

N
V L

θ θ’

in

Figure 3.1: Diffuse reflection

If the BRDF is independent of the viewing direction, it must also be independent of the light direction because
of the Helmholtz-symmetry, thus the BRDF of thesediffuse surfaces is constant:

fr;di�use(~L; ~V) = kd: (3.2)

18

3.2. IDEAL, MIRROR-LIKE REFLECTION 19

The albedo of diffuse reflection is

adi�use(�
0) =

Z

H

kd � cos � d! =

2�Z
�=0

�=2Z
�=0

kd � cos � � sin � d�d� = kd � �: (3.3)

Thus for energy conservation
kd � 1=�

should hold.

3.2 Ideal, mirror-like reflection

An ideal mirror complies thereflection law of geometric optics, which states that incoming direction~L, surface
normal ~N and outgoing direction~R are in the same plane, and incoming angle�0 equals to outgoing angle�
(�0 = �). An ideal mirror reflects only into the ideal reflection direction~R. The BRDF can thus be defined by a
Dirac-delta function:

fr;mirror(~L; ~V) = kr(�
0) � �(

~R � ~V)

cos �0
: (3.4)

The albedo of ideal reflection is

amirror(�
0) =

Z

H

kr(�
0) � �(

~R � ~V)

cos �0
� cos � d! = kr(�

0): (3.5)

Thus for energy conservationkr cannot exceed 1.
Even perfect mirrors absorb some portion of the incident light, as is described by theFresnel equationsof

physical optics, expressing the reflection (F) of a perfectly smooth mirror in terms of the refractive index of the
materialn, the extinction coefficient� which describes the conductivity of the material (for nonmetals� = 0), and
the angle of the incidence of the light beam. Denoting the incident angle by�0 and the angle of refraction by�, the

0

0.5

1

1.5

2

2.5

400 450 500 550 600 650 700 750

n

lambda

aluminium
ezust
arany

rez

1

2

3

4

5

6

7

8

9

400 450 500 550 600 650 700 750

ka
pp

a

lambda

aluminium
ezust
arany

rez

Figure 3.2: Refraction index of the gold, copper and silver

Fresnel equation expressing the ratio of the energy of the reflected beam and the energy of the incident beam for
the directions parallel and perpendicular to the electric field is:

F?(�; �
0) =

����cos � � (n+ �|) � cos �0
cos � + (n+ �|) � cos �0

����
2

; Fk(�; �
0) =

����cos �0 � (n+ �|) � cos �
cos �0 + (n+ �|) � cos �

����
2

; (3.6)

where| =
p�1. These equations can be derived from Maxwell’s fundamental formulae describing the basic laws

of electric waves. If the light is unpolarized, that is, the parallel (~Ek) and the perpendicular (~E?) electric fields
have the same amplitude, then the total reflectivity is:

kr(�
0) = F (�; �0) =

jF 1=2

k
� ~Ek + F

1=2

? � ~E?j2

j ~Ek + ~E?j2
=
Fk + F?

2
: (3.7)

3.2. IDEAL, MIRROR-LIKE REFLECTION 20

Note thatF is wavelength dependent, sincen and� are functions of the wavelength. Parametersn and� are often
not available, so they should be estimated from measurements, or from the value of the normal reflection if the
extinction is small. At normal incidence (�0 = 0), the reflection is:

F0(�) =

����1� (n+ �|)

1 + (n+ �|)

����
2

=
(n� 1)2 + �2

(n+ 1)2 + �2
�
�
n� 1

n+ 1

�2
: (3.8)

Solving forn gives the following equation:

n(�) � 1 +
p
F0(�)

1�
p
F0(�)

: (3.9)

F0 can easily be measured, thus this simple formula is used to compute the values of the index of refractionn.
Values ofn(�) can then be substituted into the Fresnel equations to obtain reflection parameterF for other angles
of incidence.

"alufresnel"

0 10 20 30 40 50 60 70 80 90 400
450

500
550

600
650

700
7500.3

0.4

0.5

0.6

0.7

0.8

0.9

1

"goldfresnel"

0 10 20 30 40 50 60 70 80 90 400
450

500
550

600
650

700
7500.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aluminum Gold

"copperfresnel"

0 10 20 30 40 50 60 70 80 90 400
450

500
550

600
650

700
7500.3

0.4

0.5

0.6

0.7

0.8

0.9

1

"silverfresnel"

0 10 20 30 40 50 60 70 80 90 400
450

500
550

600
650

700
7500.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Copper Silver

Figure 3.3: The Fresnel function of aluminum, gold, copper and silver for different wavelengths (400..700 nm) and incident
angles (0..90 degrees)

3.3. IDEAL REFRACTION 21

3.3 Ideal refraction

When ideal refraction happens, the light goes into the material according to theSnellius-Descartes-law, which
states that the incident direction (~L), surface normal (~N) and the refraction direction (~V) are all in the same plane,
and

sin �0

sin �
= n;

wheren is the relative refraction index of the material. Thus the BRDF of ideal refraction is also a Dirac-delta like
function:

fr;refractor(~L; ~V) = kt � �(
~T � ~V)

cos �0
; (3.10)

where~T is the ideal refraction direction.

3.4 Non-ideal, specular reflection

Incoherent — i.e. not ideal, mirror-like — reflection is usually broken down into diffuse and specular components.
The BRDF of the diffuse reflection has already been discussed. For thespecular reflection, new models are
proposed.

3.4.1 Phong reflection model and its modifications

ThePhong BRDF [Pho75] was the first model proposed for specular materials. Specular surfaces reflect most of
the incoming light around the ideal reflection direction, thus the BRDF should be maximum at this direction and
should decrease sharply.

ψ L

NH

V

R

L
in

Figure 3.4: Specular reflection

Phong proposed the following function for this purpose:

fr;Phong(~L; ~V) = ks � cos
n

cos �0
= ks � (

~R � ~V)n
(~N � ~L)

(3.11)

where~R is the mirror direction of~L onto the surface normal.
Theks factor is proportional to the Fresnel function, but is less than that, because now the surface is not an ideal

mirror. Factorks can be assumed to be independent of the wavelength and the incident angle for non-conducting
materials (the highlight of a white lightsource on plastics is also white).

The original Phong model is not physically plausible since it is not symmetric. Due to this, in photorealistic
image synthesis the followingreciprocal Phong BRDF is preferred [ICG86]:

fr;reciprocalPhong(~L; ~V) = ks � cosn = ks � (~R � ~V)n (3.12)

To compute the albedo of the reciprocal Phong model, an appropriate parameterization of the directional sphere
is needed (figure 3.5). Now the north pole of the spherical coordinate system is the ideal reflection direction~R. Let
us identify a direction by an angle from~R, and by another angle� between its projection onto a plane perpendicular
to ~R and an arbitrary vector on this plane. When the viewing direction is parameterized in this way, the vertical
angle is just .

3.4. NON-IDEAL, SPECULAR REFLECTION 22

surface

R

V

N

ψ

φ

reference direction
on the plane perpendicular to

plane perpendicular to R

R

Figure 3.5: Parameterization for the calculation of the albedo

Unfortunately, the domain of(; �) is rather complicated since those pairs that would identify a direction
pointing into the object should be excluded from reflection directions. Without this exclusion the albedo is over-
estimated. Note that this overestimation can only double the albedo at the worst case which happens at grazing
angles when half of the reflection lobe is cut away by the surface. Representing this effect by a functionCut(�0),
the integral computing the albedo is:

areciprocalPhong(�
0) = Cut(�0) �

2�Z
�=0

�=2Z
 =0

ks � cosn � cos � � sin d d�:

FunctionCut(�0) is 1 at perpendicular illumination and decreases to a half at horizontal illumination. When the
illumination is perpendicular, then = �, thus the albedo for this case is:

areciprocalPhong(0) =

2�Z
�=0

�=2Z
 =0

ks � cosn � cos � sin d d� = 2�ks �
�=2Z

 =0

cosn+1 � sin d = ks � 2�

n+ 2
:

Since the albedo is less than this for other illumination angles, energy conservation requires the following relation
to hold [LW94]:

ks � n+ 2

2�
: (3.13)

Considering the estimation of the albedo for other illumination angles, we have to realize that even if function
Cut(�0) is approximated by its maximum, thecos � factor still forbids the symbolic integration. If the surface is
very shiny —n is large — then the reflection lobe is narrow, thuscos � is approximately constant and is equal to
cos �0 wherecosn is not negligible, thus we can further obtain:

areciprocalPhong(�
0) � cos �0 �

2�Z
�=0

�=2Z
 =0

ks � cosn � sin d d� = ks � 2�

n+ 1
� cos �0:

The reflected radiance of this model goes to zero for larger incident angles, which is not realistic when rendering
metals (left of figure 3.6). This artifact is eliminated in the followingmax-Phong BRDF[NNSK98b]:

fr;maxPhong(~L; ~V) = ks �
cosn

max (cos �; cos �0)
= ks �

(~R � ~V)n
max ((~N � ~V); (~N � ~L))

(3.14)

The albedo of this max-Phong model is maximum at perpendicular illumination when�0 = 0 and� = , thus
we obtain

amaxPhong(0) =

2�Z
�=0

�=2Z
 =0

ks � cosn � sin � cos

max (cos ; 1)
d d� = ks � 2�

n+ 2
:

3.4. NON-IDEAL, SPECULAR REFLECTION 23

Figure 3.6: Comparison of the reciprocal Phong (left) and the max-Phong (right) models (n = 20 in the upper row, and
n = 5000 in the lower row). The reciprocal Phong model becomes dark for grazing angles.

Figure 3.7: Metallic objects defined by the max-Phong model

3.4. NON-IDEAL, SPECULAR REFLECTION 24

As for the reciprocal Phong model, energy conservation requires that

ks �
n+ 2

2�
:

At non-perpendicular illumination angles, only the cutting of the reflection lobe attenuates significantly the
albedo, for shiny materialscos �=max (cos �; cos �0) � 1 in the reflection lobe. Let us denote the factor represent-
ing the cutting of the reflection lobe byCut�(�0). Note thatCut�(�0) is similar, but not identical toCut(�0).

a(�0) = Cut�(�0)

2�Z
�=0

�=2Z
 =0

ks � cosn � sin � cos �

max (cos �; cos �0)
d d� � Cut�(�0) � 2�

n+ 1
:

If parameterks is defined from the Fresnel function, we have to specify which incident angle must be used. The
angle between the surface normal and the light vector is not appropriate, because the BRDF will not be symmetric
and the real normal vector where the reflection actually happens is not equal to the normal of the mean surface due
to the surface irregularities (figure 3.8). This real normal vector is, in fact, a random variable. If the surface is a
collection of randomly oriented ideal mirrors, then those surface elements which reflect from~L to ~V has normal
vector ~H = (~L + ~V)=2. Thus the cosine of the incoming angle is computed from the(~H � ~L) scalar product for
the Fresnel function.

3.4.2 Cook-Torrance model

Specular reflection can be more rigorously analyzed by modeling the surface irregularities by probability distri-
butions, as has been proposed by Torrance, Sparrow, Cook and Blinn. In their model, the surface is assumed to
consist of randomly oriented perfect mirrors, so-calledmicrofacets. As in the previous section, the reflected light
is broken down into diffuse and specular components. The diffuse component is believed to be generated by mul-
tiple reflections on the microfacets and also by emission of the absorbed light by the material of the surface. The
diffuse component is well described by Lambert’s law. The specular component, on the other hand, is produced by
the direct reflections of the microfacets. This section discusses the derivation of the bi-directional transfer proba-
bility densityw(~L; ~V) for this specular part. Recall that the transfer function is the following probability density
(equation (2.8)):

w(~L; ~V) � d! = Prfphoton is reflected directly tod! around~V j coming from~Lg: (3.15)

Concerning this type of reflection from direction~L to d! around direction~V , only those facets can contribute
whose normal is ind!H around the halfway unit vector~H. If reflection is to happen, the facet must obviously be
facing in the right direction. It should not be hidden by other facets, nor should its reflection run into other facets,
and it should not absorb the photon for the possible contribution.

N

Figure 3.8: Microfacet model of the reflecting surface

Considering these facts, the event that “a photon is reflected directly tod! around~V ” can be expressed as the
logical AND connection of the following events:

1. Orientation : In the path of the photon there is a microfacet having its normal ind!H around~H.

2. No shadowing or masking: The given microfacet is not hidden by other microfacets from the photon
coming from the lightsource, and the reflected photon does not run into another microfacet.

3. Reflection: The photon is not absorbed by the microfacet that is supposed to be a perfect mirror.

3.4. NON-IDEAL, SPECULAR REFLECTION 25

Since these events are believed to be stochastically independent, their probability can be calculated indepen-
dently, and the probability of the composed event will be their product.

Concerning the probability of the microfacet normal being ind!H , we can suppose that all facets have equal
areaf . Let the probability density of the microfacet normal beP (~H). Blinn [Bli77] proposedGaussian distribu-
tion for P (~H), since it seemed reasonable due to the central limit value theorem of probability theory:

P (~H) = const � e�(�=m)2 ; (3.16)

where� is the angle of the microfacet with respect to the normal of the mean surface, that is the angle between~N

and ~H, andm is the root mean square of the slope, i.e. a measure of the roughness.
Later Torrance and Sparrow showed that the results of the early work of Beckmann [BS63] and Davies [Dav54],

who discussed the scattering of electromagnetic waves theoretically, can also be used here and thus Torrance
proposed theBeckmann distribution function instead of the Gaussian:

P (~H) =
1

m2 cos4 �
� e�
�
tan2 �

m2

�
: (3.17)

Let us examine a surface elementdA. If a photon arrives from direction~L to a surface elementdA, the visible
area of the surface element will bedA � (~N � ~L), while the total visible area of the microfacets having their normal
in the direction around~H will be the product of the visible size of a single microfacet (f � (~H � ~L)), and the
number of properly oriented microfacets. The number of properly oriented microfacets, in turn, is the product
of the probability that a microfacet is properly oriented (P (~H) � d!H) and the number of all microfacets indA
(dA=f). The probability of finding an appropriate microfacet aligned with the photon is the visible size of properly
oriented microfacets divided by the visible surface area, thus we obtain:

Prforientationg = f � (~H � ~L) � P (~H) � d!H � dA=f
dA � (~N � ~L)

=
P (~H) � d!H � (~H � ~L)

(~N � ~L)
: (3.18)

L

H

V

dH

dH

dV

dV

d

d

hor

vert

hor

vert

ω

ω θ

dφ

H

V

H

θ

Figure 3.9: Calculation ofd!H=d!

Unfortunately, in the BRDF the transfer probability density usesd! instead ofd!H , thus we have to determine
d!H=d! [JGMHe88]. Defining a spherical coordinate system (�; �), with the north pole in the direction of~L
(figure 3.9), the solid angles are expressed by the product of vertical and horizontal arcs:

d! = dVhor � dVvert; d!H = dHhor � dHvert: (3.19)

By using geometric considerations and applying the law of reflection, we get:

dVhor = d� � sin �V ; dHhor = d� � sin �H ; dVvert = 2dHvert: (3.20)

This in turn yields:
d!H

d!
=

sin �H

2 sin �V
=

sin �H

2 sin 2�H
=

1

4 cos �H
=

1

4(~L � ~H)
: (3.21)

3.4. NON-IDEAL, SPECULAR REFLECTION 26

since�V = 2 � �H . Thus the orientation probability is

Prforientationg = P (~H) � (~H � ~L)
(~N � ~L)

� d!H
d!

� d! =
P (~H)

4(~N � ~L)
� d!: (3.22)

β+2α−π/2

π/2−β

β

α
L

N
H

V

l l1 2

l2

Figure 3.10: Geometry of masking

The visibility of the microfacets from direction~V means that the reflected photon does not run into another
microfacet. The collision is often referred to asmasking. Looking at figure 3.10, we can easily recognize that
the probability of masking isl1=l2, wherel2 is the one-dimensional length of the microfacet, andl1 describes
the boundary case from where the beam is masked. The angles of the triangle formed by the bottom of the
microfacet wedge and the beam in the boundary case can be expressed by the angles� = angle(~N; ~H) and
� = angle(~V ; ~H) = angle(~L; ~H) by geometric considerations and by using the law of reflection. Applying the
sine law for this triangle, and some trigonometric formulae:

Prfnot maskingg = 1� l1

l2
= 1� sin(� + 2�� �=2)

sin(�=2� �)
= 2 � cos� � cos(� + �)

cos�
: (3.23)

According to the definitions of the anglescos� = ~N � ~H , cos(� + �) = ~N � ~V andcos� = ~V � ~H .
If the angle of incident light and the facet normal do not allow the triangle to be formed, the probability of

no masking taking place is obviously 1. This situation can be recognized by evaluating the formula without any
previous considerations and checking whether the result is greater than 1, then limiting the result to 1. The final
result is:

Prfnot maskingg = minf2 � (
~N � ~H) � (~N � ~V)

(~V � ~H)
; 1g: (3.24)

The probability ofshadowingcan be derived in exactly the same way, only~L should be substituted for~V :

Prfnot shadowingg = minf2 � (
~N � ~H) � (~N � ~L)

(~L � ~H)
; 1g: (3.25)

The probability of neither shadowing nor masking taking place can be approximated by the minimum of the
two probabilities:

Prfno shadow and maskg � minf2 � (
~N � ~H) � (~N � ~V)

(~V � ~H)
; 2 � (

~N � ~H) � (~N � ~L)
(~L � ~H)

; 1g = G(~N; ~L; ~V): (3.26)

Note that this approximation upperbounds the real probability, particularly at grazing angles, which can result in
the violation of the energy balance.

When analyzing the perfect mirrors, we concluded that even a perfect mirror absorb some portion of the
incident light, as is described by theFresnel equations. SinceF (�; �0) is the fraction of the reflected energy, it
also describes the probability of a photon being reflected at a microfacet that is assumed to be an ideal mirror,
giving:

Prfreflectiong = F (�; ~H � ~L)
where variable�0 has been replaced by~H � ~L since those microfacets that reflect from~L to ~V have normal vector
equal to~H .

3.4. NON-IDEAL, SPECULAR REFLECTION 27

Now we can summarize the results by multiplying the probabilities of the independent events to express
w(~L; ~V)d!:

w(~L; ~V)d! = Prforientationg � Prfno mask and shadowg � Prfreflectiong =
P (~H)

4(~N � ~L)
�G(~N; ~L; ~V) � F (�; ~H � ~L) d!: (3.27)

The BRDF is the transfer probability divided byd! and the cosine of the outgoing angle(~N � ~V) , thus we
obtain

fr;Cook�Torrance(~L; ~V) =
P (~H)

4(~N � ~L)(~N � ~V)
�G(~N; ~L; ~V) � F (�; ~H � ~L): (3.28)

Chapter 4

Solution strategies for the global
illumination problem

Since the rendering or the potential equations contain the unknown radiance function both inside and outside the
integral, in order to express the solution, this coupling should be resolved. The possible solution techniques fall
into one of the following three categories:inversion, expansionanditeration .

OperatorT represents light-surface interaction, thus each of its application generates a higher-bounce estimate
of the light transport (or alternativelyT 0 represents potential-surface interaction). For physically plausible optical
material models, a reflection or refraction always decreases the total energy, thus the integral operator is always
a contraction. However, when the transport is evaluated numerically, computation errors may pose instability
problems if the scene is highly reflective. As we shall see, expansion and iteration exploit the contractive property
of the transport operator, but inversion does not.

4.1 Inversion

Inversion groups the terms that contain the unknown function on the same side of the equation and applies formally
an inversion operation:

(1� T)L = Le =) L = (1� T)�1Le: (4.1)

Thus the measured power is
ML =M(1� T)�1Le: (4.2)

However, sinceT is infinite dimensional, it cannot be inverted in closed form. Thus it should be approximated
by a finite dimensional mapping, that is usually given as a matrix. This kind of approximation is provided by
finite-element methods that project the problem into a finite dimensional function space, and approximate the
solution here. This projection converts the original integral equation to a system of linear equations, which can be
inverted, for example, by Gaussian elimination method. This approach was used in early radiosity methods, but
have been dropped due to the cubic time complexity and the numerical instability of the matrix inversion.

Inversion has a unique property that is missing in the other two methods. Its efficiency does not depend on the
contractivity of the integral operator, neither does it even require the integral operator to be a contraction.

4.2 Expansion

Expansion techniques eliminate the coupling by obtaining the solution in the form of an infinite Neumann series.

4.2.1 Expansion of the rendering equation: gathering walks

Substituting the right side’sL byLe + T L, which is obviouslyL according to the equation, we get:

L = Le + T L = Le + T (Le + T L) = Le + T Le + T 2L: (4.3)

Repeating this stepn times, the original equation can be expanded into a Neumann series:

L =

nX
i=0

T iLe + T n+1L: (4.4)

28

4.2. EXPANSION 29

If integral operatorT is a contraction, thenlimn!1 T n+1L = 0, thus

L =

1X
i=0

T iLe: (4.5)

The measured power is

ML =

1X
i=0

MT iLe: (4.6)

The terms of this infinite Neumann series have intuitive meaning as well:MT 0Le = MLe comes from the
emission,MT 1Le comes from a single reflection,MT 2Le from two reflections, etc.

x

x

L(x,)
ω

ω

ω

1

2

1

2θ

θ
p

1

x

2

ωp

p
3

’

’

’

’

Figure 4.1: The integrand ofMT 2Le is a two-step gathering walk

In order to understand how this can be used to determine the power going through a single pixel, let us examine
the structure ofMT iLe as a single multi-dimensional integral for thei = 2 case:

M(T 2Le) =

Z
Sp

Z

0
1

Z

0
2

c(~p)

Sp
� w1(~x1) � w2(~x2) � Le(~x3; !02) d!02d!01d~p: (4.7)

whereSp is the pixel area,c(~p) is the camera parameter,~p is a running point on this pixel,!01 and!02 are the
directions of the first and second reflections, respectively (figure 4.1) and

~x1 = h(~p;�!~p);
~x2 = h(~x1;�!01);
~x3 = h(~x2;�!02) = h(h(~x1;�!01);�!02); (4.8)

and the weights are

w1 = fr(!
0
1; ~x1; !~p) � cos �01;

w2 = fr(!
0
2; ~x2; !

0
1) � cos �02: (4.9)

Thus to evaluate the integrand at point(~p; !01; !
0
2), the following algorithm must be executed:

1. Point~x1 = h(~p;�!~p) that is visible through the point~p of the pixel from the eye should be found. This
can be done by sending a ray from the eye into the direction of~p and identifying the surface that is first
intersected.

2. Surface point~x2 = h(~x1;�!01) — that is the point which is visible from~x1 at direction�!01 — must be
determined. This can be done by sending another ray from~x1 into direction�!01 and identifying the surface
that is first intersected.

3. Surface point~x3 = h(h(~x1;�!01);�!02) — that is the point visible from~x2 at direction�!02 — is identified.
This means the continuation of the ray tracing at direction�!02.

4. The emission intensity of the surface at~x3 in the direction of!02 is obtained and is multiplied with the cosine
terms and the BRDFs of the two reflections.

4.2. EXPANSION 30

This algorithm can easily be generalized for arbitrary number of reflections. A ray is emanated recursively
from the visible point at direction!01 then from the found surface at!02, etc. until!0n. The emission intensity at
the end of the walk is read and multiplied by the BRDFs and the cosine terms of the stages of the walk. These
walks provide the value of the integrand at “point”~p; !01; !

0
2; : : : ; !

0
n. Note that a single walk of lengthn can be

used to estimate the 1-bounce, 2-bounce, etc.n-bounce transfer simultaneously, if the emission is transferred not
only from the last visited point but from all visited points.

The presented walking technique starts at the eye andgathers the illumination encountered during the walk.
The gathered illumination is attenuated according to the cosine weighted BRDFs of the path.

So far, we have examined the structure of the terms of the Neumann series as a single multi-dimensional
integral. Alternatively, it can also be considered as recursively evaluating many directional integrals. For example,
the two-bounce transfer is:

MT 2Le =

Z
Sp

w0 �

2
64Z

0
1

w1 �

2
64Z

0
2

w2 � Le d!02

3
75 d!01

3
75 d~p: (4.10)

In order to estimate the outer integral of variable~p, the integrand is needed in sample point~p. This, in turn,
requires the estimation of the integral of variable!01 at ~p, which recursively needs again the approximation of the
integral of variable!02 at (~p; !01).

If the same number — saym — of sample points are used for each integral quadrature, then this recursive
approach will usem points for the 1-bounce transfer,m2 for the two-bounces,m3 for the three-bounces, etc. This
kind of subdivision of paths is calledsplitting [AK90]. Splitting becomes prohibitive for high-order reflections
and is not even worth doing because of the contractive property of the integral operator. Due to the contraction, the
contribution of higher-order bounces is less, thus it is not very wise to compute them as accurately as low-order
bounces.

4.2.2 Expansion of the potential equation: shooting walks

The potential equation can also be expanded into a Neumann series similarly to the rendering equation:

W =

1X
i=0

T 0iW e; (4.11)

which results in the following measured power

M0W =

1X
i=0

M0T 0iW e: (4.12)

M0W e is the power measured by the device from direct emission,M0T 0W e is the power after a single reflec-
tion,M0T 02W e is after two reflections, etc.

y

y

ωω

ω

2

1

2

1

θ

θ
p

2

y

3

Φ(dy , d)

ωp

1

θ1

3

1

Figure 4.2: The integrand ofM0T 02W e is a two-step shooting walk

Let us again consider the structure ofM0T 02W e:

M0T 02W e =

Z
S

Z

1

Z

2

Z

3

Le(~y1; !1) � w0(~y1) � w1(~y2) � w2(~y3) �W e(~y3; !3) d!3d!2d!1d~y1; (4.13)

4.3. ITERATION 31

where

~y2 = h(~y1; !1);

~y3 = h(~y2; !2) = h(h(~y1; !1); !2) (4.14)

and the weights are

w0 = cos �1;

w1 = fr(!1; ~y2; !2) � cos �2;
w2 = fr(!2; ~y3; !3) � cos �3: (4.15)

Substituting the measuring function of the pin-hole camera (equation (2.45)), we can conclude thatM0T 02W e can
be non-zero only if~y3 is visible through the given pixel, and the integral over
3 is simplified to a single value by
the Dirac-delta function, thus the final form of the two-bounce reflection is:Z

S

Z

1

Z

2

Le(~y1; !1) � w0(~y1) � w1(~y2) � w2(~y3) � g(~y3) d!2d!1d~y1: (4.16)

if ~y3 is visible though the given pixel and 0 otherwise, whereg(~y3) is the surface dependent camera parameter.
Thus to evaluate the integrand at point(~y1; !1; !2), the following algorithm must be executed:

1. The cosine weighted emission of point~y1 in direction!1 is computed. Surface point~y2 = h(~y1; !1) — that
is the point which is visible from~y1 at direction!1 — must be determined. This can be done by sending a
ray from~y1 into direction!1 and identifying the surface that is first intersected. This point “receives” the
computed cosine weighted emission.

2. Surface point~y3 = h(h(~y1; !1); !2) — that is the point visible from~y2 at direction!2 — is identified. This
means the continuation of the ray tracing at direction!2. The emission is weighted again by the local BRDF
and the cosine of the normal and the outgoing direction.

3. It is determined whether or not this point~y3 is visible from the eye, and through which pixel. The contribu-
tion to this pixel is obtained by weighting the transferred emission by the local BRDF, cosine angle and the
surface dependent camera parameter.

This type of walk, calledshooting, starts at a known point~y1 of a lightsource and simulates the photon reflec-
tion for a few times and finally arrives at a pixel whose radiance this walk contributes to.

Note that in gathering walks the BRDF is multiplied with the cosine of the angle between the normal and the
incoming direction, while in shooting walks with the cosine of the angle between the normal and the outgoing
direction.

4.2.3 Merits and disadvantages of expansion methods

The main problem of expansion techniques is that they require the evaluation of very high dimensional integrals
that appear as terms in the infinite series. Practical implementations usually truncate the infinite Neumann series,
which introduces some bias, or stop the walks randomly, which significantly reduces the samples of higher order
interreflections. These can result in visible artifacts for highly reflective scenes.

On the other hand, expansion methods also have an important advantage. Namely, they do not require tem-
porary representations of the complete radiance function, thus do not necessitate finite-element approximations.
Consequently, these algorithms can work with the original geometry without tessellating the surfaces to planar
polygons.

Expansion techniques generate random walks independently. It can be an advantage, since these algorithms
are suitable forparallel computing. However, it also means that these methods “forget” the previous history of
walks, and they cannot reuse the visibility information gathered when computing the previous walks, thus they are
not as fast as they could be.

4.3 Iteration

Iteration techniques realize that the solution of the rendering equation is the fixed point of the following iteration
scheme

Ln = Le + T Ln�1; (4.17)

4.3. ITERATION 32

thus if operatorT is a contraction, then this scheme will converge to the solution from any initial functionL0. The
measured power can be obtained as a limiting value

ML = lim
n!1

MLn: (4.18)

In order to store the approximating functionsLn, usuallyfinite-element methods are applied, as for exam-
ple, in diffuse radiosity [SC94], or in non-diffuse radiosity usingpartitioned hemisphere[ICG86], directional
distributions [SAWG91] orillumination networks [BF89].

There are two critical problems here. On the one hand, since the domain ofLn is 4 dimensional andLn has
usually high variation, an accurate finite-element approximation requires very many basis functions, which, in
turn, need a lot of storage space. Althoughhierarchical methods [HSA91, AH93],waveletor multiresolution
methods[CSSD96, SGCH94] andclustering [SDS95, CLSS97, SPS98] can help, the memory requirements are
still prohibitive for complex scenes. This problem is less painful for the diffuse case since here the domain of the
radiance is only 2 dimensional.

On the other hand, when finite element techniques are applied, operatorT is only approximated, which intro-
duces some non-negligible error in each step. If the contraction ratio of the operator is�, then the total accumulated
error will be approximately1=(1� �) times the error of a single step [SKFNC97]. For highly reflective scenes —
i.e. when� is close to 1 — the iteration is slow and the result is inaccurate if the approximation of the operator
is not very precise. Very accurate approximations of the transport operator, however, require a lot of computation
time and storage space.

In the diffuse radiosity setting several methods have been proposed to improve the quality of the iteration. For
example, we can use Chebyshev iteration instead of the Jacobi or the Gauss-Seidel method for such ill condi-
tioned systems [BBS96]. On the other hand, realizing that the crucial part of designing such an the algorithm is
finding a good and “small” approximation of the transport operator, the method calledwell-distributed ray-sets
[NNB97, BNN+98] proposes the adaptive approximation of the transport operator. This approximation is a set of
rays selected carefully taking into account the important patches and directions. In [BNN+98], the adaptation of
the discrete transport operator is extended to include patch subdivision as well, to incorporate the concepts ofhier-
archical radiosity [HSA91]. The adaptation strategy is to refine the discrete approximation (by adding more rays
to the set), when the iteration with the coarse approximation is already stabilized. Since the discrete approximation
of the transport operator is not constant but gets finer in subsequent phases, the error accumulation problem can be
controlled but is not eliminated.

This thesis proposes a new method called thestochastic iteration to attack both the problem of prohibitive
memory requirements and the problem of error accumulation.

Compared to expansion techniques, iteration has both advantages and disadvantages. Its important advantage is
that it can potentially reuse all the information gained in previous computation steps and can exploit the coherence
of the radiance function, thus iteration is expected to be faster than expansion. Iteration can also be seen as a single
infinite length random walk. If implemented carefully, iteration does not reduce the number of estimates for higher
order interreflections, thus it is more robust when rendering highly reflective scenes than expansion.

The property that iteration requires tessellation and finite-element representation is usually considered as a dis-
advantage. And indeed, sharp shadows and highlights on highly specular materials can be incorrectly rendered and
light-leaks may appear, not to mention the unnecessary increase of the complexity of the scene description (think
about, for example, the definition of an original and a tessellated sphere). However, finite-element representation
can also provide smoothing during all stages of rendering, which results in more visually pleasing and dot-noise
free images. Summarizing, iteration is the better option if the scene is not highly specular.

4.3.1 Analysis of the iteration

In order to find necessary conditions for the convergence, let us examine two subsequent iteration steps:

Ln = Le + T Ln�1;
Ln�1 = Le + T Ln�2: (4.19)

Substracting the two equations and assuming thatL0 = 0, we can obtain:

Ln � Ln�1 = T (Ln�1 � Ln�2) = T n�1(L1 � L0) = T n�1Le: (4.20)

If operatorT is a contraction, that is if

jjT Ljj < � � jjLjj; � < 1; (4.21)

4.4. ANALYTICAL SOLUTION OF THE RENDERING EQUATION 33

with some function norm, then

jjLn � Ln�1jj = jjT n�1Lejj < �n�1 � jjLejj: (4.22)

Thus iteration converges to the real solution at least with the speed of a geometric series. The contraction ratio�

depends on both the geometry and the average reflectivity of the scene. From the point of view of the geometry,
the contraction ratio is maximum if the environment is closed, when� corresponds to the average albedo.

Error caused by the approximation of the transport operator

In practice operatorT cannot be evaluated exactly, which introduces some error in each step of the iteration. The
errors may accumulate in the final solution. This section examines this phenomenon.

Assume that an operatorT � which is only an approximation ofT is used in the iteration. Suppose that both
operators are contractions, thus both iterations will converge from any initial function.

Let the radiance aftern iterations of operatorT � beLn and let us assume that the iteration starts at the solution
of the exact equation, that isL0 = L (since the iteration converges to the same limit from any initial function, this
assumption can be made). The solution of the approximated equation isL� = L1. The error at stepn is

jjLn � Ljj = jjLn � Ln�1 + Ln�1 � :::+ L1 � Ljj �
nX
i=1

jjLi � Li�1jj: (4.23)

Since ifi > 1, then

jjLi � Li�1jj = jjT �Li�1 � T �Li�2jj = jjT �(Li�1 � Li�2)jj � � � jjLi�1 � Li�2jj � �i�1 � jjL1 � L0jj

we have
nX
i=1

jjLi � Li�1jj � jjL1 � L0jj � (1 + �+ �2 + : : : �n�1): (4.24)

Letting n go to infinity, we obtain the error between the fixed points of the original and the approximated
equations

jjL� � Ljj � jjL1 � L0jj � (1 + �+ �2 + : : :) =
jjL1 � L0jj

1� �
: (4.25)

On the other hand, subtracting the real solution defined as the fixed point of the exact equationL = Le + T L
from the first iteration of the approximated operator

L1 = Le + T �L;

we obtain
L1 � L = T �L� T L: (4.26)

Thus the final error formula is

jjL� � Ljj � jjT �L� T Ljj
1� �

: (4.27)

4.4 Analytical solution of the rendering equation

In order to test the error and convergence of global illumination algorithms, we need scenes for which the exact
solution is known. Generally, there are two alternatives. Either we use simple scenes for which analytical solution
is possible, or numerical methods are applied using so many samples that the approximate solution can be accepted
as a reference.

In order to find analytically solvable scenes, we use a reverse approach. Normally, a scene is analyzed to find
the radiance distribution. Now, we start with a prescribed radiance distribution and search for scenes where the
radiance would be identical to the given radiance. Two special cases are examined. In the first case we are looking
for scenes where the radiance is constant everywhere and at every direction. In the second case we establish criteria
for making only the reflected radiance constant.

4.4. ANALYTICAL SOLUTION OF THE RENDERING EQUATION 34

4.4.1 Scenes with constant radiance

Suppose that the constant radiance is~L and also that the scene is aclosed environment, i.e. looking at any direction
we can see a surface, thus the incoming radiance is also constant. Substituting this to the rendering equation we
get:

~L = Le(~x; !) + (T ~L)(~x; !) = Le(~x; !) + ~L � (T 1)(~x; !) = Le(~x; !) + ~L � a(~x; !); (4.28)

since the albedo is the response to homogeneous unit illumination. According to this equation, the radiance will
be constant for scenes of arbitrary geometry and of arbitrary emission function if the albedo function is:

a(~x; !) = 1� Le(~x; !)

~L
: (4.29)

If Le is constant, then the required albedo will also be constant. In this special case — called the homogeneous
diffuse environment — the geometry is arbitrary, but all surfaces have the same diffuse reflection and emission
[Shi91b, Kel95].

4.4.2 Scenes with constant reflected radiance

Let us assume that the reflected radiance — i.e. the radiance without the emission — is~Lr and assume again that
the scene is closed. Substituting this into the rendering equation, we obtain:

L(~x; !) = Le(~x; !) + ~Lr = Le(~x; !) + (T (Le + ~Lr))(~x; !) = Le(~x; !) + (T Le)(~x; !) + ~Lr � a(~x; !): (4.30)

This imposes the following constraint on the albedo function:

a(~x; !) = 1� (T Le)(~x; !)
~Lr

: (4.31)

Note that if the reflected radiance is constant, then the albedo is also constant, which is guaranteed if the BRDF
is diffuse and has the samefr value everywhere. An appropriate geometry, which makesT Le constant for arbitrary
diffuse emission if the BRDF is diffuse and constant, is the internal surface of the sphere as proposed originally by
[HMF98]. Formally, let the scene be an inner surfaceS of a sphere of radiusR, the BRDF be constantfr = a=�

and the emission be diffuse and defined byLe(~x). Using the

d!0 =
cos �~y � d~y
j~y � ~xj2

substitution for the solid angle (equation (2.2)), we obtain the following form of the light transport operator:

(T Le)(~x; !) =
Z
S

fr � cos �~x � Le(~y) �
cos �~y

j~y � ~xj2 d~y: (4.32)

R
R

x

x

y
yθ θ

Figure 4.3: Geometry of the reference scene

Looking at figure 4.3, we can see that inside a spherecos �~x = cos �~y =
j~y�~xj
2R

; thus we can obtain the following
final form:

(T Le)(~x; !) =
Z
S

fr � Le(~y) �
cos �~x � cos �~y
j~y � ~xj2 d~y =

fr

4R2
�
Z
S

Le(~y) d~y = a �

R
S

Le(~y) d~y

4R2�
: (4.33)

The response is equal to the product of the albedo and the average emission of the total spherical surface.

Chapter 5

Finite-element methods for the Global
Illumination Problem

Iteration requires the representation of the temporary radiance functionLn. So does expansion if view-independent
solution is needed since the final radiance distribution must be represented in a continuous domain. The exact
representation of such functions might need infinite data, which is not available for practical algorithms. Thus
finite approximations are required.

To represent a function over a continuous domain,finite-element methods can be used which approximate the
function in a finite function series form:

L(~x; !) � L(n)(~x; !) =

nX
j=1

Lj � bj(~x; !) = bT (~x; !) � L (5.1)

wherebj(~x; !) is a system of predefined basis functions, andLj factors are unknown coefficients.
This representation can also be seen as projecting the infinite dimensional space of the possible radiance func-

tions into a finite-dimensional function space defined by the basis functions.

L

L

b

b

1

2

n

b1 b2 b3 b4

L

L
n

Figure 5.1: Finite element approximation

L

L +

b1

e

~

b2

~

L f cosθ ωd’
r

n

n

Figure 5.2: Projection to the adjoint base

Substituting this approximation into the rendering equation we can obtain:

nX
j=1

Lj � bj(~x; !) �
nX
j=1

Lej � bj(~x; !) + T
nX
j=1

Lj � bj(~x; !) =
nX
j=1

Lej � bj(~x; !) +
nX
j=1

Lj � T bj(~x; !): (5.2)

35

5. FINITE-ELEMENT METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 36

Note that equality cannot be guaranteed, since even if
Pn
j=1 Lj � bj(~x; !) is in the subspace defined by the basis

functions, the integral operatorT may result in a function that is out of this space. Instead, equality is required in
an appropriate subspace defined byadjoint basis functions~b1(~x);~b2(~x); : : :~bn(~x) (figure 5.2). This set is required
to be orthogonal to the original baseb1(~x); b2(~x); : : : bn(~x) in the following sense:

hbi(~x);~bj(~x)i =
(
1 if i = j,

0 otherwise.
(5.3)

Having projected equation 5.2 to the adjoint base — i.e. multiplying it by each adjoint basis functions~bi — we
obtain the following system of linear equations:

Li = L
e
i +

X
j

hT bj ; bii � Lj : (5.4)

This system of linear equations can also be presented in a vector form:

L = Le +R � L; Rij = hT bj ;~bii: (5.5)

An adjoint of this linear equation can be derived by selecting the adjoint base as the normalization of the
measurement functions. Suppose that each basis functionbi is associated with a measurement deviceW e

i that
measures the powerPi leaving the support of the basis function, thus the appropriate adjoint basis function is
~bi =W e

i =hbi;W e
i i. Thus the measured radiance is

h
nX
j=1

Lj � bj ;W e
i i = hbi;W e

i i � Li = Pi:

Similarly, the measured emission is

h
nX
j=1

Lej � bj ;W e
i i = hbi;W e

i i � Lei = Pei :

Applying measurement operatorW e
i for equation (5.2), we can obtain the following equation:

hbi;W e
i i � Li = hbi;W e

i i � Lei +
nX
j=1

hT bj ;W e
i i � Lj : (5.6)

Replacing the radiances by measured values, we get

Pi = P
e
i +

nX
j=1

hT bj ;W e
i i

hbj ;W e
j i

�Pj : (5.7)

This can also be presented in a matrix form

P = Pe +H �P; (5.8)

where

Hij =
hT bj ;W e

i i
hbj ;W e

j i
= hT bj ;~bii � hbi;W

e
i i

hbj ;W e
j i

= Rij � hbi;W
e
i i

hbj ;W e
j i
: (5.9)

When finite-element techniques are used together with expansion, finite-element representation can either be
used to represent the final result [Kel95], or even be involved in the random walk [PM95].

The latter case may correspond either to the random-walk solution of the linear equation derived by project-
ing the integral equation, or to the Monte-Carlo evaluation of the multi-dimensional integral containing both the
transport and the projection operators. The second case is preferred, because it does not require matrixR to be
explicitly computed and stored.

The main problem of finite-element representations is that they require a lot of basis functions to accurately
approximate high-variation, high-dimensional functions. Not surprisingly, finite-element methods have become
really popular only for the diffuse case, where the radiance depends on 2 scalars and is relatively smooth. For
solving the non-diffuse case, they are good only if the surfaces are not very specular.

5.1. GALERKIN’S METHOD 37

5.1 Galerkin’s method

Galerkin’s method finds an approximation of the solution by making the error orthogonal to the set of basis
functions. It means that the projection of error to the original base is zero. Formally, in Galerkin’s method the
set of basis functions is the same — except for normalization constants — as the set of adjoint basis functions.
A particularly important case is the piece-wise constant approximation, when the surfaces and the directions are
partitioned into patchesA1; A2; : : : ; An and solid angles
1;
2; : : : ;
m, respectively. The basis functions are
then:

bij(~x; !) =

(
1 if ~x 2 Ai ^ ! 2
j ;

0 otherwise.
(5.10)

The adjoint basis functions are:

~bij(~x; !) =

(
1=(jAij � j
j j) if ~x 2 Ai ^ ! 2
j ;

0 otherwise.
(5.11)

The system of linear equations determining the unknownLij values is

Lij = L
e
ij +

nX
k=1

mX
l=1

Lkl �Rijkl; (5.12)

where

Rijkl = hT bkl(~x; !);~bij(~x; !)i = 1

jAij � j
j j
�
Z

j

Z
Ai

Z

bkl(h(~x;�!0); !0) �fr(!0; ~x; !) cos �0~x d!0 d~xd!: (5.13)

5.2 Point collocation method

Thepoint collocation method finds the unknown coefficients by requiring the finite-element approximation to be
exact at the predefined knot points only. Formally, it uses Dirac-delta type adjoint basis functions which emphasize
these knot-points:

~bij(~x; !) = �ij(~x� ~xi; ! � !j): (5.14)

The coefficients of the linear equation can be expressed as follows:

Rijkl = hT bkl(~x; !);~bij(~x; !)i =
Z

bkl(h(~xi;�!0); !0) � fr(!0; ~xi; !j) cos �0~xi d!0: (5.15)

5.3 Finite element methods for the diffuse global illumination problem

If the surfaces have only diffuse reflection and emission — which is a general assumption of theradiosity method
[CG85] — then the rendering (or the potential) equation has a simplified form:

L(~x) = Le(~x) +

Z

H

L(h(~x;�!0)) � fr(~x) � cos �0~x d!0: (5.16)

In this case, the BRDF and the radiance depend on the surface point, but are independent of the direction, which
reduces the inherent dimensionality of the problem and simplifies the finite-element representation:

L(~x; !) �
nX
j=1

Lj � bj(~x): (5.17)

A widely used approach is the application of piece-wise constant basis functions for whichbj(~x) = 1 if ~x is
on surface elementAj and 0 otherwise. An appropriate adjoint basis is~bj(~x) = 1=Aj if ~x is on surface element
Aj and 0 otherwise. Using this set of basis functions, the original rendering equation is projected to the following
linear equation:

L = Le +R � L (5.18)

where

Rij = hT bj ;~bii = 1

Ai
�
Z
Ai

Z

bj(h(~x;�!0)) � fr(~x) � cos �0~x d!0 d~x: (5.19)

5.3. FINITE ELEMENT METHODS FOR THE DIFFUSE GLOBAL ILLUMINATION PROBLEM 38

Let us replace the directional integral by a surface integral using equation (2.2):

d!0 =
d~y � cos �~y
j~x� ~yj2 :

This is true only when~x and~y are visible from each other, otherwise the solid angle of the visible surface is
obviously zero. In order to extent the formula to this case, avisibility indicator v(~x; ~y) is introduced, which is 1
if the two points are visible from each other and zero otherwise. Using this substitution we obtain

Rij =
1

Ai
�
Z
Ai

Z
S

bj(~y) � fr(~x) �
cos �0~x � cos �~y
j~x� ~yj2 � v(~x; ~y) d~y d~x: (5.20)

Taking advantage that the base functions are zero except for their specific domain,cos �~y = cos �j andcos �0~x =
cos �i are constant on these patches, and assuming that the BRDF on patchi is fi, we get

Rij =
fi

Ai
�
Z
Ai

Z
Aj

cos �i � cos �j
j~x� ~yj2 � v(~x; ~y) d~y d~x: (5.21)

Note thatRij is a product of two factors, the albedo of patchi— that isai = fi �� —, and a so calledform factor
Fij which describes the geometry of the scene:

Fij =
1

Ai
�
Z
Ai

Z
Aj

cos �i � cos �j
� � j~x� ~yj2 � v(~x; ~y) d~y d~x: (5.22)

So far we have discussed the light propagation problem from the point of view of gathering. For shooting,
similar formulae can be produced if incoming direction!0 is replaced by the outgoing direction! = �!0 in
equation (5.19):

Rij =
1

Ai
�
Z
Ai

Z

bj(h(~x; !)) � fr(~x) � cos �~x d! d~x: (5.23)

An adjoint equation can also be derived as a special case of equation (5.8). LetW e
i be1 in points ofAi and at

the directions of the hemisphere ofAi. Thepower equationis then

P = Pe +H �P; (5.24)

where the different forms ofHij are taken from equation (5.9):

Hij = Rij � Ai=Aj = Rji � fi=fj = fi

Aj
�
Z
Aj

Z

bi(h(~y; !)) � cos �j d! d~y: (5.25)

In order to solve the projected integral equation or the power equation, basically the same techniques can be
applied as for the original integral equation: inversion, expansion and iteration.

Both the number of unknown variables and the number of equations are equal to the number of surfaces
(n). The calculatedLi radiances represent the light density of the surface on a given wavelength. To generate
color pictures at least three independent wavelengths should be selected (say red, green and blue), and the color
information will come from the results of the three different calculations.

Thus, to sum up, the basic steps are these:

1. Fij form factor calculation.

2. Describe the light emission (Lei) on the representative wavelengths, or in the simplified case on the wave-
length of red, green and blue colors.

3. Solve the linear equation for representative wavelengths.

4. Generate the picture taking into account the camera parameters by any known hidden surface algorithm.

In practical circumstances the number of elemental surface patches can be very large, making the form factor
computation and the solution of the linear equation rather time consuming.

5.3. FINITE ELEMENT METHODS FOR THE DIFFUSE GLOBAL ILLUMINATION PROBLEM 39

5.3.1 Geometric methods for form factor computation

Geometric form factor calculation methods approximate the outer integral of the double integral of the form factor
from a single value, thus they apply the following approximation:

Fij =
1

Ai
�
Z
Ai

Z
Aj

cos �i � cos �j
� � j~x� ~yj2 � v(~x; ~y) d~y d~x �

Z
Aj

cos �i � cos �j
� � j~xi � ~yj2 � v(~xi; ~y) d~y: (5.26)

where~xi is the center of patchi.

dy

1

N

A

dy
cos θ

θ

j

j

i

iθ

dy
cos cosθ j iθ

x - y 2

A j

N

A j

j

n pixelsF
n

P j=ij
j
2

y

x

resolutionP x Pi

i

A i

x - yi
2

Figure 5.3: Geometric interpretation of hemisphere form factor algorithm and the discrete algorithm for form factor
computation

Nusselt [SH81] has realized that this formula can be interpreted as projecting the visible parts ofAj onto
the unit hemisphere centered above~xi, then projecting the result orthographically onto the base circle of this
hemisphere in the plane of~xi, and finally calculating the ratio of the doubly projected area and the area of the unit
circle (�). Due to the central role of the unit hemisphere, this method is called thehemisphere algorithm.

This means that a single row of the form factor matrix can be determined by solving a visibility problem, where
the “window” is a half sphere and the “eye” is in the center of surfacei.

Continuous hemisphere algorithm

First an exact algorithm is presented for the calculation of thehemispherical projection [SKe95].

-

+

+

R l R l 1+

N

Figure 5.4: Hemispherical projection of a planar polygon (~Rl and ~Rl�1 are two consecutive vertices of the polygon)

5.3. FINITE ELEMENT METHODS FOR THE DIFFUSE GLOBAL ILLUMINATION PROBLEM 40

To simplify the problem, consider only one edge line of the polygon first, and two consecutive vertices,~Rl
and ~Rl�1, on it (figure 5.4). Operator� stands for moduloL addition which can handle the problem that the
next of vertexl is usually vertexl + 1, except for vertexL� 1 which is followed by vertex0. The hemispherical
projection of this line is a half great circle. Since the radius of this great circle is 1, the area of the sector formed
by the projections of~Rl and ~Rl�1 and the center of the hemisphere is simply half the angle of~Rl and ~Rl�1.
Projecting this sector orthographically onto the equatorial plane, an ellipse sector is generated, having the area of
the great circle sector multiplied by the cosine of the angle of the surface normal~N and the normal of the segment
(~Rl � ~Rl�1).

The area of the doubly projected polygon can be obtained by adding and subtracting the areas of the ellipse
sectors of the different edges, as is demonstrated in figure 5.4, depending on whether the projections of vectors
~Rl and ~Rl�1 follow each other clockwise. This sign value can also be represented by a signed angle of the two
vectors, expressing the area of the double projected polygon as a summation:

L�1X
l=0

1

2
� angle(~Rl; ~Rl�1)

(~Rl � ~Rl�1)

j~Rl � ~Rl�1j
� ~N: (5.27)

Having divided this by� to calculate the ratio of the area of the double projected polygon and the area of the
equatorial circle, the form factor can be generated.

This method has supposed that surfaceAj is above the plane ofAi and is totally visible. Surfaces below the
equatorial plane do not pose any problems, since we can get rid of them by the application of a clipping algorithm.
When partial occlusion occurs, then either a continuous (object precision) visibility algorithm is used to select
the visible parts of the surfaces, or the visibility term is estimated by firing several rays to surface elementj and
averaging their 0/1 associated visibilities [Tam92].

Discrete hemisphere algorithm and its variations

Discrete methods subdivide the hemisphere into finite number of areas called “pixels” and assume that what can be
seen through these small areas is homogeneous (figure 5.3). Thus it is enough to determine the visibility through a
single point in each pixel.

The complicated form of the “hemispherical window” can be simplified if the hemisphere is replaced by other
immediate surfaces, such as ahemicube[CG85] or acubic tetrahedron [BKP91]. In these cases the modification
of the geometry must be compensated by appropriate weighting functions in area computation. For hemicube and
hemishpere algorithms, the window surface consists of normal rectangles, which can be exploited by the built in
transformation and scan-conversion hardware of graphics workstations.

Figure 5.5: A complex scene rendered by the hemicube algorithm (University of Cornell)

Chapter 6

Numerical quadrature for high
dimensional integrals

The solution of the rendering equation requires the numerical evaluation of high-dimensional integrals. Numerical
quadrature formulae take finite samples from the domain, evaluate the integrand for these samples and generate
the integral as a weighted sum of the integrand values. The general form for the solution is

I =

Z
V

f(z) dz �
NX
i=1

f(zi) � w(zi) (6.1)

wherezi is a sample point from thes-dimensional domainV , andw is the weighting function of the given quadra-
ture rule.

Classical quadrature rules usually trace back the computation of multi-dimensional integrals to a series of
one-dimensional integrals. Thus they select the coordinates of the sample points independently, and the high-
dimensional points are defined as the Cartesian product of the 1-dimensional sample sets. The simplest techniques,
including thebrick-rule , thetrapezoidal-rule, Simpson-rule, etc. space the abscissas equally, which results in a
regular grid in the domain. More sophisticated techniques, such as theGaussian quadrature, selects the sample
points non uniforly along each abscissa to decrease the error of the integral.

f∆

10
N points

/N1

N
f∆

n points

n points f∆

Figure 6.1: Error of the brick rule in one and two dimensional spaces

Let us evaluate the error of the brick rule in one and two dimensional spaces (figures 6.1). Suppose thatN

sample points are used in the domains of[0; 1] and[0; 1]2, respectively. In the one dimensional space the error is
the sum of the areas of triangles that are between the function and the series of bricks. The average height of a
triangle is�f=(2N) where�f is the variation of the integrand andN is the number of bricks. Since the base of
a triangle is1=N and the number of triangles isN , the error is:

�1 =
�f

2N
� 1
N
�N =

�f

2N
= O

�
1

N

�
: (6.2)

In the two dimensional space theN sample points should be distributed along two coordinates, thus we have
justn =

p
N points in a single row and column. Now the error is the sum of the volume of the roof-like objects

that are between the function and the series of bricks. The average height of a volume element is�f=(2n), its

41

6.1. MONTE-CARLO QUADRATURE 42

base has1=n2 area and there aren2 elements. Thus the error is

�2 =
�f

2n
� 1

n2
� n2 = �f

2
p
N

= O
�

1p
N

�
: (6.3)

This idea can simply generalized to any dimensions and we can conclude that the integration error of the brick
rule in ans-dimensional space is proportional to�f=N1=s (i�f is the total change, i.e. the variation, of the
integrand). From another point of view, it means that the required number of sample points to find an estimate with
error� is proportional to(�f=�)s, thus the computational complexity is exponential with regard to the dimension
of the domain. This phenomenon is called as thedimensional explosionor dimensional core. Concerning other
classical quadrature rules,�f measures higher order changes, such as the distance from the piece-wise linear or
polynomial functions, but they also exhibit dimensional core.

The dimensional explosion can be avoided byMonte-Carlo [Sob91] orquasi-Monte Carlo [Nie92] integra-
tion methods. Monte-Carlo methods trace back the estimation of an integral to the calculation of an expected
value, which is estimated by averaging random samples. Quasi-Monte Carlo techniques, on the other hand, use
deterministic samples that are uniformly distributed in the integration domain.

6.1 Monte-Carlo quadrature

Monte-Carlo integration converts the calculation of an integral to an equivalent expected value problem. Assume
that a random vector variablez is uniformly distributed inV , thus its probability density isp(z) = 1=V . The
expected value of random variablef(z) is

E[f(z)] =

Z
V

f(z) � p(z) dz =
Z
V

f(z) � 1
V
dz =

1

V
� I; (6.4)

thus the required integral can easily be found if this expected value is available. According to thetheorems of
large numbers, if independent random samplesz1; z2; : : : ; zN are generated using probability densityp, then the
expected value can be estimated by the averagef̂ :

E[f(z)] � f̂ =
1

N

NX
i=1

f(zi): (6.5)

Estimatorf̂ is also a random variable whose expected value is equal toE[f(z)] = I=V . Suppose that the variance
of f(z) is �2. If the samples are independent random variables, then the variance of estimatorf̂ is:

D2
h
f̂
i
=

1

N2

NX
i=1

�2 =
�2

N
: (6.6)

Thus the standard deviation of the estimator is

D
h
f̂
i
=

�p
N
: (6.7)

According to thecentral limit theorem , estimatorf̂ will have normal distribution asymptotically, with mean
E[f(z)] = I=V and standard deviation�=

p
N . Examining the shape of the probability density of the normal

distribution, we can conclude that the probability that the distance between the variable and the mean is less than
3 times the standard deviation is 0.997. Thus with 0.997 confidence level we can say that the (probabilistic) error
bound of the Monte-Carlo quadrature is

j
Z
V

f(z) dz� V

N

NX
i=1

f(zi)j < 3V �p
N
: (6.8)

Let us realize that this bound is independent of the dimension of the domain! This property means that by Monte-
Carlo quadrature the dimensional explosion can be avoided.

6.2 Quasi-Monte Carlo quadrature

In the previous section we concluded that randomly distributing the sample points solves the dimensional core
problem. We show that it is also possible with deterministically selected sample points. The resulting method is

6.2. QUASI-MONTE CARLO QUADRATURE 43

calledquasi-Monte Carlo quadrature. For the sake of simplicity, assume that ans-dimensional funcionf(z)
needs to be integrated over the domain[0; 1]s. In order to guarantee thatf is Riemann-integrable,f is assumed to
be piece-wise continuous.

This integral is approximated by a finite sum as follows:Z
z2[0;1]s

f(z) dz � 1

N

NX
i=1

f(zi): (6.9)

The question is how the sequence of sample pointsz1; z2; : : : ; zN should be selected to minimize the error of
the integral quadrature. A minimal requirement is the stability of the sequence, which means that in asymptotic
sense the error is zero for any Riemann integrable function:Z

z2[0;1]s

f(z)dz = lim
N!1

1

N

NX
i=1

f(zi): (6.10)

Sequences meeting this requirement are calleduniform orequidistribution (or more precisely1-equidistribution)
sequences [Nie92].

In order to find other necessary requirements for uniform sequences, let us consider the integration of a very
simple function which is 1 inside ad-dimensional “brick” originating at the center of the coordinate system and 0
elsewhere:

L(z) =
(
1 if 0 � zj1 � v1; 0 � zj2 � v2; : : : ; 0 � zjs � vs;

0 otherwise.
(6.11)

Let us denote the volume of this brick byV (A) =
Qs
j=1 vj : Integrating this function we have:

Z
z2[0;1]s

L dz =
sY
j=1

vj = V (A): (6.12)

If the number of sample points that are inside thes-dimensional “brick”A ism(A), then the finite approximation
sum is

1

N

NX
i=1

f(zi) =
m(A)

N
: (6.13)

Since the exact value of the integral isV (A) now, for uniform sequences, the average number of sample points
that are located inside a volume should be proportional to the size of this volume:

lim
N!1

m(A)

N
= V (A): (6.14)

If the size of the sequence of the sample points is not infinite, then the proportionality requirement can only be
approximately met. The maximal error in this approximation is called thediscrepancy(or thestar-discrepancy)
of the sequence:

D�(z1; z2; : : : zN) = sup
A

jm(A)

N
� V (A)j: (6.15)

If a sequence is appropriate for integral-quadrature, then the approximation sum is expected to converge to the
real value of the integral, which requires the discrepancy to converge to 0. This is another necessary requirement
which is derived from the examination of a very simple function. Note that this requirement also emphasizes the
uniformity of those sequences that can be used for numerical integration.

However, this requirement is not only necessary, but also sufficient, since any Riemann-integrable function can
be approximated by piece-wise constant step-functions with arbitrary precision. To show how step-functions can
do this, an example of a 2-dimensional function is shown in figure 6.2.

6.2.1 Error Analysis for integrands of finite variation: Koksma-Hlawka Inequality

In this section, an upper-bound is given to the error of the quasi-Monte Carlo quadrature for functions that have
bounded and piece-wise continuous mixed derivatives.

The error of the quadrature is shown below:

j
Z

z2[0;1]s

f(z) dz� 1

N

NX
i=1

f(zi)j: (6.16)

6.2. QUASI-MONTE CARLO QUADRATURE 44

f1

f3

f4
f2

b1=f1-f2-f3+f4

b2=f2-f4 b3=f3-f4
b4=f4= + + +

Figure 6.2: Definition of functions from bricks originating at the center of the coordinate system

Intuitively this error must depend on two independent factors. On the one hand, if the discrepancy of the sequence
of sample points is high, then there are large regions where there are no sample point at all, which increases
the error. This means that the error is expected to be proportional to the discrepancy of the sequence of sample
locations.

On the other hand, the error also depends on how quickly the function changes between the sample points. If
the function can change significantly in small domain, then the error can be quite large. However, if the slope of
the function is small, then nothing dramatic happens between the sample points thus the error will be small.

Measures describing how rapidly a function can change are calledvariations. For a 1-dimensional function
thevariation in the sense of Vitali is defined as:

VV(f(x)) = lim sup

NX
i=1

jf(xi+1)� f(xi)j: (6.17)

For a 2-dimensional function, the definition is analogous:

VV(f(x; y)) = lim sup

NX
i=1

MX
j=1

jf(xi+1; yj+1)� f(xi+1; yi)� f(xi; yi+1) + f(xi; yi)j: (6.18)

Note that for higher dimensions, the variation of Vitali does not provide a good measure: if the function is constant
in x, for instance, then the variation is zero, regardless how the function changes depending ony.

Thus, it is worth introducing a somehow more stronger variation type, called theHardy-Krause variation .
The variation in the sense of Hardy-Krause is the sum of the variations of the function and of its restrictions to the
end of the domain. For dimension 2, the new variation is:

VHK(f(x; y)) = VVf(x; y) + VVf(x; 1) + VVf(1; y): (6.19)

If a function has bounded and piece-wise continuous mixed derivatives, then its variation is finite. For a 2-
dimensional function meeting this requirement the variation can be given by the following formula:

VHK(f(u; v)) =
1Z

0

1Z
0

����@2f(u; v)@u@v

���� du dv +
1Z

0

����@f(u; 1)@u

���� du+
1Z

0

����@f(1; v)@v

���� dv: (6.20)

The property that a function is not continuous does not necessarily mean that the variation is infinite. If at most
finite or countable infinite discontinuities occur at hyper-planes parallel to the coordinate axes, then the variation
is still finite. An example of a discontinuous function that have finite variation is

f(x; y) =

(
1 if x > x0;

0 otherwise.
(6.21)

However, when the discontinuity is not parallel to the coordinate axes, then the variation is infinite. A simple
function of infinite variation is [De´a89]:

f(x; y) =

(
1 if x > y;

0 otherwise.
(6.22)

6.2. QUASI-MONTE CARLO QUADRATURE 45

Now, let us turn to the error of quasi-Monte Carlo integration. The following formula, which expresses the
previous intuition that the error depends on the uniformness of the sample points and on the variation of the
integrand, is called theKoksma-Hlawka inequality:

j
Z

z2[0;1]s

f(z) dz� 1

N

NX
i=1

f(zi)j � VHK � D�(z1; z2; : : : zN): (6.23)

For the sake of notational simplicity, the Koksma-Hlawka inequality is proven here only for the two-dimensional case
(s = 2). The outline of the proof is as follows. We start with the assumption that the function has piece-wise continuous
and bounded mixed derivatives, thus the mixed derivatives are Riemann-integrable and their integration gives back the original
function. First the function is expressed as the integral of its derivatives, and the function values in the approximation sum are
converted accordingly. On the other hand, the integral off is converted to a similar form using partial integration. Finally the
difference of the approximating sum and the integral is examined and upperbounded.

First, the value of functionf(u; v) is expressed by its derivatives at pointx; y:

f(x; y) = f(1; 1) + [f(1; 1)� f(x; 1)� f(1; y) + f(x; y)]� [f(1; 1)� f(x; 1)]� [f(1; 1)� f(1; y)] =

f(1; 1) +

1Z
x

1Z
y

fuv(u; v) du dv �

1Z
x

fu(u; 1) du�

1Z
y

fv(1; v) dv:

where

fuv(u; v) =
@2f(u; v)

@u@v
; fu(u; v) =

@f(u; v)

@u
; fv(u; v) =

@f(u; v)

@v
:

Let us introduce the step function�:

�(u; v) =

(
1 if u � 0; v � 0;

0 otherwise.
Using this step function, the domains of the integrals can be extended to[0; 1], as follows:

f(x; y) = f(1; 1) +

1Z
0

1Z
0

fuv(u; v) � �(u� x; v � y) du dv �

1Z
0

fu(u; 1) � �(u� x; 1) du�

1Z
0

fv(1; v) � �(1; v � y) dv:

Substitutingzi = (xi; yi) into this formula we have:

f(zi) = f(1; 1) +

1Z
0

1Z
0

fuv(u; v) � �(u� xi; v � yi) du dv �

1Z
0

fu(u; 1) � �(xi; 1) du�

1Z
0

fv(1; v) � �(1; yi) dv:

Averaging these formulae fori = 1; 2; : : : N , the approximating sum has the following form:

1

N

NX
i=1

f(zi) = f(1; 1) +
1

N

1Z
0

1Z
0

fuv(u; v) �m(u; v) du dv �
1

N

1Z
0

fu(u; 1) �m(u; 1) du�
1

N

1Z
0

fv(1; v) �m(1; v) dv:

where

m(u; v) =

NX
i=1

�(u� xi; v � yi);

which is the number of points located in the rectangle[(0; 0); (u; v)]. The integral

Z
z2[0;1]2

f(z) dz =

1Z
v=0

1Z
u=0

f(u; v) du dv

can also be converted to a similar form, if partial integration is applied. First the inner integral is considered:

1Z
u=0

f(u; v) du =

1Z
u=0

f(u; v) � 1 du = f(1; v)�

1Z
u=0

fu(u; v) � u du = F (v)

Then the outer integral is processed in a similar way:

1Z
v=0

1Z
u=0

f(u; v) du dv =

1Z
v=0

F (v) dv =

1Z
v=0

F (v) � 1 dv = F (1)�

1Z
v=0

Fv(v) � v dv

6.2. QUASI-MONTE CARLO QUADRATURE 46

Substituting the definition ofF (v) we get:

1Z
v=0

1Z
u=0

f(u; v) du dv = f(1; 1) +

1Z
0

1Z
0

fuv(u; v) � uv du dv �

1Z
0

fu(u; 1) � u du�
1

N

1Z
0

fv(1; v) � v dv:

Thus the error of quadrature is then:

j

1Z
v=0

1Z
u=0

f(u; v) du dv �
1

N

NX
i=1

f(zi)j =

j

1Z
0

1Z
0

fuv(u; v) �

�
m(u; v)

N
� uv

�
du dv �

1Z
0

fu(u; 1) �

�
m(u; 1)

N
� u

�
du�

1Z
0

fv(1; v) �

�
m(1; v)

N
� v

�
dvj �

0
@ 1Z

0

1Z
0

jfuv(u; v)j � du dv +

1Z
0

jfu(u; 1)j du+

1Z
0

jfv(1; v)j dv

1
A � sup

u;v

����
�
m(u; v)

N
� uv

����� = VHK � D
�(z1; z2; : : : zN):

This is exactly what we wanted to prove.
According to this inequality, the error can be upperbounded by the product of two independent factors, the

variation of the integrand and the discrepancy of the used sample set. The discrepancy shows how uniformly
the set is distributed [Shi91a]. This immediately presents two orthogonal strategies to improve the quality of
quadratures. Either we try to make the function flat by appropriate variable transformations, or use very uniformly
distributed sample sets. The first technique is calledimportance sampling [Sob91], while the second involves
thestratification [Sob91, Mit96, Arv95] of random points or the application oflow-discrepancy series[Nie92,
War95, PFTV92, Knu81, Sob91].

If the integrand has finite variation, then the error is proportional to the discrepancy of the sequence of sample
locations. For carefully selected sample points the discrepancy can converge to zero with almost linear speed. Thus,
quadratures having almost linear convergence can be obtained in this way, which is better than theO(1=

p
N) speed

of Monte-Carlo quadratures.
Note, on the other hand, that functions having infinite variation can also be integrated by quasi-Monte Carlo

quadrature. The quadrature will be asymptotically exact for any uniform sequence and for any Riemann integrable
function. The fact that the Koksma-Hlawka inequality cannot be applied means that it cannot be used to pro-
vide a qualitative measure for the speed of the convergence. Practical experience shows that quasi-Monte Carlo
integration outperforms the classical Monte-Carlo integration even for discontinuous functions [SKDP99]. How-
ever, the difference in the effectiveness becomes significantly less when the integrand has infinite variation. This
phenomenon will be investigated in the subsequent sections.

Since the integrand of the rendering and potential equations is usually discontinuous, this case is very important
for computer graphics applications.

6.2.2 Generation of the sample points

As a conclusion of error analysis we can state that we need very uniform sequences for quasi-Monte Carlo quadra-
ture. Regular grids should be rejected because of theirO(1=N1=s) discrepancy which results in dimensional
explosion.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Regular grid

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Random points

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 100 Halton points of base (2, 3)

Figure 6.3: 100 points distributed by a regular grid (left), random distribution (middle) and Halton low-discrepancy sequence
(right)

6.2. QUASI-MONTE CARLO QUADRATURE 47

Monte-Carlo method proposed the application of random samples to avoid dimensional explosion. This can
also be justified by analyzing the discrepancy. In fact, the discrepancy of a uniformly distributed random series is

O
 r

log logN

2N

!

assymptotically with probability 1.
In order to prove this, let us define a new random variable�i from uniformly distributed random samplezi in the following

way:

�i =

(
1 if zi is in ans-dimensional brickA that originates at the center,

0 otherwise.
Note that ifzi is uniformly distributed in[0; 1], then the expected value and the variance of�i are

E[�i] = V (A); D
2[�i] = V (A)� V

2(A) �
1

4
;

whereV (A) is the volume of brickA. If the samples are independent random variables, the generated�1; �2; : : : ; �N random
variables will also be independent, and of the same distribution having meanE[�] and varianceD2[�].

According to thetheorem of iterated logarithm [Rén81], the difference between the average of independent random
variables�1; �2; : : : ; �N of the same distribution and their meanE[�] can be upperbounded in the following way:

Pr

(
lim sup

���X �i

N
�E[�]

��� �
r
D2[�] �

2 log logN

N

)
= 1;

In our case the standard deviationD2[�] cannot exceed1=4 and

sup

���X �i

N
�E[�]

��� = sup
A

����m(A)

N
� V (A)

���� = D
�(z1; z2; : : : zN);

thus the theorem of iterated logarithm becomes what we want to prove:

Pr

(
limD

�(z1; z2; : : : zN) �

r
log logN

2N

)
= 1:

6.2.3 Generation of low-discrepancy sequences

Beyond random sequences, however, there are deterministic sequences that have even better discrepancy. The
discrepancy of the best sequences known is in the order ofO(logsN=N) or even in the order ofO(logs�1N=N)
if N is known before starting the sequence. These sequences are calledlow-discrepancysequences. There are
many sequences published in the literature [Nie92, War95, De´a89, Knu81]. The most famous one is probably the
Halton-sequence(its one-dimensional version is also calledVan der Corput sequence).

The elementi of the one-dimensional Halton sequence of baseb is defined as the radical inverse of the expan-
sion ofi in baseb. This means that numberi is expanded in radixb, then the number is mirrored onto the “radix”
point. The first few points in base 2 are shown in table 6.1.

i binary form ofi radical inverse Hi

1 1 0.1 0.5
2 10 0.01 0.25
3 11 0.11 0.75
4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.375
7 111 0.111 0.875

Table 6.1: The calculation of theith Halton pointHi in base 2

Why is this sequence uniform? Note that the construction algorithm generates as binary form ofi all binary
combinations of lengthk before producing a combination of lengthk+1. This means that after the radical inverse
the sequenceHi will visit all intervals of length2�k before putting a new point in an interval already visited. Thus
the sequence is really uniform.

6.2. QUASI-MONTE CARLO QUADRATURE 48

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 10 Halton points of base (2, 3)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 100 Halton points of base (2, 3)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 1000 Halton points of base (2, 3)

Figure 6.4: The distribution of the first 10,100 and 1000 Halton points in 2 dimensions

On the other hand, ask increases, the algorithm produces a single point in each interval of length1=2, then in
each interval of length1=4, etc. thus the sequence is not only asymptotically uniform, but also the firstN points are
fairly uniformly distributed (this is guaranteed by the property that the radical inverse makes the most significant
bit the most rapidly changing bit). This is also true in other radix systems as well. If the base isb, then the Halton
sequence will place a sample point in all intervals of sizeb�k before putting a new point into any intervals.

A Halton sequence is able to generate points that are uniformly distributed in the 1-dimensional[0; 1] interval.
If higher dimensional regions, such as rectangles, cubes, etc. should be filled uniformly, then different coordinates
of the sample vectors can be generated from Halton sequences of different base numbers. In order for these vectors
to uniformly fill the whole region, the “interdependence” of different coordinates should be as little as possible.
To examine this, let us assume that a two-dimensional Halton sequence is generated with base numbersb1 and
b2. According to the behavior of the Halton sequence, the generation algorithm would visit all columns of width
b�k11 before visiting a column again, and similarly it would visit all rows of heightb�k22 before putting a new point
into a row. The columns and rows formbk11 � bk22 cells. Uniformness in the two-dimensional space means that the
algorithm is expected to put a point in each cell before putting a second point in any cells. Since the periodicity of
the columns and rows arebk11 andbk22 , respectively, the periodicity of the cells is the smallest common multiple of
bk11 andbk22 . This equals to the their product, that is total number of cells, ifb1 andb2 are relative primes.

This can also be stated in a general way. If a multi-dimensional Halton sequence is to be constructed, then the
base numbers of different coordinates must be relative primes.

A C++ class that can initialize an arbitrary Halton point and then it can generate incrementally all subsequent
points using a very fast algorithm [Kel96b] is presented in the following:

class Halton {
double value, inv_base;

Number(long i, int base) {
double f = inv_base = 1.0/base;
value = 0.0;
while (i > 0) {

value += f * (double)(i % base);
i /= base;
f *= inv_base;

}
}

void Next() {
double r = 1.0 - value - 0.0000000001;
if (inv_base < r) value += inv_base;
else {

double h = inv_base, hh;
do {

hh = h;
h *= inv_base;

} while (h >= r);
value += hh + h - 1.0;

}
}
operator double() { return value; }

};

6.3. IMPORTANCE SAMPLING 49

6.3 Importance sampling

Importance sampling is a well-known method of Monte-Carlo integration to reduce variance. The basic idea is to
use non-uniform distribution to find sample points, which places more samples where the function is large. More
specifically it means that

I =

Z
V

f(z) dz =

Z
V

f(z)

p(z)
� p(z) dz = E

�
f(z)

p(z)

�
� 1

N
�
NX
i=1

f(zi)

p(zi)
� 3V �p

N
; (6.24)

wherep(z) is a probability density inV , thezi points are selected according to this probability density, and the
variance�2 is defined by

�2 = D2

�
f(z)

p(z)

�
= E

"�
f(z)

p(z)
� I

�2
#
=

Z
V

�
f(z)

p(z)
� I

�2

� p(z) dz: (6.25)

The probability densityp(z) should be selected to minimize the variance. As can be shown easily, the variance can
be minimized ifp(z) is proportional to the integrandf(z). In order to demonstrate this, let us express the ratio of
the integrand and the probability density in the following way:

f(z)

p(z)
= �+ � � �(z); (6.26)

where� = E[f(z)
p(z)

] and
R
V

(�(z))2 � p(z) dz = 1. Using this, the variance of the integral quadrature is

�2 = E[(�+ � � �(z) �E[�+ � � �(z)])2] = �2 � E[(�(z))2] = �2: (6.27)

This is obviously minimal if� = 0, when the variance is also zero.
Thus in Monte-Carlo integration it is worth applying probability distributions that are large where the integrand

is large and small where the integrand is negligible.

6.3.1 Generation of a random variable with a prescribed probability density

We concluded that importance sampling requires random samples generated from a probability density which is
proportional — at least approximately — to the integrand. This section examines how such samples can be found.
First, let us consider the 1-dimensional case and assume that the domain of the integration is an interval[a; b].

Suppose that we want samples with a probability density that is proportional to a functiong(z). This function is
an approximation of the integrandf . If this function is different from the integrand, then the importance sampling
is not optimal. The needed probability densityp(z) can be obtained by scaling functiong to integrate to 1 as
probability densities do:

p(z) =
g(z)

bR
a

g(z)dz

: (6.28)

Note that this gives us a clear explanation why we should use non-optimal densities. Ifg were equal tof , then the
construction of the probability density would require the integral off .

From the probability densityp, probability distribution functionP is obtained:

P (z) =

zZ
a

g(Z) dZ: (6.29)

A random variable� having probability distributionP can be constructed by transforming another random
variabler, which is uniformly distributed in the[0; 1] interval, with the� = P�1(r) transformation.

To prove this, the probability distribution of� is examined:

Prf� < zg = PrfP�1(r) < zg = Prfr < P (z)g = P (z): (6.30)

sinceP (z) is not decreasing and the probability thatr is in an interval of[0; 1] equals to the size of this interval.
The multi-dimensional case can be traced back to a series of 1-dimensional constructions. After normalization

we have

p(z) =
g(z)R

V

g(z)dz
: (6.31)

6.3. IMPORTANCE SAMPLING 50

The probability density is expressed as a product of 1-dimensional conditional densities:

p(z1; z2; : : : ; zs) = p1(z1jz2; : : : ; zs) � p2(z2jz3; : : : ; zs) � : : : � ps(zs): (6.32)

For these conditional densities the same method can be used recursively as for the 1-dimensional case. If the
different coordinates are independent random variables, then we obtain:

p(z1; z2; : : : ; zs) = p1(z1) � p2(z2) � : : : � ps(zs): (6.33)

6.3.2 Importance sampling in quasi-Monte Carlo integration

Classical Monte-Carlo integration places more samples where the integrand is large. The same basic idea also
makes sense in quasi-Monte Carlo integration. However, for formal analysis, we have to find another approach
since terms like probability density or variance cannot be applied in the deterministic quasi-Monte Carlo frame-
work.

The alternative formulation is the integration using variable transformation. Suppose that a functionf needs
to be integrated in domainV and we have a monotonously increasing mappingT that maps this domain ontoV 0.
The integral can also be evaluated in the new domain using the following formula:Z

V

f(z) dz =

Z
V 0

f(T�1(y))

����@T�1(y)@y

���� dy; (6.34)

where
���@T�1(y)

@y

��� is the Jacobi determinant of the inverse transformation.

If quasi-Monte Carlo integration is used, then domainV 0 is [0; 1]s. In order to quantify the error of the quadra-
ture, we can use the Koksma-Hlawka inequality which expresses the error-bound as a product of the discrepancy
of the sample points and the variation of the function. Since the discrepancy of the sample points is independent of
the function to be integrated, the error-bound can be controlled by the appropriate transformation of the integrand
to reduce variation. In order to reduce the variation, the function should be flattened. In the ideal case when the
integrand is constant, the variation is 0.

To make the transformed integrand constant, the Jacobi determinant should be inversely proportional tof .
Since the intuitive meaning of the Jacobi determinant is the compression or expansion ratio of the two correspond-
ing sub-cubes inV andV 0 respectively, this criterion states that if the sample points are uniformly distributed in
V 0, then the transformation will concentrate them around regions wheref is high.

For the sake of simplicity, the details are discussed only for the 1-dimensional case, when the variable trans-
formation has the following form

zmaxZ
zmin

f(z) dz =

1Z
0

f(T�1(y)) � dT
�1(y)

dy
dy: (6.35)

In the ideal case mappingT makes the integrand have zero variation, that is constantC:

f(T�1(y)) � dT
�1(y)

dy
= C:

From this we can have

T (z) =
1

C �
zZ

zmin

f(Z) dZ:

Since mappingT is expected to map to[0; 1], we require thatT (zmax) = 1. Thus the constantC should be equal

to
zmaxR
zmin

f(Z) dZ. Summarizing, the uniformly distributed pointy should be transformed by the inverse of the

following function

T (z) =

zR
zmin

f(Z) dZ

zmaxR
zmin

f(Z) dZ

: (6.36)

Note that this is the same transformation as has been derived for the random samples. It means that the method
of importance sampling is independent of whether random samples are transformed in Monte-Carlo quadrature, or
deterministic samples are transformed in quasi-Monte Carlo integration.

6.3. IMPORTANCE SAMPLING 51

6.3.3 Metropolis sampling

Importance sampling requires a probability density that is proportional to a functiong which, in turn, should mimic
the integrand. In the previous section we discussed a random variable transformation method that can generate
samples with the required probability density. This method expects functiong to be symbolically integrable and its
primitive function to be invertible. This requirement often contradicts the requirement of the good approximation
of the original integrand.

This section discusses a different sampling strategy, proposed by Metropolis et. al [MRR+53], that has less ex-
pectations towards functiong. In fact, it only supposes that the integral ofg can be determined either symbolically
or numerically.

The Metropolis method carries out sampling by establishing a discrete time Markov processfz1; z2; : : : ; zi; : : :g
in the space of samples, whose limiting distribution is proportional to the selected function. A discrete time Markov
process visits states which correspond to samples. The Metropolis algorithm constructs this process such that the
probability of being in a given state converges to a limiting value and in the limiting caseg(z) = b � p(z), where
b =

R
V
g(z) dz.

A Markov process can be defined by the state transition probabilities, that is by the conditional probability of
the next state provided that the current state is known. In Metropolis method, the next statezi+1 of this process
is found by letting an almost arbitrarytentative transition function T (zi ! zt) generate atentative samplezt
which is either accepted as the real next state or rejected making the next state equal to the actual state using an
acceptance probabilitya(zi ! zt). Thus the state transition probability density from statex to a different state
y is:

P (x! y) dy = T (x! y) dy � a(x! y): (6.37)

The event that the process remains in the same state is the complement of moving to any other state, thus the
probability of no state transition happening is:

1�
Z

x2V;x6=y

P (x! y) dy = 1�
Z

x2V;x6=y

T (x! y) � a(x! y) dy: (6.38)

Let us denote the probability density of being in statex at stepn by pn(x). Using the total probability theorem
and taking advantage that in Markov processes the future depends only on the present state and is independent of
the past, the following recursion can be established for these state probabilities:

pn+1(y) =

Z
x2V;x6=y

pn(x) � P (x! y) dx+

0
B@1� Z

x6=y

P (y ! x) dx

1
CA � pn(y): (6.39)

If the limiting probabilityp(y) = lim
n!1

pn(y) exists, then it should be the fixed point of this recursion, that is:

p(y) = p(y) +

Z
x2V;x6=y

p(x) � P (x! y) � p(y) � P (y ! x) dx (6.40)

If the Markov process is ergodic, then the limiting distribution is unambigous and is independent of the initial state
of the process. The process is ergodic if after a given number of steps any state can be reached from any other state
with non-zero probability.

The core idea of Metropolis is to construct acceptance probabilitya(x ! y) in such a way that the limiting
probability of the process will bep(z) = g(z)=b. Substituting this goal into equation (6.40) we get:

g(y) = g(y) +

Z
V;x6=y

g(x) � P (x! y) � g(y) � P (y ! x) dx: (6.41)

This holds when the total incoming and outgoing flows of statex are balanced. One way of ensuring this is to
require that:

g(x) � P (x! y) = g(y) � P (y ! x): (6.42)

This condition — that is also called as thedetailed balance— means that the transitions between any two states
are balanced. Using the formulae (6.37) for state transition probabilities, we can further obtain:

g(x) � T (x! y) � a(x! y) = g(y) � T (y! x) � a(y ! x): (6.43)

6.3. IMPORTANCE SAMPLING 52

Thus the required ratio of the two acceptance probabilities is:

a(y ! x)

a(x! y)
=
g(x) � T (x! y)

g(y) � T (y! x)
: (6.44)

Any acceptance probability satisfying this requirement makes the limiting distribution proportional tog. Con-
sidering the speed of convergence, on the other hand, the state transition probabilities and consequently the ac-
ceptance probabilities should be large. Since a probability cannot exceed 1, the optimal acceptance probability
is:

a(x! y) = min

�
g(y) � T (y! x)

g(x) � T (x! y)
; 1

�
:

The algorithm generating a trajectory of the Markov process to obtain samplesfz1; z2; : : : ; zNg is as follows:

for i = 1 to N do
Based on the actual statezi, choose another random, tentative statezt usingT (zi ! zt)
a(zi ! zt) = (g(zt) � T (zt ! zi))=(g(zi) � T (zi ! zt))

if a(zi ! zt) � 1 then zi+1 = zt
else // accept with probabilitya(zi ! zt)

Generate uniformly distributed random numberr in [0; 1].
if r < a(zi ! zt) then zi+1 = zt
else zi+1 = zi

endif
endfor

6.3.4 Application of the VEGAS algorithm

If neither the integrand nor its approximation are available explicitly, no probability density can be constructed
before starting the generation of the samples. However, as the sampling process goes on, the history of previous
samples can provide information which the important regions are, thus a probability density can be built adaptively
using the information gathered previously. This means that as the samples are evaluated not only the quadrature is
computed but a probability density is also approximated which can be proportional to the current estimate of the
integrand.

This is quite straightforward, but also generates a problem. The estimated probability density is also a high-
dimensional function, thus its storage would need a lot of storage space.

TheVEGAS method [Lep80] is an adaptive Monte-Carlo technique that generates a probability density for
importance sampling automatically and in a separable form. The reason of the requirement of separability is that
probability densities are computed from and stored in histogram tables ands number of1-dimensional tables need
much less storage space than a singles-dimensional table. Formally, let us assume that the probability density can
be defined in the following product form:

p(z1; z2; : : : ; zs) = p1(z1) � p2(z2) � : : : � ps(!s): (6.45)

It can be shown [Lep80] that the optimal selection ofp1 is

p1(z1) /
sZ

: : :

Z
f2(z1; : : : ; zD)

p2(z2) : : : ps(zs)
dz2 : : : dzs; (6.46)

and similar formulae apply top2; : : : ; ps. Thesep1; : : : ps functions can be tabulated as 1-dimensional tables. The
jth element of theith table represents the importance of the directional region wherezi 2 [j

N
;
(j+1)

N
]:

This immediately presents a recursive importance sampling strategy. The algorithm is decomposed into phases
consisting of a number of samples. At the end of each phase weightsp1; : : : ; ps are refined, to provide a better
probability density for the subsequent phase. Assuming thatp1; : : : ; ps are initially constant, a standard Monte-
Carlo method is initiated, but in addition to accumulating to compute the integral,p1; : : : ; ps are also estimated
using equation (6.46).

Then for the following phase, the samples are selected according to the newpi functions. In order to calculate
a sample forzi, for instance, a single random value is generated in the range of 0 and the sum of all elements in the
table definingpi. Then the elements of the table is retained one by one and summed to a running variable. When
this running variable exceeds the random sample, then the searched region is found. The value in this region is
then found by uniformly selecting a single point from the region.

Chapter 7

Random walk solution of the global
illumination problem

Recall that expansion obtains the measured power in the form of an infinite Neumann series:ML =
P1
i=0MT iLe.

The terms of this infinite Neumann series have intuitive meaning as well:MT 0Le =MLe comes from the emis-
sion,MT 1Le comes from a single reflection,MT 2Le from two reflections, etc.

7.1 Why should we use Monte-Carlo expansion methods?

Expansion techniques require the evaluation of very high-dimensional — in fact, infinite dimensional — integrals.
When using classical quadrature rules for multi-dimensional integrals [PFTV92], such as for example the trape-
zoidal rule, in order to provide a result with a given accuracy, the number of sample points is in the order of
O(Ns), wheres is the dimension of the domain. This phenomenon is called thedimensional coreor dimensional
explosionand makes classical quadrature rules prohibitively expensive for higher dimensions.

However, Monte-Carlo or quasi-Monte Carlo techniques distribute the sample points simultaneously in all
dimensions, thus they can avoid dimensional explosion. For example, the probabilistic error bound of Monte-
Carlo integration isO(N�0:5), independently of the dimension of the domain.s-dimensional low discrepancy
series [Nie92] can even achieveO(logsN=N) = O(N�(1��)) convergence rates for finite variation integrands.

Furthermore, classical quadrature cannot be used for infinite dimensional integrals, thus the Neumann series
should be truncated afterD terms. This truncation introduces a bias of order�D+1 � jjLejj=(1 � �), where�
is the contraction of the light transport operator. Using a Russian roulette based technique, on the other hand,
Monte-Carlo methods are appropriate for even infinite dimensional integrals.

Thus we can conclude that the stochastic approach is indispensable for expansion methods.
In computer graphics the first Monte-Carlo random walk algorithm — calleddistributed ray-tracing — was

proposed by Cook et al. [CPC84], which spawned to a set of variations, includingpath-tracing [Kaj86], light-
tracing [DLW93], bi-directional path-tracing [LW93, VG95],Monte-Carlo radiosity [Shi91b, Neu95, PM95],
andtwo-pass methodswhich combine radiosity and ray-tracing [Shi90, ZS95, WCG87].

The problem of naive generation of walks is that the probability that a shooting path finds the eye is zero for a
pin-hole camera or very small if a non-zero aperture camera model is used, while the probability that a gathering
random path ends in a lightsource may be very little if the lightsources are small, thus the majority of the paths
do not contribute to the image at all, and their computation is simply waste of time. Note that shooting is always
superior for view-independent algorithms since they do not have to face the problem of small aperture.

Thus, on the one hand, random walk must be combined with a deterministic step that forces the walk to go
to the eye and to find a lightsource. On the other hand,importance sampling [Sob91] should be incorporated to
prefer useful paths along which significant radiance is transferred.

Steps of the walk transfer the radiance or the potential in the scene. The source and destination of the transfer
can be points in the case of continuous methods or patches in the case of finite-element methods. If the algorithm is
such that it always selects a single source for shooting or single destination for gathering, then the method is called
local method. On the other hand, if many sources and destinations are taken into consideration simultaneously in
each transfer, then the method is calledglobal methodor multi-path method [Sbe96].

53

7.2. QUASI-MONTE CARLO QUADRATURE FOR THE RENDERING EQUATION 54

7.2 Quasi-Monte Carlo quadrature for the rendering equation

Quasi-Monte Carlo walk techniques mean that instead of generating the next direction randomly, the direction is
sampled from a low-discrepancy point set. Since the low-discrepancy sequences have better asymptotic disrepancy
than that of the random sequences, quasi-Monte Carlo methods are expected to provide more accurate results.
However, the integrand of the rendering equation is discontinuous where the discontinuity is not aligned with the
coordinate axes, thus its variation is infinite. These discontinuities are usually produced by the projected object
boundaries. This property makes the Koksma-Hlawka inequality not appropriate for the error analysis and for the
prediction of the convergence rates.

7.2.1 Integrating functions of unbounded variation

In this section the convergence speed is examined for functions which are generally smooth but have general
discontinuities of finite “length”. First the domain of the integration is assumed to be 2-dimensional, then the
results will be generalized to arbitrary dimensions.

discontinuity line

domain of discontinuity

1/ N

1/ N

grid lines

one sample point in each cell

Figure 7.1: A typical integrand of the rendering equation

Suppose thatN samples have been generated to estimate the integral of a function such as in figure 7.1 using
a low-discrepancy sequence. In order to overcome the difficulty that the integrandf has infinite variation, the
function is decomposed into two functions, one is smooth~f having continuous mixed derivatives and the otherf̂

inherits the discontinuity off (figure 7.2).

f f f~ ^

= +

Figure 7.2: Decomposition off into a smooth (~f) and a discontinuous (̂f) function

Low-discrepancy sequences generate points in a cellular grid in a way that the difference of the number of
points in two cells is at most 1. If there are alreadyN number of points, the size of a cell on the finest, filled level
is approximately1=

p
N � 1=

p
N . Let us define the domain of̂f as the set of those cells that are intersected by the

discontinuity. This domain is called thedomain of discontinuity. The number of such cells is in the order of the
“digital length” of the discontinuity curve, which is the product of the maximum extentl and the resolution of the
grid

p
N . Since each cell has at least 1 (and at most 2) points, the number of points in this domain is at leastl

p
N .

The error of quadrature is as follows:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j � j
Z

z2[0;1]2

~f(z) dz� 1

N

NX
i=1

~f(zi)j+ j
Z

z2[0;1]2

f̂(z) dz� 1

N

NX
i=1

f̂(zi)j: (7.1)

Since ~f has finite variation, the first term in the error is bounded byVHK(~f) � D�(z1; z2; : : : zN).

7.2. QUASI-MONTE CARLO QUADRATURE FOR THE RENDERING EQUATION 55

Concerning the second term, the integration off̂ is estimated takingl
p
N uniformly distributed samples and

averaging the result. Since the samples and the discontinuity are not related in any way, we can suppose that this is
a normal Monte-Carlo integration [PFTV92]. The uniform property of low-discrepancy sequence guarantees that
this pseudo-random set can be assumed to have uniform distribution. If�f is the difference between the maximum
and minimum values in the domain of discontinuity, then�2 � (�f)2. In our case the number of sample points
N 0 is l

p
N and the size of the domainV is l=

p
N , thus we obtain with 0.997 confidence level:

Z
V

f̂(z) dz =
V

N 0
�
N 0X
i=1

f̂(zi)� 3 � V � �fp
N 0

=
1

N 0
�
N 0X
i=1

f̂(zi)� 3 ��f �
p
l �N�3=4: (7.2)

Taking into account that̂f is zero outside the domain of discontinuity, equality 7.1 can be expressed as:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j � VHK(~f) � D�(z1; z2; : : : zN) + 3 ��f �
p
l �N�3=4: (7.3)

For largeN values the second term will be dominant, which results inO(N�3=4) error bound. This is poorer
than theO(log2N=N) bound suggested by the Koksma-Hlawka inequality assuming, for example, the application
of the Halton sequence. Note that the point from where the second term dominates the first one depends on
“intensity” �f and size of the discontinuity

p
l. The same analysis can be carried out in higher dimensions as

well. In s dimensions a discontinuity of sizel would intersectV = l �N�1=s volume of cells which would contain
N 0 = l �N (s�1)=s sample points. Thus the general error bound is:

j
Z

z2[0;1]s

f(z) dz� 1

N

NX
i=1

f(zi)j � VHK(~f) � D�(z1; z2; : : : zN) + 3 ��f �
p
l �N�

(s+1)

2s : (7.4)

Thus, for quasi-Monte Carlo integration of discontinuous functions, the order of the error bound will be in
between theO(N�(1��)) bound of finite variation functions and theO(N�0:5) bound of Monte-Carlo quadrature.
The higher the dimension of the integral, the closer the Monte-Carlo and quasi-Monte Carlo techniques get in
convergence speed. Thus it is still worth using quasi-Monte Carlo quadrature if the size of the discontinuityl is
not very large, since in this case the error could be significantly less then for Monte-Carlo quadrature.

Numerical evidence using simple functions

In order to demonstrate the previous results, the convergences of a 2-dimensional and a 3-dimensional functions
are examined, that are simple enough to analytically compute their integrals.

The 2-dimensional function is:

f2(x; y) =

�
(x+ y) � a+ 1� 2 � a if x+ y > 1;
(x+ y) � a otherwise;

(7.5)

wherea is a free parameter in the range of[0; 0:5]. Note that by settinga appropriately, the intensity of the
discontinuity can be controlled without altering either the value of the integral or the variation of the continuous
part. Ifa = 0:5, then the function has finite variation, otherwise it has infinite variation.

The results of the simulation are shown in figure 7.3. This figure shows the maximum error after a given
number of samples.

The 3-dimensional function is:

f3(x; y; z) =

�
(x + y + z) � a+ 0:6� 1:8 � a if x+ y + z > 1;
(x + y + z) � a otherwise;

(7.6)

wherea is a free parameter in the range of[0; 1=3]. If a = 1=3, thenf3 has finite variation, otherwise it has not.
The error of integration off3 is summarized in figure 7.3.

Numerical evidence for the rendering equation

The efficiency of Monte-Carlo and quasi-Monte Carlo quadratures have been tested for the presented spherical
scene (section 4.4.2) assuming a single pixel camera. The error has been measured separately for the different
bounces.

Looking at the error measurements of figure 7.4, we can see that even for integrands of infinite variation, quasi-
Monte Carlo methods are still better but they lose their advantage when computing higher bounces as predicted by

7.2. QUASI-MONTE CARLO QUADRATURE FOR THE RENDERING EQUATION 56

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

Errors of integrating function f2

MC: a=0 (infinite variation)
QMC: a=0 (infinite variation)

QMC: a=0.2 (infinite variation)
QMC: a=0.5 (finite variation)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

Errors of integrating function f3

MC: a=1/3 (finite variation)
QMC: a=0 (infinite variation)

QMC: a=0.1 (infinite variation)
QMC: a=1/3 (finite variation)

Figure 7.3: Error of integratingf2 (left) andf3 (right)

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

samples

Error of single-ray based random walk in the reference sphere (D=1, light=25%)

Halton
random

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

samples

Error of single-ray based random walk in the reference sphere (D=10, light=25%)

Halton
random

Figure 7.4: Error measurements for 1 and 10 bounces in the spherical reference scene (section 4.4.2) where the BRDF is
diffuse, the albedo is 0.5, and 25 percents of the area is a diffuse lightsource

7.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 57

the theoretical results. The other important problem in higher dimensions is that although a low-discrepancy series
has almost linearly decreasing discrepancy in the asymptotic sense, this discrepancy can still be high for not very
many points (in the solution of the rendering equation we rarely use more than 1000 samples for the estimation
of a single pixel). In the case of the Halton series, for example, thebaseof the series strongly affects the initial
behavior of the discrepancy. These base numbers are different prime numbers for different dimensions, thus for
high-dimensional integrals the base numbers can be quite high, which results in degraded performance.

7.3 Importance sampling for the rendering equation

When solving the rendering equation, usually directional integrals (or surface integrals in other formulation) should
be evaluated. These directional integrals have the following form:

T Lin(~x; !) =
Z

Lin(~x; !0) � fr(!0; ~x; !) � cos �0 d!0: (7.7)

To allow the application of random or low-discrepancy point sets, the integration domain should be transformed to
the unit cube or square. To establish such a mapping, first direction!0 is expressed by spherical coordinates�; �0,
which converts the directional integral to the following form:

Z

Lin(~x; !0) � fr(!0; ~x; !) � cos �0 d!0 =
2�Z

�=0

�Z
�0=0

fr(�; �
0) � cos �0 � sin �0 � Lin d�0d� (7.8)

sinced! = sin �0d�0d�. Let us denotefr(�; �0) �cos �0 �sin �0 byw(�; �0), which is the transfer probability density.
Now we find a mappingT (�; �0) = z that emphasizes those directions where the integrand is large and projects
the domain of the spherical coordinates onto the unit square:

2�Z
�=0

�Z
�0=0

w(�; �0)�Lin(�; �0) d�0d� =

Z
[0;1]2

w(T�1(z))�Lin(T�1(z))�

����dT�1(z)dz

���� dz =
Z

[0;1]2

w(T�1(z))

t(z)
�L

in(T�1(z)) dz;

(7.9)
where ����dT�1(z)dz

���� = 1

t(z)

is the Jacobi determinant of the inverse mapping. If the Jacobi determinant is large, then a small portion of
the unit square is mapped onto a large region. Thus sample points that are uniformly distributed in the unit
square will be quite rare in these regions. Alternatively, where the Jacobi determinant is small, the sample points
will be dense. Considering this, the meaning oft(z) is the density of sample points in the neighborhood of
! = (�; �0) = T�1(z). This has an illustrative content for the random case. Ifz is uniformly distributed random
variable, then the probability density of! = T�1(z) will be t(z).

The solution of the rendering equation for a given point(~x; !) requires the evaluation of the following multi-
dimensional integral (equation (4.5)):

L(~x; !) = Le + T Le + T 2Le + : : : =

Z
[0;1]2

: : :

Z
[0;1]2

Le +
w1

t1
� Le + w1

t1
� w2

t2
� Le + : : : dz1dz2 : : : (7.10)

This can be estimated by Monte-Carlo or quasi-Monte Carlo quadratures which evaluate the integrand in sample
points and average the results. A crucial design decision of such an algorithm is the selection of mappingsTi to
have good importance sampling. Using probabilistic approach, it means that the probability of selecting a walk
is proportional to its contribution. Following the directions concluded from the Koksma-Hlawka inequality, the
mappings should make the integrand flat — that is of low variation, or constant in the ideal case.

Looking at formula (7.10), which is the single multi-dimensional solution of the rendering equation, this de-
cision seems to be hard to made, since there are too many free parameters to control simultaneously. Fortunately,
the solution can also be presented in the following recursive form:

L(~x; !) = Le +

Z
[0;1]2

w1

t1
� [Le +

Z
[0;1]2

w2

t2
� [Le + : : :] : : :] dz1dz2 : : : (7.11)

7.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 58

If we could ensure that each of the integrands of the formZ
[0;1]2

wi

ti
� [Le +

Z
[0;1]2

: : :] dzi

is constant (at least approximately), then the integrand of the single multi-dimensional integral will also be constant
[SKCP99]. An optimal importance sampling strategy thus requires densityti to be proportional to the product of
the incoming illuminationLe +

R
: : : and the cosine weighted BRDFwi. Unfortunately, during random walks the

incoming non-direct illumination is not known (the random walk is just being done to estimate it).
Thus we have to use approximations for which we have three alternatives. Firstly, information about the

illumination in the space can be gathered in a preprocessing phase, then this information can be used to obtain
probability densities for importance sampling. This is called theglobal importance sampling. These methods can
be classified according to the data structure built in the preprocessing phase. Since the ray-space is 5-dimensional,
it is straightforward to apply a5D adaptive tree[LW96] that is similar to the well-known octree to store radiance
information. Jensen proposed the application of thephoton-map as the basis of importance sampling [Jen95].
We assigned the power computed in the preprocessing phase tolinks established between two interacting patches
[SKCP98].

The second alternative is using the information gained during previous walks to approximate the illumination.
This strategy is calledadaptive importance sampling. Adaptive importance sampling methods neither require
the non-uniform probability densities to be constructed in advance, nor simplify them to take into account only
local properties, but converge to a desired probability density using the knowledge of previous samples. Three
techniques are particularly important, which have also been used in rendering:genetic algorithms[LB94] the
Metropolis sampling [MRR+53, VG97] and theVEGAS method [Lep80, SK98a]. The first use of Metropolis
sampling in rendering aimed at speeding up bi-directional path tracing [VG97].

In the third alternative, the problem is simplified and the indirect illumination is not considered in importance
sampling. When the directions are generated, we use only transfer probability densitywi andLe representing the
direct illumination of the actual point. This is called thelocal importance sampling.

It turns out that we have to encounter severe problems when we have to find a mapping which has a density that
is proportional to the product of the effects of the transfer probability density and the direct lighting. Consequently,
local importance sampling strategies usually use only eitherwi or Le to identify important directions. The first
alternative is called theBRDF sampling, while the second is called thelightsource sampling.

7.3.1 BRDF sampling

BRDF based importance sampling means that at stepi the densityti is proportional to the transfer probability
densitywi, that is

ti / wi = fr(!in; ~x; !out) � cos � sin �: (7.12)

In gathering algorithms!out is known,� is the angle between!in and the surface normal, and!in should be
determined. In shooting algorithms, on the other hand,!in is known,� is the angle between!out and the surface
normal, and!out should be determined.

Due to the fact thatti represents density (probability density for Monte-Carlo methods), its integral is 1. Thus
for gathering walks and for non-transparent materials, the ratio of proportionality in equation (7.12) isZ

H

w d!in =

Z

H

fr(!in; ~x; !out) � cos �in d!in = a(~x; !out)

wherea(~x; !out) is thealbedoof the surface at point~x in the outgoing direction. Similarly, the proportionality
ratio for shooting walks isZ

H

w d!out =

Z

H

fr(!in; ~x; !out) � cos �out d!out = a(~x; !in):

Thus the weightsw� = wi=ti are the albedos at the visited points.

BRDF sampling for diffuse materials

Diffuse materials have constant BRDF, that is

ti(�; �) / wi = fr � cos � sin �:

7.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 59

The proportionality ratio is found to maketi to integrate to 1:

ti(�; �) =
wiR

H

wi d!
=

fr � cos � sin �
2�R
�=0

�=2R
�=0

fr � cos � sin � d�d�
=

cos � sin �

�
:

Assuming that the random variables used to produce the two coordinate samples are independent, this density
is obtained in a product form:

ti(�; �) =
1

2�
� [2 cos � sin �] ; (7.13)

where1=(2�) is the probability density of� and2 cos � sin � = sin 2� is the probability density of�.
The corresponding probability distribution functions are:

P (�) =

�Z
0

1

2�
d� =

�

2�
; P (�) =

�Z
0

sin 2� d� = sin2 �:

Thus the required� and� random variables can be found by the following transformations ofu; v variables that
are uniformly distributed in[0; 1] (section 6.3.1):

� = 2� � u; � = arcsin
p
v:

The transformed weight after importance sampling is the albedo

w�i =
wi

ti
= fr � � = a: (7.14)

BRDF sampling for specular materials

Specular materials can be characterized by the reciprocal version of the Phong’s BRDF model, that is

fr(!in; ~x; !out) = ks � cosn � �(�=2� �);

where is the angle between!out and the mirror direction of!in onto the surface normal, which will be referred
to as!r, and�(�=2� �) indicates that the outgoing direction cannot point into the object, i.e. the angle� between
the surface normal and the outgoing direction should be less than 90 degrees.

surface

R

V

N

ψ

φ

reference direction
on the plane perpendicular to

plane perpendicular to R

R

Figure 7.5: Parameterization for the calculation of the albedo

In order to appropriately parameterize the directional sphere, now the north pole is selected by the reflection
direction!r (figure 7.5). Let us identify a direction by an angle from!r, that is by , and by another angle�
between its projection onto a plane perpendicular to!r and an arbitrary vector on this plane.

BRDF sampling requires a density which satisfies the following criterion:

ti(�;) / wi = ks � cosn � cos �(; �) � �(�=2� �(; �)) � sin :

7.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 60

Unfortunately, thecos � � �(�=2� �) factor forbids the symbolic integration of this formula, thus we will use a
density that is proportional only to~wi = ks �cosn sin . The proportionality ratio is found to maketi to integrate
to 1:

ti(�;) =
ks � cosn sin

2�R
�=0

�=2R
 =0

ks � cosn sin d d�

=
n+ 1

2�
cosn sin :

Assuming that the random variables used for producing the two coordinate samples are independent, this
density is obtained in a product form:

ti(�;) =
1

2�
� [(n+ 1) cosn sin]; (7.15)

where1=(2�) is the probability density of� and(n+ 1) cosn sin is the probability density of .
The corresponding probability distribution functions are:

P (�) =
�

2�
; P () =

 Z
0

(n+ 1) cosn	sin	 d	 = 1� cosn+1 :

Thus the required� and� random variables can be found by the following transformations ofu; v variables that
are uniformly distributed in[0; 1]:

� = 2� � u; = arccos(1� v)1=(n+1):

The transformed weight after importance sampling is

w�i =
wi

ti
=

2�ks

n+ 1
� cos �(; �) � �(�=2� �(; �)): (7.16)

Different other specular BRDF models are presented and their BRDF sampling is discussed in [War92, NNSK98b,
NNSK98a, NNSK99a].

7.3.2 Lightsource sampling

Lightsource sampling is used indirect lightsource calculations [SWZ96] and as a complementary sampling
strategy to BRDF sampling in random walks.

Since in this case, the samples are selected from a lightsource instead of the directional sphere, the surface
integral form of the transport operator is needed:

(T Le)(~x; !) =

Z

L
e(h(~x;�!0); !0)�fr(!

0
; ~x; !)�cos �0 d!0 =

Z
Se

L
e(~y; !~y!~x)�fr(!~y!~x; ~x; !)�

cos �0~x � cos �~y
j~x� ~yj2

�v(~y; ~x) d~y;

(7.17)
wherev(~y; ~x) is 1 if points~x and~y are not occluded from each other and 0 otherwise, andSe is the surface of

non-zero emission. To obtain a Monte-Carlo estimate for this integral,N points~y1; : : : ~yN are sampled uniformly
on the lightsource and the following formula is used:

(T Le)(~x; !) � jSej
N

�
NX
i=1

Le(~yi; !~yi!~x) � v(~yi; ~x) � fr(!~yi!~x; ~x; !) �
cos �0i � cos �~yi
j~x� ~yij2 : (7.18)

If the scene has a single homogeneous lightsource which is relatively small and is far from the considered point,
then the integrand will be approximately constant on the lightsource surface, thus this estimator has low variance.

7.3.3 Sampling the lightsources in gathering random walks

Since lightsource sampling generates samples only on the direct lightsources, it completely ignores indirect illu-
mination. Thus it cannot be used alone in global illumination algorithms, but only as a complementary part of, for
example, BRDF sampling.

The simplest way to combine the two strategies is to generate all but the last directions of the gathering walk
by sampling the BRDF and to compute the last direction by sampling the lightsource. Note that when stopping
the walk, the indirect illumination is assumed to be zero, thus following the directions of the lightsources is a
reasonable approach.

7.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 61

Another combination strategy is to trace one or more shadow rays from each visited point of the walk towards
the lightsources, not only from the last of them.

Formally, this approach can be presented as a restructuring of the Neumann series

L = Le + T Le + T 2Le + T 3Le : : : = Le + (T Le) + T (T Le) + T 2(T Le) : : : (7.19)

and using lightsource sampling for theLe� = (T Le) integral while sampling the BRDFs when evaluating the
T iLe� integrals. Practically it means that having hit a surface, one or more shadow rays are traced towards the
lightsources and the reflection of the illumination of this point is estimated. This reflection is used as if it were the
emission of the surface. This method is particularly efficient if the scene consists of point lightsources. Tracing a
single ray to each point lightsource, the illumination due to the point lightsources can be determined exactly (with
zero variance).

If the scene contains small and large lightsources, then lightsource sampling can be used only for the smaller
lightsources. Formally, the unknown radianceL is decomposed into two terms:

L = Lep + Lnp (7.20)

whereLep is the emission of the small, point-like lightsources,Lnp is the emission of the large area lightsources
and the reflected radiance. Substituting this into the rendering equation we have:

Lep + Lnp = Le + T (Lep + Lnp): (7.21)

ExpressingLnp we obtain:
Lnp = (Le � Lep + T Lep) + T Lnp: (7.22)

Introducing the new lightsource term
Le� = Le � Lep + T Lep (7.23)

which just replaces the point lightsources (Lep) by their effect (T Lep), the equation forLnp is similar to the
original rendering equation:

Lnp = Le� + T Lnp: (7.24)

When this is solved, small lightsources are replaced by their single reflection, then the solution is added to the
radiance of the small lightsources (equation 7.20).

7.3.4 Importance sampling in colored scenes

So far, we have assumed that the weights containing the BRDFs and the emissions are scalars thus the densities
can be made proportional to them. This is only true if the rendering equation is solved on a single wavelength.

However, if color images are needed, the rendering equation should be solved on several (at least 3) different
wavelengths. If the different wavelengths are handled completely independently, then the proposed importance
sampling strategy can be used without any modifications. However, this approach carries out geometric calcu-
lations, such as tracing rays, independently and redundantly for different wavelengths, thus it cannot be recom-
mended.

A better approach is using rays that transport light on all wavelengths simultaneously. In this case the emission
and the BRDF can be represented by vectors, thus to allow importance sampling, we need a scalarimportance
function I that is large when the elements in the vector are large and small when the elements are small. The
importance is a functional of the spectrum. A straightforward way is using theluminanceof the spectrum since it
emphasizes those wavelengths to which the eye is more sensitive.

7.3.5 Multiple importance sampling

So far, we mentioned two basic importance sampling strategies, the BRDF sampling and the lightsource sampling,
which are local in the sense that they focus on a single reflection. It is easy to imagine that if the sampling considers
simultaneously many reflections, then the number of possible strategies increases dramatically.

Obviously, we desire to use the best sampling strategy. Unfortunately the performance of a sampling strategy
depends on the properties of the scene, which is usually not known a-priori, thus the best strategy cannot be
selected. Instead of selecting the best, Veach and Guibas [VG95] proposed to combine several strategies in a way
that the strengths of the individual sampling methods are preserved.

Suppose that we can usen different sampling techniques for generating random paths, where the distribution
of the samples is constructed from severalp1; :::; pn importance sampling distributions. The number of samples

7.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 62

taken frompi is denoted byMi, and the total number of samples byM =
P
iMi. TheMi values are fixed in

advance before any samples are taken. The “average probability density” of selecting the samplez is then

p̂(z) =

nX
i=1

Mi

M
� pi(z): (7.25)

Thus the integral quadrature using these samples is

Z
[0;1]s

f(z) dz =

Z
[0;1]s

f(z)

p̂(z)
� p̂(z) dz � 1

M

nX
i=1

MiX
j=1

f(zi;j)

p̂(zi;j)
=

nX
i=1

1

Mi

MiX
j=1

wi(zi;j) � f(zi;j)
pi(zi;j)

(7.26)

wherezi;j is thejth sample taken from theith distribution, and the weights are

wi(z) =
Mi � pi(z)Pn
k=1Mk � pk(z)

: (7.27)

Let us interpret this result when all methods use the same number of samples.pi(z) is the probability that a sample
z is generated by methodi. The samples are combined with this weight which guarantees that no sample will be
accounted for twices. In order to have an unbiased estimation,

P
i wi(z) = 1 should hold for allz.

7.4 Handling infinite-dimensional integrals

Expansion, or walk methods require the evaluation of a series of integrals where the dimension goes to infinity. One
way of attacking the problem is truncating the Neumann series, but this introduces some bias, which can be quite
high if the scene is highly reflective. Fortunately, there is another approach that solves the infinite-dimensional
integration problem through randomization. In the context of Monte-Carlo integration, this approach is called
theRussian roulette[AK90], but here a somewhat more general treatment is also given that can also justify this
approach for quasi-Monte Carlo quadratures.

7.4.1 Russian roulette

Note that the Neumann series contains a sequence of the following integrals:

L =

Z
[0;1]2

w

t
� [Le + : : :] dz =

Z
[0;1]2

w�(z) � Lin(z) dz = E
�
w� � Lin� :

A Monte-Carlo quadrature would generate random samples in the domain and estimate the integral as an average
of the integrand at these samples. Let us further randomize this computation and before each sample let us decide
randomly with probabilityswhether we really evaluate the integrand at the sample point or simply assume that the
integrand is zero without any calculations. In order to compensate the not computed terms, when the integrand is
really computed, it is divided by probabilitys. This randomization introduces a new random variableLref which is
equal tow� � Lin=s if the integrand is evaluated and zero otherwise. The Monte-Carlo quadrature, which provides
the estimate as an expected value will still be correct:

E[Lref] = s � E �Lref j sample is used
�
+ (1� s) �E �Lref j sample is not used

�
=

s � E
�
w� � Lin

s

�
+ (1� s) � 0 = E

�
w� � Lin� = L: (7.28)

The variance of the new estimator, on the other hand, is increased:

D2[Lref] = E[(Lref)2]�E2[Lref] = s �E
"�

Lref

s

�2
#
+ (1� s) � 0�E2[Lref] =

�
1

s
� 1

�
� E[(w� � Lin)2] +D2[w� � Lin]: (7.29)

7.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 63

7.4.2 Russian roulette in quasi-Monte Carlo quadrature

In the context of quasi-Monte Carlo integration Russian roulette should be explained differently because there is
no “randomization” in deterministic techniques. This discussion is also used to generalize the basic concept and to
show that termination decision can be made using the complete previous path not only the actual state.

Instead of randomization, we can suppose that the domain of integration is extended by additional variables on
which a contribution indicator function is defined that will determine whether or not a higher order term is included
in the quadrature (interestingly, in order to get rid of high-dimensional integrals, we increase the dimension of the
integration). In order to compensate the missing terms in the integral quadrature, the really computed terms are
multiplied by an appropriate factor. If the used contribution indicator is such that the domain where it is non-
zero shrinks quickly, then the possibility of requiring very high dimensional integrals is rather low, which saves
computation time. However, the integral quadrature will still be correct asymptotically.

A term of the Neumann series has generally the following form

L =

Z
: : :

Z
W (z1; : : : ; zn) � Le(z1; : : : zn) dz1 : : : dzn; (7.30)

whereW (z1; : : : ; zn) is the product of the weightsw1(z1) � : : : � wn(zn) including the cosine functions of the
angles and the BRDFs, or the product of the ratios of weights and densitiesw�1 � : : : � w�n = w1=t1 � : : : � wn=tn,
depending whether or not BRDF sampling has already been applied.

Let us extend this by acontribution indicator function C(z1; r1; : : : zn; rn) that is constant1 if a sample
z1; : : : zn should be taken into account in the integral quadrature and 0 if it should not and its contribution is
assumed to be zero. Usually this function is in separable form

C(z1; r1; : : : zn; rn) =

nY
i=1

ci(zi; ri);

whereci(zi; ri) = 1 means that the walk must be continued at stepi andci(zi; ri) = 0 forces the walk to stop.
Functionci(zi; ri) can be defined, for instance, by a new weight function�(zi) in the following way:

ci(zi; ri) =

(
1 if �(zi) > ri,

0 otherwise.

The “possibility” of really computing a walkz1; : : : zn is

P (z1; : : : zn) =

1Z
r1=0

: : :

1Z
rn=0

C(z1; r1; : : : zn; rn) dr1 : : : drn:

We can define the following function of variablesr1; : : : ; rn,

Lr(r1; : : : ; rn) =

Z
: : :

Z
C(z1; r1; : : : zn; rn) � ~W � ~Le dz1 : : : dzn; (7.31)

where ~W and~Le are appropriate modifications ofW andLe, which can compensate the missing terms.
The integral of this function is

1Z
r1=0

: : :

1Z
rn=0

In(r1; : : : ; rn) dr1 : : : drn =

1Z
r1=0

: : :

1Z
rn=0

Z
: : :

Z
C(z1; r1; : : : zn; rn) � ~W � ~Le dz1 : : : dzn dr1 : : : drn =

Z
: : :

Z
P (z1; : : : ; zn) � ~W � ~Le dz1 : : : dzn: (7.32)

A sufficient requirement for this integral to be equal to the original integralL is

P (z1; : : : ; zn) � ~W � ~Le =W � Le: (7.33)

There are many possible selections of the contribution indicator and the~W and ~Le functions, that can satisfy
this requirement, thus there are many different unbiased estimators. A widely used selection is letting

~W = 1; ~Le = Le and �i(zi) = wi(zi):

which corresponds to continuing the walk after stepi only if w(zi) > ri. If importance sampling has already been
applied, then the walk is continued ifw� > ri. Sincew� approximates the albedo, this strategy continues the walk
with the probability of the albedo.

7.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 64

BRDF sampling for materials of multiple reflection type

Practical reflection models incorporate different simple BRDFs. For example, a lot of materials can be well mod-
eled by a sum of diffuse and specular reflections. So far, methods have been presented that are good for either the
diffuse or the specular reflection, but not for the sum of them.

Fortunately, Russian-roulette can also be extended to handle these cases. If the reflection model is a sum of
different BRDFs, then a random selection can be made from the different components. Suppose that the transfer
probability density is available in the form of a sum of the weights corresponding to elementary BRDFs:

w = w1 + w2 + : : :+ wn:

Thus the radiance of a single reflection is:

L =

Z

w � Lin d! =

Z

w1 � Lin d! + : : :+

Z

wn � Lin d!:

Suppose that mappingsti can be found for each integral, that also mimics important directions:

L =

Z
[0;1]2

w1

t1
� Lin dz+ : : :+

Z
[0;1]2

wn

tn
� Lin dz = E

�
w�1 � Lin

�
+ : : :+E

�
w�n � Lin

�
:

Let us select theith BRDF with probabilitypi and weight the resulting radiance by1=pi or stop the walk with
probabilityp0 = 1� p1 � : : :� pn. Thus the new random variablêL isw�i �Lin=pi if the ith model is used, and 0
if no model is selected. The expected value ofL̂ will still be correct:

E[L̂] = p1�E
�
w�1 � Lin
p1

�
+: : :+pn�E

�
w�n � Lin
pn

�
+(1�p1�: : :�pn)�0 = E

�
(w�1 + : : :+ w�n)L

in
�
= L: (7.34)

This is a Monte-Carlo estimation of the sum. According to importance sampling, the variance will be small
if w�i L

in=pi can be made nearly constant. Since we usually do not have a-priori information aboutLin, w�i =pi
can be made a constant number. Thus to obtain a low-variance estimator, an elementary BRDF should be selected
with the probability of its transformed weightw�i . Note that the weightw�i may either be equal or approximate the
albedo, thus a low-variance estimator selects an elementary BRDF with the probability of its albedo.

In order to generate an “out” direction from the “in” direction and the surface normal, the following general
BRDF sampling algorithm can be used:

BRDFSampling(in, normal, out)
prob = SelectBRDFModel(normal, in)
if prob = 0then return 0
prob *= Reflection(in, normal, out)
if prob = 0then return 0
return prob

end

In this program “SelectBRDFModel” randomly selects an elementary BRDF from those that compose the given
BRDF with a probability which approximates the albedo and also returns the selection probability. If it returns
0, then it has decided that the walk has to be stopped because of Russian-roulette. “Reflection” generates a new
direction “out” with a probability density that is approximately proportional to the transfer probability density of
the selected reflection model and returns the selection probability.

7.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 65

Figure 7.6: Metallic spheres generated by path tracing with 50 samples per pixel (top: importance sampling according to the
cosine angle only (51 min); middle: Russian roulette based importance sampling (46 min); bottom: normal importance

sampling (54 min)

Chapter 8

Review of random walk algorithms

In this chapter a number of practical random walk algorithms are reviewed and analyzed. For completeness, non-
random and non global illumination methods, such as ray-casting and recursive ray-tracing are also included. The
primary classification of random walk algorithms is based on the direction of generated rays. If the walks are
started at the eye and go opposite to the light, then the algorithm is calledgathering. On the other hand, if the
walks originate at the lightsources and go in the direction of the light, then the algorithm is calledshooting.

8.1 Gathering-type random walk algorithms

Gathering type random walks correspond to the Monte-Carlo solution of the rendering equations. They start at
the eye position and gather the emission of the visited points.

Eye

window

Figure 8.1: Gathering-type random walks

The general structure of gathering algorithms is as follows:

for each pixelp do
color =0
for i = 1 to N do

ray = sample ray randomly from the eye through pixelp

samplecolor =c � Trace(ray)
color += samplecolor=N

endfor
write (p, color)

endfor

In different gathering algorithms the “Trace” function is implemented differently. This function returns the
radiance carried by this ray to the eye. The radiance is then multiplied by valuec = (c=Sp) � Sp wherec=Sp
scaling is required by the measuring function (equation (2.39)) andSp is the size of the integration domain.

66

8.1. GATHERING-TYPE RANDOM WALK ALGORITHMS 67

8.1.1 Ray-casting

Ray-casting is a local-illumination algorithm of typeLDE, which replaces the unknown radiance inside the
integral of the rendering equation by an approximation of the emission function. In its trace function the following
simplification is used to determine the radiance of a point:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0; (8.1)

whereLlightsource is known a-priori and may be a simplification of the emission functionLe.

Eye

window

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Figure 8.2: Ray-casting

The implementation of the “Trace” function of ray-casting is:

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color =Le(~x, -ray.direction) + DirectLightsource(~x, -ray.direction)
return color

end

In this algorithmLsky is the radiance of background illumination (e.g. sky), “FirstIntersect” is responsible for
finding that object which is first intersected by the ray and also the intersection point.

“DirectLightsource”, on the other hand, computes an estimate of the single reflection of the light of the light-
sources, which happens at point~x into the given direction. For example, when the scene containsl point light-
sources at locations~y1; : : : ~yl with powers�1; : : : ;�l, respectively, and sky-light of radianceLsky, then their
reflection at point~x is:

Lref(~x; !) = Lsky � a(~x; !) +
lX
i=1

�l

4�j~yi � ~xj2 � v(~yi; ~x) � fr(!~yi!~x; ~x; !) � cos �
0
i; (8.2)

where�0i is the angle between!~yi!~x and the surface normal, andv(~yi; ~x) indicates the mutual visibility of two
points, determined by theshadow rays. In order to handle an area lightsource of emissionLe(~y; !), Monte-Carlo
integration can be used for equation (7.17), which selectsN uniformly distributed~yi samples on the lightsource
area of sizeA and applies the following estimate:

Lref(~x; !) � A

N
�
NX
i=1

Le(~yi; !~yi!~x) � v(~yi; ~x) � fr(!~yi!~x; ~x; !) �
cos �0i � cos �~yi
j~x� ~yij2

: (8.3)

8.1. GATHERING-TYPE RANDOM WALK ALGORITHMS 68

8.1.2 Visibility ray-tracing

Visibility ray-tracing is a recursive ray-tracing like algorithm which can follow multiple light bounces only for
ideal reflection and refraction (it is ofL[D]S�E] type).

Eye

window

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Figure 8.3: Visibility ray-tracing

Formally, it simplifies the rendering equation to the following form:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0+

kr(!r; ~x; !) � L(h(~x;�!r); !r) + kt(!t; ~x; !) � L(h(~x;�!t); !t); (8.4)

where!r and!t are the ideal reflection and refraction directions, andkr andkt are the reflection and refraction
coefficients.

The implementation of the “Trace” function of the visibility ray-tracing is:

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color =Le(~x, -ray.direction) + DirectLightsource(~x, -ray.direction)
if kr > 0 then color +=kr� Trace(reflected ray)
if kt > 0 then color +=kt� Trace(refracted ray)
return color

end

This subroutine calls itself recursively to find the radiance of the illumination at the reflection and refraction
directions. In order to avoid infinite recursion, the algorithm is usually extended to limit the maximum level of
recursion.

8.1. GATHERING-TYPE RANDOM WALK ALGORITHMS 69

8.1.3 Distributed ray-tracing

Distributed ray-tracing suggested by Cook [CPC84] is a global illumination algorithm, which can model all the
possible paths.

Eye

window

Figure 8.4: Distributed ray-tracing

In this method the ray tracing is not terminated when reaching a surface having neither ideal reflection nor
ideal refraction. After a ray has hit a diffuse surface, child rays are generated randomly according to the BRDF
characterizing the surface. For the appropriate estimation of the general interreflection, child rays have to be traced
and the average of their contributions have to be computed. This approach is based on the recursive formulation of
the integrals in the Neumann series (equation (4.10)).

The implementation of the “Trace” function of distributed ray-tracing is:

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color =Le(~x, -ray.direction) + DirectLightsource(~x, -ray.direction)
for sample = 1to N do

prob = BRDFSampling(-ray.direction, normal, newray)
if prob> 0 then color += Trace(newray)� w(newray.direction, normal, -ray.direction) / prob /N

endfor
return color

end

In this program “BRDFSampling” — as defined in section 7.4.2 — finds a new ray to follow, which is then
traced recursively. If “BRDFSampling” returns with 0, then the color is set to 0 without recursive calls.

8.1. GATHERING-TYPE RANDOM WALK ALGORITHMS 70

8.1.4 Path-tracing

Another Monte-Carlo approach proposed by Kajiya ispath-tracing [Kaj86], which is based on the multi-dimensional
integral formulation of the terms of the Neumann series (equation (4.7)).

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Eye

window

Eye

window

Figure 8.5: Path tracing without (left) and with (right) direct lightsource computation

This method creates a path history for a single particle interacting with the environment until absorption using
BRDF sampling and Russian roulette. Rather than spawning new rays at each intersection, it chooses a random
direction according to a densityti which is approximately proportional towi. The walk is continued with a
probabilityai = wi=ti which is equal to the approximation of the albedo (Russian roulette). The measured value
of a single path is

P = c � (Le1 + Le2 �
w1

t1 � a1
+ Le3 �

w2

t2 � a2
� w1

t1 � a1
+ : : :)

whereLei is the emission of the point visited at stepi of the path andwi is the transfer density of this point, andc
is the scaling factor of the measurement device. Note that if ideal BRDF sampling is used, thenwi is proportional
to ti and bothwi=ti andai are equal to the albedo, which results in the following estimate:

P = c � (Le1 + Le2 + Le3 + : : :):

This estimate has very high variation if the lightsources are small. This problem can be solved if lightsource
sampling is combined with the gathering walk, which means that at each visited point the effects of the lightsources
are estimated.

The implementation of the “Trace” function of path-tracing is:

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color= Le(~x, -ray.direction)+ DirectLightsource(~x, -ray.direction)
prob = BRDFSampling(-ray.direction, normal, newray)
if prob = 0then return color
color += Trace(newray)� w(newray.direction, normal, -ray.direction) / prob
return color

end

In this program “BRDFSampling” finds a new direction or if it returns 0, then it has decided that the walk has to
be stopped because of Russian-roulette. Note that this algorithm generates all but the last directions of the path by
BRDF sampling and the last is obtained by lightsource sampling. Thus if the surface at the light reflection is shiny
(close to ideal mirror or ideal refractor), then the quality of importance sampling can be quite bad. Since almost
ideal surfaces close to the lightsources are responsible forcaustics, path tracing — as other gathering algorithms
— is poor in rendering caustics effects.

8.2. SHOOTING-TYPE WALKS METHODS 71

8.2 Shooting-type walks methods

Shootingwalks are based on the Monte-Carlo solution of the potential equation. They start at the eye, go through
the scene and try to find the eye.

Eye

window

Figure 8.6: Shooting-type walks

The general structure of shooting algorithms is as follows:

Clear Image
for i = 1 to N do

ray = Sample randomly from a lightsource with selection probabilitype

power =Le � cos �=pe=N
Shoot(ray, power)

endfor

In different shooting algorithms the “Shoot” function is implemented differently. This function is responsible
for determining the power carried to the eye by the complete path and also for the identification of the pixel through
which the path arrives at the eye.

8.2. SHOOTING-TYPE WALKS METHODS 72

8.2.1 Photon tracing

Photon tracing (forward ray-tracing) is the inverse of visibility ray-tracing and uses similar simplifying assump-
tions.

Eye

window

particle path
contribution path
occluded contribution path

Figure 8.7: Photon tracing

It also stops tracing when hitting a surface that does not have coherent reflection or refraction. In photon tracing
the rays are emitted from the lightsources, and at each hit it is examined whether the surface has ideal reflection,
refraction and incoherent reflection or refraction. In the directions of ideal reflection or refraction, the tracing is
continued by starting new child rays.

The implementation of its Shoot function is:

Shoot(ray, power)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return
if ~x is visible from pixelp then

color[p] += power�w(ray.direction,~x, eye direction) � g(~x)
endif
if kr > 0 then Shoot(reflected ray,kr� power)
if kt > 0 then Shoot(refracted ray,kt� power)
return

end

The “eye direction” is a vector pointing from~x to the eye position. The algorithm is capable of handling
LS�DE paths.

8.2. SHOOTING-TYPE WALKS METHODS 73

8.2.2 Light-tracing

In light-tracing [DLW93] photons perform random walk through the scene starting at the lightsources. Whenever
a surface is hit, a ray is traced from the intersection point to the eye and the contribution is added to the selected
pixel (if any).

Eye

window

particle path
contribution path
occluded contribution path

Figure 8.8: Light tracing

Light tracing is the direct implementation of the Monte-Carlo quadrature of the multi-dimensional formula-
tion of the potential equation. When the next direction is determined, BRDF based importance sampling can be
applied and combined with Russian-roulette. It chooses a random direction according to a densityti which is
approximately proportional towi (importance sampling). The walk is continued with a probabilityai equal to the
approximation of the albedo (Russian roulette). The measured value of a single step of the path is

P =
Le cos �

N � pe � w1

t1 � a1
� w2

t2 � a2
� : : : � w(eye) � g;

if this point is visible at the pixel and zero otherwise. HereLe is the emission of the starting point,� is the
angle between the surface normal of the lightsource and the first direction,pe is the probability of selecting this
lightsource point and starting direction,w(eye) is the cosine weighted BRDF at the given point from the last
direction to the eye, andg is the surface dependent camera parameter. Note that if ideal BRDF sampling is used,
i.e. wi is proportional toti and bothwi=ti andai are equal to the albedo, and ideal lightsource sampling is used,
i.e. pe is proportional toLe cos �, thusLe cos �=N � pe = �=N , the following estimate can be obtained:

P =
�

N
� w(eye) � g:

This estimate has high variation if the camera is often hidden since if the point is not visible from the camera, the
contribution is zero.

The implementation of the “Shoot” function of light tracing is:

Shoot(ray, power)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return
if ~x is visible from pixelp then

color[p] += power�w(ray.direction,~x, eye direction) � g(~x)
endif
prob = BRDFSampling(-ray.direction, normal, newray)
if prob = 0then return
newpower = power *w(-ray.direction, normal, newray.direction) / prob
Shoot(newray, newpower)
return

end

This algorithm also applies BRDF sampling for all but the last steps. The direction of the last visibility ray
might be far from the direction preferred by the BRDF. This degrades the performance of importance sampling if
the visible surface is very shiny. Thus visible mirrors or refractors (glass) pose difficulties to shooting algorithms.

8.2. SHOOTING-TYPE WALKS METHODS 74

8.2.3 Random walks for the radiosity setting

Expansion expands the solution into a discrete Neumann series

L = Le +R � Le +R2 � Le +R3 � Le + : : : (8.5)

Let us again examine theR2 � Le term. Using the definition of the matrixR, this can also be expressed as a
multi-dimensional integral:

(R2 � Le)ji =
nX
j=1

nX
k=1

Rij �Rjk � Lek =

Z
S

Z

Z
S

Z

~bi(~x1) � w1(i) �
nX
j=1

bj(h(~x1;�!01)) � ~bj(~x2) � w2(j) �
nX
k=1

bk(h(~x2;�!02)) � Lek d!02d~x2d!01d~x1;

where

w1(i) = fi � cos �01;
w2(j) = fj � cos �02: (8.6)

Considering the integrand,~x1 should be in patchi for ~bi to be non zero. Then, only a singlebj will give non-
zero value for the~y1 = h(~x1;�!01) point. To select this, a ray has to be traced from~x1 in direction�!01 and the
visible patch should be identified. Following this, another point on the identified patchi should be selected, which
is denoted by~x2, and a ray is traced in direction�!02 to obtain an indexk of a patch whose emission should be
propagated back on the walk. During propagation, the emission is multiplied by the BRDFs (fi; fj) and the cosine
(cos �02; cos �

0
1) factors of the visited patches (figure 8.9).

Note that this is basically the same walking scheme, as used to solve the original integral equation. The
fundamental difference is that when a patch is hit by the ray, the walk is not continued from the found point but
from another point of the patch.

i

j

k
x

y

y

1

1

1 2

2

x

ω

ω2

’

’

Figure 8.9: Random walk solution of the projected rendering equation

The power equation can be treated similarly. Again, let us examine the two-bounce case

(H2 �Pe)ji =
nX
j=1

nX
k=1

Rji �
fi

fj
�Rkj �

fj

fk
�Pek =

Z
S

Z

Z
S

Z

Pek � ~bk(~y1) � w1(k) �
nX
j=1

bj(h(~y1; !1)) � ~bj(~y2) � w2(j) �
nX
k=1

bi(h(~y2; !2)) � w3(i) d!2d~y2d!1d~y1;

where

w1(k) = cos �1;

w2(j) = fj � cos �2;
w3(i) = fi: (8.7)

It means that the integrand in a single point can be obtained by selecting a point~y1 on patchk, then tracing a ray in
direction!1. Having identified the intersected patchj a new point~y2 is selected on this patch and the ray-tracing

8.2. SHOOTING-TYPE WALKS METHODS 75

is continued at direction!2. The patch which is hit by this ray receives the power of patchk attenuated by the
BRDFs and the cosine factors of the steps.

Thus, the projected rendering equation can also be solved by random walks [Shi91b, Sbe96]. The basic differ-
ence is that when a patch is hit by a ray, then instead of initiating the next ray from this point, another independent
point is selected on the same patch.

Considering the concept of importance sampling and Russian roulette, many different strategies can be elabo-
rated by appropriately defining theP , ~W and~Le functions (recall that according to equation (7.33) the requirement
of an unbiased estimate isP (z1; : : : ; zn) � ~W � ~Le = W � Le). For example, let us use the following simulation
[Shi91b, Sbe96] to obtain a radiance estimate of patchi1:

First a ray is found that starts on this patch. The starting point~x1 is sampled from a uniform distribution, while
the direction!01 is sampled from a cosine distribution, thus the probability density is1=Ai1 � cos �01=�. This ray is
traced and the next patch is identified. Let it be patchi2. At patchi2 it is decided whether or not the walk should
be stopped with probability of the albedo of the patch. Note that for diffuse surfaces the albedo isa = f � �. If the
walk has to be continued, then a new starting point~x2 is found on patchi2, and the same procedure is repeated
recursively.

With this strategy, the probability density of completing ann step walk is

p(~x1; !
0
1; ~x2; !

0
2; : : : ~xn�1; !

0
n�1) =

1

Ai1
� cos �

0
1

�
� ai2
Ai2

� cos �
0
2

�
: : :

ain�1

Ain�1

� cos �
0
n�1

�
� (1� ain) =

fi1
Ai1

� cos �01 �
fi2
Ai2

� cos �02 : : :
fin�1

Ain�1

� cos �0n�1 �
1� ain
ai1

=W � 1� ain
ai1

: (8.8)

Thus the required weight~W of the walk is
~W =

ai1
1� ain

: (8.9)

Thus if the patch on which the walk is terminated is a source having emissionLen, then the estimator of the radiance
of patchi is

Len �
ai1

1� ain
:

Other gathering or shooting estimators have been proposed and their variances have been estimated in [Shi91b,
Sbe96].

8.3. BI-DIRECTIONAL RANDOM WALK ALGORITHMS 76

8.3 Bi-directional random walk algorithms

Bi-directional algorithms is based on the combination of shooting and gathering walks, thus it can combine the
advantages of both techniques. Namely, it can effectively handle small lightsources and small aperture cameras
and can render caustics and ideally refracting or reflecting visible objects.

8.3.1 Bi-directional path-tracing

Bi-directional path-tracing [LW93, VG95] initiates paths at the same time from a selected lightsource and from
the viewpoint. After some steps, either a single deterministic shadow ray is used to connect the two types of walks
[VG95], or all points of the gathering walk are connected to all points of the shooting walk using deterministic
rays [LW93]. If the deterministic shadow ray detects that the two points are occluded from each other, then the
contribution of this path is zero.

Note that gathering and shooting walks use different integration variables, namely a gathering walk is specified
by a point on the pixel area and a sequence of incoming directions, while a shooting walk is defined by a point on
the lightsource and a sequence of the outgoing directions. Thus when the two walks are connected, appropriate
transformations should take place.

r
r

d

d

d

dA

dy

ω

ω

ω

θ

θ θ

1
2

out in

1

2

2
’

θ1

Figure 8.10: Correspondence between the solid angles of incoming and outgoing directions

Let us first consider a walk of a single bounce (figure 8.10). According to the definition of the solid angle, we
obtain

d!01
d!2

=
dA � cos �out=r21
dA � cos �in=r22

=
r22
r21
� cos �out
cos �in

; (8.10)

and for the substitution of the surface integral on the lightsource

d!02 =
d~y � cos �

r22
: (8.11)

Thus the transformation rule is

cos �01 � cos �in d!01d!02 =
cos �01 � cos �out

r21
� cos � d!2d~y;

which means that when converting a shooting type walk to a gathering type walk, then the radiance should be
multiplied by

cos �01 � cos �out
r21

:

When the shooting walk consists of more than 1 steps, then formula (8.10) should be applied to each of them,
but formula (8.11) only to the last step. This conversion replaces the incoming directions by the outgoing directions
and the subsequent steps compensater2k+1=r

2
k scaling. Finally, we end up with a formula which is similar to the

1-step case:

cos �0k � cos �0k+1 � : : : cos �0n d!0k : : : d!0n =
cos �0k � cos �n�k+1

r2k
� cos �n�k � : : : cos �1 d!n�k : : : d!1d~y:

Figure 8.11 shows an example whenk = 2 andn = 4. This formula means that we can use the rules of sections
4.2.1 and 4.2.2 to generate the shooting and gathering walks — gathering walks use the cosine of the incoming

8.3. BI-DIRECTIONAL RANDOM WALK ALGORITHMS 77

window

x

x

y

y

y

eye path

deterministic step

light path

θ
θ θ θ θ θ

1

1

2

2
1

43

1

2

’

’

’
’

θ
3

3 2

Figure 8.11: Bi-directional path tracing with a single deterministic step

angle, while shooting walks use the cosine of the outgoing angle — and the transformation of the combined walk
to a single gathering walk requires a multiplication by

cos �0k � cos �n�k+1
r2k

:

Formally, if the endpoints of the shooting and gathering walks are visible from each-other, then the measured
value of a single path is

P =
Le cos �

N � pe � ws1
ts1 � as1

� ws2
ts2 � as2

� : : : � fsr �
cos �s � cos �0g

r2
� fgr � : : : �

w
g
2

t
g
2 � ag2

� w
g
1

t
g
1 � ag1

� c

where superscriptss andg stand for shooting and gathering steps, respectively. Note that if ideal BRDF sampling
is used, then the estimate is:

P =
�

N
� fsr �

cos �s � cos �0g
r2

fgr � c:

Light Source

window

y0 y1

y2

x0

x1

x2

eye path

light path

shadow rays

Figure 8.12: Bi-directional path tracing with multiple deterministic steps

In Lafortune’s version of the bi-directional path tracing [LW93] not only the endpoints of the shooting and
gathering walks are connected, but all intersection points are linked by shadow rays.

Note that in bi-directional path-tracing a path of given lengthn can be generated by many ways, for instance,
by a gathering walk of lengthi combined with a shooting walk of lengthn � i, wherei = 0; : : : ; n. This creates
a danger of accounting a walk more than one time. To eliminate this danger, the result can be estimated by a
weighted sum of the different walks as suggested by the concept of multiple importance sampling. Other heuristic
weight factors can also provide good results [LW93, Vea97]. For example, when a gathering walk is computed, at
each step the radiance coming from the continuation of the walk is weighted byW and the radiance coming from
deterministic connections to shooting walks is weighted by1 �W . Since for shiny surfaces the continuation of
the walk by BRDF sampling is supposed to be better,W may express how shiny the surface is.

8.3. BI-DIRECTIONAL RANDOM WALK ALGORITHMS 78

Figure 8.13: Bi-directional path tracing: the final image (left) is the composition of walks consisting of different number of
gathering and shooting steps (right) [VG95]

Figure 8.14: Pool rendered with Metropolis light transport (Eric Veach [VG97])

8.3. BI-DIRECTIONAL RANDOM WALK ALGORITHMS 79

8.3.2 Metropolis light transport

Random walk methods usually generate the ray-paths independently. Thus when a difficult path is found, it is
thrown away right after its application. Metropolis method, on the other hand, generates samples by perturbing the
previous path, thus they are expected to be better for difficult lighting conditions.

Recall that Metropolis method [MRR+53] offers samples with a probability density that is proportional to a
given “importance function” in an asymptotic case. Let this importance functionI be the luminance of the light
carried by a ray-path to the eye through any pixel. This selection is justified by the fact that the eye is particularly
sensitive to luminance variations and different pixels have equal importance in the image.

Eye

window

perturbation Eye

window

perturbation

Figure 8.15: Generating walks by mutations in Metropolis light transport

In order to generate samples according toI(z)=b, a Markov process is constructed whose stationary distribution
is just this (herez denotes a ray-path). Scalarbmeans the integral of the importance function on the whole domain,
which can be estimated in a preprocessing phase using a normal random walk algorithm. The Metropolis algorithm
generates a sequence of ray-paths starting from an initial path. Veach and Guibas proposed bi-directional path
tracing [VG97] to find an initial path, although any random walk algorithm can be used for this. Generating a
new pathzi+1 after pathzi consists of two steps. First thetentative transition function T (zi ! zt) produces a
tentative path zt by mutating pathzi a little, i.e. by changing directions and adding or deleting steps. Then the
tentative path is either accepted or rejected using anacceptance probability

a(zi ! zt) = min

�I(zt) � T (zt ! zi)

I(zi) � T (zi ! zt)
; 1

�

that expresses the increase of the importance. The definition of mutations is almost arbitrary if they make the
Markov process ergodic. Ergodic processes have stationary distribution, and this distribution is independent of the
starting state of the process. Practically it requires that any path of positive power could be generated from any
other path after a certain number of perturbations. Thus mutations should modify all features, including directions
(or visited points), starting point, length, etc. Furthermore, in order to avoid situations when the process is stuck
into a region which is surrounded by regions of zero importance, the tentative transition should take large enough
steps to jump over these zero importance regions. Veach [VG97], for example, proposed the generation of a
completely new path when the contribution of the tentative path is zero.

Summarizing, theMetropolis light-transport algorithm is:

Generate an initial ray-pathz1 using random walk, e.g. bi-directional path tracing
for i = 1 to N do

Based on the actual ray-path, find another, tentative pathzt mutatingzi with T (zi ! zt)
if I(zt) = 0 then Generate a completely new pathzi+1 from scratch using random walk
else

a(zi ! zt) = (I(zt) � T (zt ! zi))=(I(zi) � T (zi ! zt))
Generate uniformly distributed random numberr in [0; 1] // accept with “probability” a(zi ! zt)
if r < a(zi ! zt) then zi+1 = zt elsezi+1 = zi

endif
Compute the contribution of the ray-pathzi+1 to the affected pixel
Multiply this contribution byb=(I(zi+1) �N) and accumulate to the pixel

endfor

8.3. BI-DIRECTIONAL RANDOM WALK ALGORITHMS 80

8.3.3 Photon-map

Bi-directional path tracing connects a single gathering walk to a single shooting walk. However, if the effects of
all shooting walks could be stored, then when a new gathering walk is computed, it could be connected to all of the
shooting walks simultaneously, which can significantly increase the number of samples in the integral quadrature.
This is exactly what Jensen [JC95, Jen96, JC98] proposed, also giving the definition of a data structure, called the
photon-mapwhich can efficiently store the effects of many shooting walks.

A photon map is a collection of photon hits at the end of the paths generated in the shooting phase of the
algorithm. The photon-map is organized in akd-tree to support efficient retrieval. A photon hit is stored with the
power of the photon on different wavelengths, position, direction of arrival and with the surface normal.

Eye

window

shooting step gathering step

n =2

Figure 8.16: Rendering with photon-map

The gathering phase is based on the following approximation of the transport operator:

L(~x; !0) =

Z

L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0 =
Z

d�(!0)

dA cos �0d!0
� fr(!0; ~x; !) � cos �0 d!0 �

nX
i=1

��(!0i)

�A
� fr(!0i; ~x; !); (8.12)

where��(!0i) is the power of a photon landing at the surface�A from direction!0i.
The�� and�A quantities are approximated from the photons in the neighborhood of~x in the following way.

A sphere centered around~x is extended until it containsn photons. If at this point the radius of the sphere isr,
then the intersected surface area is�A = �r2 (figure 8.17).

A = r∆ π 2

sphere containing n photon hits

surface

intersection of the surface and the sphere

Figure 8.17: Retrieving data from the photon-map

8.3. BI-DIRECTIONAL RANDOM WALK ALGORITHMS 81

Figure 8.18: Application of photon maps (Mental Images)

8.3.4 Instant radiosity

Instant radiosity [Kel97] elegantly subdivides the shooting walks into a view-independent walk and to the last
bounce which reflects the contribution to the eye. The view-independent walks are calculated in the first phase of
the algorithm and each walk results in a point-lightsource that represents the power at the end of the walk. The
view-independent walk is quite similar to the light-tracing algorithm, but the new directions are sampled from the
Halton sequence instead of a random distribution. In the radiosity setting the reflection at the end of the walks is
also diffuse, thus it can be stored as a point-lightsource of homogeneous directional radiation.

Eye

window

shooting step gathering step

Figure 8.19: Instant radiosity

In the second phase of the algorithm the power of the diffuse lightsources are reflected towards the eye. Since
this is a simple, local illumination problem, the algorithm can take advantage of the rendering hardware of advanced
workstations which can render the effect of these lightsources on the scene and also to compute shadows. If the
number of lightsources is more than what can be handled by the hardware, the computation is broken into different
phases. Each phase uses just a few of the lightsources and the final image is obtained as the average of the estimates
of the phases, which is computed by the hardware accumulation buffer.

Instant radiosity is quite similar to photon-map based techniques. However, instead of using ray-tracing for
final gather, the photons in the photon map are used as lightsources and fast and hardware supported visibility and
shadow algorithms are applied. The other fundamental difference is that instant radiosity allows just a relatively
low number of photons which therefore should be very well distributed. The optimal distribution is provided by
quasi-Monte Carlo light walks.

8.4. GLOBAL METHODS 82

8.4 Global methods

Algorithms discussed so far use recursive ray-tracing to transfer the light in the scene. Ray-tracing is rather time
consuming and is unable to exploit the coherence of the radiance function. Therefore, so calledglobal methods
transfer the light globally and not just for a single point of the scene.

8.4.1 Multi-path method using global random lines

Multi-path methods represent a bridge between random walk and iteration. They are essentially random walk
methods, but in their single step many random walks are advanced simultaneously.

Sbert [Sbe96, SPNP96, SMP98] proposed a complete family of multi-path methods that are based on random
global lines, which was the basic “engine” to advance the walks. A single global line transfers the reflected power
of all those patches that are intersected by this line to the direction of this line. The global line also transfers
a portion of the emission of the intersected patches. Thus a line initiates those walks that would start in a patch
intersected by this line, and continues those previous walks which carried some power onto the intersected patches.

8.4.2 Global ray-bundle tracing

Realizing that an accurate solution requires great many samples,global ray-bundle tracing [SKFP98b, SKP98,
SK98a] uses a bundle of very many (e.g. 1 million or even infinite) global parallel rays, which can be traced
simultaneously using image coherence techniques. In order to represent the radiance that is transferred by a ray,
finite-element techniques are applied that approximate the positional (but not the directional) dependence of the
radiance by piece-wise continuous or piece-wise linear functions [SKFP98a].

L(~x; !) �
nX
j=1

bj(~x) � Lj(!) = bT � L(!): (8.13)

Note that this is a mixed finite-element and continuous method, since the positional dependence of the radiance is
approximated by finite-elements, while the directional dependence is not.

Substituting this into the rendering equation and projecting that into an adjoint base we obtain

L(!) = Le(!) + TFL(!); (8.14)

whereTF is a composition of the original transport operator and its projection to the adjoint base

TFL(!)ji = 1

Ai
�
Z

Z
Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!0; !) d~x d!0: (8.15)

A

A

’

j

i
A(i,j,)

projection of

projection of

Akprojection of

ω

’ω

Ak

Ai

A j

’ω

projection plane

Figure 8.20: Interpretation ofA(i; j; !0)

Taking into account that the integrand of the inner surface integral is piece-wise constant, it can also be pre-
sented in closed form:Z

Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!0; !) d~x =

nX
j=1

~fi(!
0; !) � A(i; j; !0) � Lj(!0); (8.16)

whereA(i; j; !0) expresses the projected area of patchj that is visible from patchi in direction!0. In the unoc-
cluded case this is the intersection of the projections of patchi and patchj onto a plane perpendicular to!0. If

8.4. GLOBAL METHODS 83

occlusion occurs, the projected areas of other patches that are in between patchi and patchj should be subtracted
as shown in figure 8.20.

This projected area can be efficiently calculated simultaneously for all patch pairs using global discrete or
continuous visibility algorithms [SK98a] and also exploiting the hardware z-buffer [SKP98]. These algorithms can
also have random nature, that is, they can result inA(i; j; !0)�Lj(!0) just as an the expected value [SKP99, SK98b].

Using equation (8.16) the rendering equation can be obtained as:

L(!) = Le(!) +

Z

F(!0; !) �A(!0) � L(!0) d!0; (8.17)

whereL(!) is the vector of radiance values,F(!0; !) is a diagonal matrix of BRDFs, andgeometry matrixA
contains the relative visible areas:A(!0)jij = A(i; j; !0)=Ai.

Note that equation (8.17) is highly intuitive as well. The radiance of a patch is the sum of the emission
and the reflection of all incoming radiance. The role of the patch-direction-patch “form-factors” is played by
A(i; j; !0)=Ai.

This is also an integral equation but unlike the original rendering equation it provides the radiance of not only
a single point but for all points at once. This integral equation is solved by random or quasi-random shooting type
walks.

image plane

direction 1

direction 2

direction 3

Figure 8.21: A path of ray-bundles

A single walk starts by selecting a direction either randomly or quasi-randomly, and the emission of all patches
of the scene is transferred into this direction (figure 8.21). Then a new direction is found, and the emission is
transferred again and the incoming radiance generated by the previous transfer is reflected from all patches into
this new direction. The algorithm keeps doing this for a few times depending on how many bounces should be
considered, then the emission is sent and the incoming radiance caused by the last transfer is reflected towards the
eye, resulting an image estimate associated with the walk. The final image can be obtained by averaging the image
estimates of different walks.

8.4.3 Preprocessing the point lightsources

Global radiosity methods are efficient for large area lightsources but loses their advantages if the lightsources are
small [SPNP96]. The problem of point lightsources can be solved by a modified version of the “first-shot” that
shoots the power of the point lightsources onto other surfaces, then removes them from the scene [CMS98].

This is a little bit more complicated for ray-bundle tracing which handles also non-diffuse reflection. Since
the surfaces can also be non-diffuse, the incoming radiance received by the patches from each point lightsource
should be stored (this requiresl additional variables per patch, wherel is the number of point lightsources). The
secondary, non-diffuse emission to a direction is computed from these irradiances.

8.4. GLOBAL METHODS 84

+=

Lep

LepT

Figure 8.22: First shot technique

Figure 8.23: A scene after the “first-shot”(left) and after 500 global ray-bundle walks (right)

Chapter 9

Iteration solution of the global
illumination problem

Iteration techniques realize that the solution of the rendering equation is the fixed point of the following iteration
scheme

Lm = Le + T Lm�1; (9.1)

and obtain the pixel colors as a limiting value:

ML = lim
n!1

MLm: (9.2)

Since iteration uses the complete radiance function, its temporary versions should be stored. To do this with
only finite data, finite-element techniques can be used. Recall that these finite-element techniques approximate the
unknown function in the following finite function series form:

L(~x; !) � L(n)(~x; !) =

nX
j=1

Lj � bj(~x; !) = bT (~x; !) � L (9.3)

wherebj(~x; !) is a system of predefined basis functions, andLj factors are unknown coefficients.
Substituting this approximation into the iteration of the rendering equation we obtain:

nX
j=1

Lj(m)�bj(~x; !) �
nX
j=1

Lej �bj(~x; !)+T
nX
j=1

Lj(m�1)�bj(~x; !) =
nX
j=1

Lej �bj(~x; !)+
nX
j=1

Lj(m�1)�T bj(~x; !):

(9.4)
Note that equality cannot be guaranteed, since even if

Pn
j=1 Lj �bj(~x; !) is in the subspace defined by the basis

functions, the integral operatorT may result in a function that is out of this space. Instead, equality is required in
an appropriate subspace defined byadjoint basis functions~b1(~x);~b2(~x); : : :~bn(~x) (chapter 5).

Having multiplied the iteration formula by each adjoint basis functions~bi, we obtain the following iteration
solution of a system of linear equations:

Li(m) = Lei +

nX
j=1

hT bj ;~bii � Lj(m� 1): (9.5)

This system of linear equations can also be presented in a vector form:

L(m) = Le +R � L(m� 1); Rij = hT bj ;~bii: (9.6)

The complexity of the iteration solution depends on the number of operations needed for a single iteration step
and the number of iterations providing convergence. A single step of the iteration requires the multiplication of an
n dimensional vector and ann� n dimensional matrix (wheren is the number of basis functions), which requires
O(n2) operations.

Concerning the number of necessary steps, we concluded in section 4.3.1 that the speed of convergence is at
least geometric by a factor� = kRk. Thus the number of steps to decrease the error below a predefined limit
depends only on� and is independent ofn. To explain this, let us examine the diffuse radiosity case, when piece-
wise constant basis functions are used, and thus matrixR contains the patch-to-patch form factors weighted by
the albedos of patches. The infinite norm ofR is close to being independent of the number of surface elements,

85

9.1. WHY SHOULD WE USE MONTE-CARLO ITERATION METHODS? 86

since as the number of surface elements increases, the value of form factors decreases, sustaining a constant sum
of rows. This constant sum represents that portion of the energy radiated by surfacei, which is gathered by other
surfaces, multiplied by the albedo of surfacei. Consequently, the number of necessary iterations is independent of
the number of surface elements, making the iteration solution anO(n2) process.

More sophisticated techniques, such as theGauss-Seidel iteration, overrelaxation, Southwell-iteration can
either speed-up the process or reduce the storage requirements, but they cannot change the quadratic complexity
[SKM95].

9.1 Why should we use Monte-Carlo iteration methods?

Deterministic iteration has two critical problems. On the one hand, since the domain of the radiance function is
4 dimensional and has usually high variation, an accurate finite-element approximation often requires very many
basis functions, which, in turn, need a lot of storage space. On the other hand, when finite element techniques
are applied, the transport operator is only approximated, which introduces some non-negligible error in each step.
As concluded in section 4.3.1, if the contraction ratio of the operator is�, then the total accumulated error will
be approximately1=(1 � �) times the error of a single step [SKFNC97]. For highly reflective scenes, the iter-
ation is slow and the result is inaccurate if the approximation of the operator is not very precise. Very accurate
approximations of the transport operator, however, require a lot of computation time and storage space.

Both problems can be successfully attacked by randomizing the iteration, which is called thestochastic iter-
ation. The basic idea of stochastic iteration is that instead of approximating operatorT in a deterministic way,
a much simpler random operator is used during the iteration, which “behaves” as the real operator just in the
“average” case.

When stochastic iteration is applied, the transport operator should be like the real operator just in the average
case, the method will still converge to the real solution. Thus the error accumulation problem can also be avoided.
This also allows us to use significantly simpler realizations. For example, the integral part of the operator can also
be interpreted as an expected value, thus in a single transfer usually no explicit integral is computed. As we shall
see, it is relatively easy to find random operators whose expected case behavior matches exactly to that of the real
operator.

On the other hand, if the operator is carefully randomized, it does not require the integrand everywhere in the
domain, which allows us not to store the complete radiance function, thus a lot of storage space can be saved.
Compared to the astronomical storage requirements of non-diffuse radiosity methods, for example, with stochastic
iteration we can achieve the same goal with one variable per patch [SKP98]. This argument loses some of its
importance when view-independent solution is also required, since the final solution should be stored anyway.
This is not a problem if only the diffuse case is considered, since using a single radiosity value per patch the image
can be generated from any viewpoint. For the non-diffuse case, the reduced storage gets particularly useful when
the image is to be calculated in only a single, or in a few eye positions.

Summarizing, the advantages of stochastic iteration are the simplicity, speed, affordable storage requirements
and numerical stability even for very large systems containing highly reflective materials.

9.2 Formal definition of stochastic iteration

The concept of stochastic iteration has been proposed and applied for the diffuse radiosity problem in [Neu95,
NFKP94, NPT+95, SKFNC97], that is for the solution of finite-dimensional linear equations.

In this section we generalize the fundamental concepts to solve integral equations [SK98b, SK99b], then the
generalized method will be used for attacking non-diffuse global illumination problems.

Suppose that we have a random linear operatorT � so that

E[T �L] = T L (9.7)

for any Riemann-integrable functionL.
During stochastic iteration a random sequence of operatorsT �1 ; T �2 ; : : : ; T �i ; : : : is generated, which are instan-

tiations ofT �, and this sequence is used in the iteration:

Lm = Le + T �mLm�1: (9.8)

Since in computer implementations the calculation of a random operator may invoke finite number of ran-
dom number generator calls, we are particularly interested in those random operators which have the following
construction scheme:

9.2. FORMAL DEFINITION OF STOCHASTIC ITERATION 87

1. Random “point”pi is found from a finite dimensional set� using probability densityprob(p). This proba-
bility density may or may not depend on functionL.

2. Usingpi a “deterministic” operatorT �(pi) is applied to radianceL.

Pointpi is called therandomization point since it is responsible for the random nature of operatorT �.
Using a sequence of random transport operators, the measured value

Pm =MLm (9.9)

will also be a random variable which does not converge but fluctuates around the real solution. However, as it will
be shown, the solution can be found by averaging the estimates of the subsequent iteration steps.

Formally the sequence of the measured values during the iteration is the following:

P1 = ML1 =M(Le + T
�

1 L
e);

P2 = ML2 =M(Le + T
�

2 L
e + T

�

2 T
�

1 L
e);

...

PM = MLM =M(Le + T
�

ML
e + T

�

MT
�

M�1L
e + T

�

MT
�

M�1T
�

M�2L
e + : : :):

Averaging the firstM steps, we obtain:

~PM =
1

M

MX
i=1

MLi =M(Le +
1

M

MX
i=1

T
�

i L
e +

1

M

M�1X
i=1

T
�

i+1T
�

i L
e +

1

M

M�2X
i=1

T
�

i+2T
�

i+1T
�

i L
e + : : :) =

M(Le +
1

M

MX
i=1

T
�

i L
e +

M � 1

M
�

1

M � 1

M�1X
i=1

T
�

i+1T
�

i L
e +

M � 2

M
�

1

M � 2

M�2X
i=1

T
�

i+2T
�

i+1T
�

i L
e + : : :): (9.10)

In order to prove that~PM really converges to the solution of the integral equation, first it is shown that the expected value
of T �i+kT

�

i+k�1 : : : T
�

i+1T
�

i L
e is T k+1Le. Fork = 0, it comes directly from the requirement of equation (9.7). Fork = 1, the

total expected value theorem[Rén62] can be applied:

E[T �i+1T
�

i L
e] =

Z
�

E[T �i+1T
�

i L
e
jpi+1 = p] � prob(p) dp: (9.11)

Since for a fixedpi+1 = p, operatorT �i+1 becomes a deterministic linear operator, its order can be exchanged with that of the
expected value operator:

E[T �i+1T
�

i L
e
jpi+1 = p] = T

�

i+1(p) (E[T
�

i L
e]) : (9.12)

Using requirement (9.7), the expected valueE[T �i L
e] is T Le, thus we further obtain

E[T �i+1T
�

i L
e
jpi+1 = p] = T

�

i+1(p)(T L
e): (9.13)

Substituting this to equation (9.11), we get

E[T �i+1T
�

i L
e] =

Z
�

T �i+1(p)(T L
e) � prob(p) dp = E[T �i+1(T L

e)] = T (T Le) = T 2Le; (9.14)

which concludes our proof for thek = 1 case. The very same idea can be used recursively for more than two terms.
Returning to the averaged solution~PM , its expected value is then

E[~PM] =M(Le + T L
e +

M � 1

M
T
2
L
e +

M � 2

M
T
3
L
e + : : :+

1

M
T
M
L
e): (9.15)

Note also that there is some power “defect”�P between this expected value and the real solution

M(Le + T L
e + T

2
L
e + T

3
L
e + : : :)

because of the missing higher order terms for finiteM values. Denoting the contraction ratio of the integral operatorT by
�, and assuming that the measuring device is calibrated to show valuec for unit homogeneous radiance, this defect can be
estimated as follows:

j�P j =

���M�
1

M
T
2
L
e +

2

M
T
3
L
e + : : :

M � 1

M
T
M
L
e + T

M+1
L
e + T

M+2
L
e + : : :

���� �
c�2

M
� jjL

e
jj � (1 + 2�+ 3�2 + : : :+ (M � 1)�M�2 +M�

M�1 +M�
M + : : :) =

9.2. FORMAL DEFINITION OF STOCHASTIC ITERATION 88

c�2

M
� jjL

e
jj �

"
d

d�

M�1X
i=1

�
i

!
+M �

�M�1

1� �

#
�

c

M
�

�2

(1� �)2
� jjL

e
jj: (9.16)

This defect converges to zero if the operator is a contraction andM goes to infinity, thus we have

lim
M!1

E[~PM] =M(Le + T L
e + T

2
L
e + T

3
L
e + : : :): (9.17)

We mention that the defect can further be reduced, thus the convergence can be improved, by ignoring the first few iterations in
the averaged result [Neu95, Sbe96].

Finally, it must be explained why and when random variable~PM converges to its expected value. Looking at formula (9.10)
we can realize that it consists of sums of the following form:

1

M � k
�

M�kX
i=1

T
�

i+kT
�

i+k�1 : : : T
�

i+1T
�

i L
e
:

According to the theorems of large numbers, and particularly to the Bernstein [R´en62] theorem, these averages really con-
verge to the expected value if the terms in the average are not highly correlated (note that here the terms are not statistically
independent as assumed by most of the laws of large numbers). It means that random variablesT �i+kT

�

i+k�1 : : : T
�

i L
e and

T �j+kT
�

j+k�1 : : : T
�

j L
e should not have strong correlation ifi 6= j. This is always true if the operators are generated from

independent random variables.
To show a negative example, let us assume that there is a very strong correlation between the random operators, namely

that differentT �i random operators use exactly the same randomization point. When this randomization point is known, the
iteration is fully deterministic using operatorT �i = T �. The limiting value of this iteration will be a random variable

M(Le + (T �)Le + (T �)2Le + (T �)3Le + : : :);

which usually differ from the expected solution.
There is another danger that should be considered. Random variable~PM is a sum of random variables whose number

goes to infinity. Even if the variances of all single terms in this sum converge to zero, the variance of the sum of these terms
might still converge to a non-zero value. In the context of random walks, this phenomenon is called “non-existing variance”
[Sbe99, Erm75]. To avoid this case, random operators should not be “over-randomized”, thus its variance must not exceed a
certain limit.

9.2.1 Other averaging techniques

In the previous section we solved the problem that stochastic iteration is not convergent by simply averaging the
values generated during iteration. There are other averaging schemes, on the other hand, that use even more
combinations of the preceding random operators.

Progressive Monte-Carlo

Progressive Monte-Carlouses the following formulae to derive a new value from the previous one:

L0m = Le + T �mLm�1;
Lm = �m � L0m + (1� �m) � Lm�1;
~Pm = MLn; (9.18)

where�m is an appropriate sequence that converges to 0, as for example,�m = 1=m.
To allow comparison, the corresponding formulae of the normal iteration are also presented here:

Lm = Le + T �mLm�1;
~Pm = �m � MLm + (1� �m) � Pm�1: (9.19)

Note that the fundamental difference is that progressive Monte-Carlo uses the average of the previous samples
not only in the final estimate but also to continue iteration. Progressive Monte-Carlo thus can use all combinations
of the preceding random operators to compute the actual result. However, it also has energy defect.

9.2.2 Can we use quasi-Monte Carlo techniques in iteration?

Stochastic iteration can also be viewed as a single walk which uses a single sequence of usually 4-dimensional
randomization points (for ray-bundle tracing 2-dimensional randomization points), and theT �i+kT �i+k�1 : : : T �i Le
terms are included in integral quadratures simultaneously for allk.

9.2. FORMAL DEFINITION OF STOCHASTIC ITERATION 89

0.01

0.1

1

1 10 100 1000 10000

L1
 e

rr
or

number of iterations

Error of stochastic iteration in the Cornell box

stochastic iteration (rand)
stochastic iteration (drand48)

QMC iteration (Halton)
QMC iteration (Hammersley, m=10000)

QMC iteration (pi^n)

Figure 9.1: Ray-bundle based stochastic iteration with random and quasi-random numbers and the used test scene

It means that the randomization points should support not only 4-dimensional integration, but using subsequent
pairs also 8-dimensional integration, using the subsequent triplets 12-dimensional integration, etc. Sequences that
supportk-dimensional integrals when subsequentk-tuples are selected are calledk-uniform sequences[Knu81].
The widely used Halton or Hammersley sequences are only 1-uniform, thus theoretically they should provide false
results.

This is obvious for the Hammersley sequence, in which the first coordinate is increasing. Such a sequence
would search for only those multiple reflections where the angle corresponding to the first coordinate always
increases in subsequent reflections.

It is less obvious, but is also true for the Halton sequence. Due to its construction using radical inversion, the
subsequent points in the sequence are rather far, thus only those reflections are considered, where the respective
angle changes drastically.

In order to avoid this problem without getting rid of the quasi-Monte Carlo sequences, [SKFNC97] proposed
the random scrambling of the sample points. The same problem arises, for example, when generating uniform
distributions on a sphere, for which [CMS98] proposed to increase the dimension of the low-discrepancy sequence.

Note that this problem is specific to quasi-Monte Carlo integration and does not occur when classical Monte-
Carlo method is used to select the sample points (a random sequence is1-uniform [Knu81]).

In order to demonstrate these problems, we tested the ray-bundle based iteration for different random (i.e.
pseudo-random) and low-discrepancy sequences. The test scene was the Cornell box. In figure 9.1 we can see that
the Hammersley sequence gives completely wrong result and the Halton sequence also deteriorates from the real
solution. The two random generators (rand and drand48), however, performed well.

The figure also included a modification of theqm = f�mg quasi-Monte Carlo sequence (operatorfg selects the
fractional part of a number). This is believed to be (but has not been proven to be)1-uniform [Deá89]. However,
this sequence is very unstable numerically, therefore we used the following scheme started at�0 = 1:

�m = �m�1 � (� � 2)

if �m > 100000 then �m = �m � 100000
qm = f�mg

Chapter 10

Review of stochastic iteration algorithms

In order to use stochastic iteration in practice, the key problem is the definition of the random transport operator.
This operator should meet the requirement of equation (9.7) and should be easy to compute.

For the continuous case, a single application of the transport operator contains a directional integral. For the
finite element case, the transport operator also includes the projection to the adjoint base which requires additional
integration in the domain of basis functions.

Following the general concepts of Monte-Carlo methods, we usually do not intend to compute the integrals
explicitly , but want to get them as an expected value. Thus the different random transport operators can be
classified according to which integrals are evaluated explicitly using some deterministic quadrature and which
integrals are computedimplicitly as an expected value.

First diffuse radiosity algorithm are presented. The diffuse radiosity method is a finite-element approach which
takes advantage of the fact that a patch can be represented by a single radiance (or radiosity) value. Thus the
rendering equation is converted to a system of linear equations, where the number of unknowns is equal to the
number of patches. When the non-diffuse case is considered, then the storage complexity becomes a critical issue.
Therefore, in the second part of this chapter, we discuss how the required storage can be reduced in a flexible way
by stochastic iteration.

10.1 Stochastic iteration for the diffuse radiosity

In the gathering type radiosity algorithms the projected rendering equation (formula (5.5)) has the following form

L = Le +R � L:

Alternatively, shooting radiosity algorithms are based on the projected potential equation (formula (5.8)):

P = Pe +H �P:

According to the basic requirement of stochastic iteration we need to find random operatorsT �F or T 0�
F that

behave as the real operator in average, that is

E[T �F L] = R � L;

E[T 0�
F P] = H �P: (10.1)

The evaluation of(R � L)i or alternatively of(H � P)ji requires a surface and a directional integration (or in
other formulations two surface integrations).

The possible alternatives for a random transport operator are as follows:

1. Both integrals are explicitly computed but only for a randomly selected subset of the patches.

2. The surface integral explicitly computed but the directional integral implicitly.

3. Compute the surface integral implicitly but the directional integral explicitly. This method can, for example,
use hemicubes for the directional integration but selects the center of the hemicube randomly on the patch.

4. Both integrals are computed implicitly.

90

10.1. STOCHASTIC ITERATION FOR THE DIFFUSE RADIOSITY 91

10.1.1 Stochastic radiosity

In stochastic radiosity[NFKP94], the randomized operator is simplified in a sense that it first selects a single (or a
few) patches with probability proportional to their power and then calculates the transfer only from this important
patch as if it had all the power� =

Pn
k=1Pk : Thus here both integrals are explicitly computed but only for a

subset of patches.
To prove that it meets the requirement stated by equation (10.1), let us suppose that patchj has been selected and let us

examine the new power of patchi:
(T

0

�

F P)ji = Hij � �: (10.2)

Since the probability of selecting patchj isPj=�, the expectation of the new power is

E[(T
0

�

F P)ji] =

nX
j=1

Hij � � �
Pj

�
=

nX
j=1

Hij �Pj (10.3)

which we wanted to prove.

10.1.2 Transillumination radiosity

The transillumination radiosity method [Neu95, SKFNC97] has also a stochastic iteration version. It defines
the random transport operator by uniformly selectingD transillumination directions !01; : : : !

0
D and allowing

patches to interact only in these transillumination directions. In order to calculate these interactions, a large dis-
cretized window is placed perpendicularly to each transillumination direction and the radiance transfer to a patch
is approximated by elementary transfers going through the pixels covering the projection of the patch.

Let us consider a single transillumination direction. Projecting patchAi onto a plane that is perpendicular to
the transillumination direction and then approximating the integral of the incoming radiance here by a discrete
sum, we get Z

Ai

L(h(~x;�!0d)) � cos �0d d~x =

Z
A
p

i

L(h(~x0;�!0d)) � d~x0 �
X
P2Ap

i

Lbu�erd[P] � �A: (10.4)

wherebu�erd[P] stores the index of that patch which is visible in pixelP in the transillumination direction!0d
from patchi, and�A is the size of a pixel of the buffer (figure 10.1).

x A

L

 A

transillumination
plane

transillumination
direction

δ

i

i

pixelP

buffer[P]

d

p

ω
P

Figure 10.1: Integration on the transillumination plane

Thus the random transfer operator is

(T �F L)ji =
4� � fi � �A

D

DX
d=1

X
P2Ap

i

Lbu�erd[P]: (10.5)

If the transillumination directions are uniformly distributed and the buffer is uniformly jittered, then the expected value of
this operator is

E[(T �F L)ji] =

Z

Z
P

4� � fi � �A

D

DX
d=1

X
P2A

p

i

Lbu�erd[P]
dp

�A

d!0d
4�

=
1

D

DX
d=1

Z

Z
P

X
P2A

p

i

Lbu�erd[P] � fi dp d!
0

d:

If uniform jittering is applied, then we can usually assume that the discrete approximation of the positional radiance distribution
gives back the real distribution in the average case, that isZ

P

X
P2A

p

i

Lbu�erd[P] dp =

Z
A
p

i

L(h(~x0;�!0d)) d~x
0
: (10.6)

10.2. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 92

However, this statement is not always true if incremental polygon filling algorithms are applied [SK98a, SK98b]. Note, for
example, that an incremental polygon filling algorithm always generates an approximation whose width and height are at least
1. Thus this assumption is correct if the resolution of the discrete buffer is high enough to project each polygon onto at least a
few pixels. Substituting this to the expected value integral, we get

E[(T �F L)ji] =
1

D

DX
d=1

Z

Z
A
p

i

L(h(~x0;�!0d)) d~x
0
� fi d!

0

d =

Z

Z
Ai

L(h(~x0;�!0)) � fi � cos �
0
d~xd!

0
: (10.7)

UsingL(h(~x0;�!0)) =
Pn

j=1
bj(h(~x

0;�!0)) � Lj and equation (5.21), we can prove that the expectation really gives back
the real projected transport operator:

E[(T �F L)ji] =

nX
j=1

Z

Z
Ai

bj(h(~x
0
;�!

0)) � fi � cos �
0

d d~xd!
0
� Lj =

nX
j=1

Rij � Lj : (10.8)

10.1.3 Stochastic ray-radiosity

Stochastic ray-radiosity [NPT+95] approximates the transport operator byM random rays that are sampled
proportionally to the power of the patches. On a patch the starting point of the ray is sampled using a uniform
distribution, while the direction follows a cosine distribution. A single ray carries�=M power. Thus this method
approximates both integrals implicitly.

Let us examine the case when a single ray is selected (since different rays are sampled from the same distribution, the effect
of M rays will beM times the effect of a single ray in the expected value). Suppose that patchj is selected as a shooting patch.
The probability of the selection event isPj=�. Thus the probability density of selecting a point~x of a patch and a direction!
is

Pj

�
�
1

Aj

� cos �:

This transfers�=M power to the patch that is hit by the ray where the reflected power is computed. Thus the random transport
operator for a single ray is

E[(T
0

�

F P)ji] =M � fi �

nX
j=1

Z
Aj

Z

bi(h(~y; !)) �
�

M
�
1

Aj

� cos � d~yd! �
Pj

�
=

nX
j=1

fi

Aj

�

Z
Aj

Z

bi(h(~y; !)) � cos � d~yd! �Pj =

nX
j=1

Hij �Pj : (10.9)

10.2 Definition of the random transport operator for the non-diffuse
finite-element case

When moving towards the non-diffuse case, another requirement must be imposed upon the random transport
operator. It must not only meet the requirement of equation (9.7) and be easy to compute, but it must also allow the
compact representation of theT �i L functions. This extra requirement is evident if we take into account that unlike
in the diffuse case, the domain ofL is a 4-dimensional continuous space, so is the domain ofT �i L. From the point
of view of compactness, what we have to avoid is the representation of these functions over the complete domain.

Thus those transport operators are preferred, which require the value ofL just in a few “domain points” (e.g. in
a single “domain point”). Note that the evaluation ofT �i L now consists of the following steps: first a randomization
pointpi is found to define random operatorT �i , which in turn determines at which domain point the value ofL is
required. Up to now, we have had complete freedom to define the set of randomization points. One straightforward
way is defining this set to be the same as (or a superset of) the domain of the radiance function and using random
transport operators that require the value of the radiance function at their randomization points. Although this
equivalence is not obligatory, it can significantly simplify the computations, since when the randomization point is
generated, the required domain point is also known.

Using random operators that evaluate the radiance in a single point is not enough in itself, since even a single
“point” can result in a continuousT �i L function, which must be stored and re-sampled in the subsequent iteration
step and also by the measurement. The solution is the postponing of the complete calculation ofT �i L until it is
known where its value is needed in the next iteration step and by the measuring device. In this way, the random
operator should be evaluated twice but just for two points. Once for the actual and the previous “points” resulting in

10.2. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 93

[T �(pi)L(pi)](pi+1), and once forpeye which is needed by the measuring device and for previous point providing
[T �(pi)L(pi)](peye).

The complete iteration goes as follows:

P = 0 // initialize the measured value to zero
Findp1 randomly //select the randomization point of the first iteration
L(p1) = Le(p1)
for i = 1 to M do

P new = Le(peye) + [T �(pi)L(pi)](peye) // measure the radiance
P =MP new � 1=i+ (1� 1=i) � P // average the measured value
Findpi+1 randomly //select the randomization point of the next iteration
L(pi+1) = Le(pi+1) + [T �(pi)L(pi)](pi+1) // a single step of stochastic iteration

endfor
Display final image

10.2.1 Single ray based transport operator

The continuous formulation has just a single directional integral, thus a random transport operator can evaluate this
single integral implicitly. This results in a method that uses a “single” random walk to obtain the solution.

More specifically, let the random transport operator use a single ray having random origin~yi and direction!i
generated with a probability that is proportional to the cosine weighted radiance of this point at the given direction.

This ray transports the whole power

� =

Z
S

Z

L(~y; !0) cos �~y d!
0 d~y

to that point~x which is hit by the ray. Formally, the random transport operator is

(T �L)(~x; !) = � � �(~x� h(~y; !i)) � fr(!i; ~x; !): (10.10)

Let us prove that this random operator meets the requirement of equation (9.7). The probability density of selecting surface
point~y and direction!0 is

dPrf~y; !0g

d~y d!~y
=

L(~y; !0) � cos �~y
�

(10.11)

dx

dy
y

x

y

x

ω

θ

θ

d

ωd y

x

Figure 10.2: Symmetry of solid angles of shooting and gathering

Using the definition of the solid angle

d!~y =
d~x � cos �0~x
j~y � ~xj2

we can obtain a symmetry relation (figure 10.2) for the shooting and gathering solid angles:

d~y � d!~y � cos �~y = d~y �
d~x � cos �0~x
j~y � ~xj2

� cos �~y = d~x �
d~y � cos �~y
j~y � ~xj2

� cos �0~x = d~x � d!
0

~x � cos �
0

~x: (10.12)

Thus the probability of selecting~y; !0 can also be expressed in the following way:

dPrf~y; !0g =
L(~y; !0) � cos �~y

�
� d~y d!~y =

L(h(~x;�!0); !0) � cos �~x
�

� d~x d!0~x: (10.13)

10.2. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 94

Now we can easily prove that the random transport operator meets requirement (9.7) since

E[(T �L)(~x; !)] =

Z
S

Z

� � �(~x� h(~y; !0)) � fr(!
0
; ~x; !) dPrf~y; !0g =

Z

L(h(~x;�!0); !0) � cos �0~x � fr(!
0
; ~x; !) d!0~x = (T L)(~x; !): (10.14)

Note that the result of the application of the random operator can be a single point that receives all the power
and reflects some part of it or the result can be no point at all if the ray leaves the scene.

Suppose that the first random operatorT �1 is applied toLe which may transfer all power

�1 =

Z
S

Z

Le(~y1; !1) cos �~y1 d!1 d~y1

to a single point~x1 = h(~y1; !1) using probability density

dPr1f~y1; !1g
d~y1d!1

=
Le(~y1; !1) � cos �~y1

�
:

Before continuing with the second step of the iteration, the radiance should be measured, that is, an image
estimate should be computed fromLe + T �1 Le. We can separately calculate the effect of the lightsources on the
image and then add the effect ofT �1 Le. Note thatT �1 Le is concentrated in a single point, thus its contribution can be
computed by tracing a ray from the eye to this point, and if this point is not occluded, then addingfr(!1; ~x; !eye)��
to that pixel in which~x is visible.

The second operatorT �2 should be applied to

L1 = Le + T �1 Le;

thus both the total power� and the probability density have been modified:

�2 =

Z
S

Z

L1(~y2; !2) cos �~y2 d!2 d~y2 = �1 � (1 + a~x1(!1))

wherea~x1 is thealbedoat point~x1 defined by

a~x(!) =

Z

fr(!; ~x; !
0) cos �0~x d!

0;

and the new probability density is

dPr2f~y2; !2g
d~y2d!2

=
L1(~y2; !2) � cos �~y2

�
=
Le(~y2; !2) � cos �~y2 + fr(!1; ~y2; !2) cos �~y2 � �(~y2 � ~x1)

�1(1 + a~x1(!1))
:

Sampling according to this mixed, discrete-continuous probability density can be realized in the following way.
First it is decided randomly whether we sampleLe or the newly generated point using probabilities1=(1+a~x1(!1))
anda~x1(!1)=(1 + a~x1(!1)), respectively. IfLe is selected, then the sampling process is the same as before, i.e. a
random point and a random direction are found with probability density

Le(~y2; !2) cos �~y2
�1

:

However, if the new point is chosen, then the direction of the next transfer is found with probability density

fr(!1; ~y2; !2) cos �~y2
a~x1(!1)

:

In either case, a ray defined by the selected point and direction is traced, and the complete power�2 =
�1 � (1 + a~x1(!

0
1)) is transferred to that point which is hit by the ray. The subsequent steps of the iteration are

similar.
Interestingly this iteration is a sequence of variable length random walks, since at each step the point that is

last hit by the ray is only selected with a given probability as the starting point of the next ray.

10.2. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 95

To understand how it works, first let us assume that the environment is closed, that is, rays always hit objects.
The algorithm selects a point from a lightsource and then starts a random walk. The algorithm computes a step by
sending a ray to the randomly selected direction. At the first hit the image contribution is computed. To prepare
for the next step and the power to be transferred is set to(1+ a1)�. The walk finishes after the first step according
to the powers, that is with probability1=(1 + a1) and continues with probabilitya1=(1 + a1). If a walk finishes,
another walk is initiated from the lightsource, if not, then the ray is emanated from the previous hit point. The new
ray is traced, the image contribution is computed, and the power is set again to(1 + a2(1 + a1))�. Thus now the
walk is continued with

a2 + a2a1

1 + a2 + a2a1

probability. Note that the limiting case of this continuation probability is a special average of the albedos:

Prfcontinue at stepng = ~a =
an + anan�1 + anan�1an�2 + : : :+ an � : : : � a1

1 + an + anan�1 + anan�1an�2 + : : :+ an � : : : � a1
If all points have the same albedoa, then in the limiting case~a = a, thus the continuation probability is similar to
what is usually used in expansion. However, a difference still remains. When expansion continues a walk, it scales
the power by1=ai according to Russian-roulette and resets the scaling factor to1 when a new walk is initiated. In
iteration, however, the power is scaled only byai, but the emission power is added at each reflection, and this is
not reinitialized when a new lightsource point is sampled.

Now let us also consider open environments where a ray can leave the space with positive probability. When
this happens, the power will be the emission power and the algorithm starts to build up the walk from scratch again.
Generally, the continuation probability will be in between~a=(1 + ~a) and~a depending on how open the scene is.

Note that even this simple example highlighted the fundamental difference between iteration and expansion.
Expansion — i.e. random walk — methods usually continue the walk with the probability of the local albedo, that
is, they make decisions based on local characteristics. Iteration, on the other hand, takes into account the complete
radiance function — it makes decision using global information — which eventually results in a continuation
probability which depends on the average albedo and on how open the scene is. Since these factors determine
the contraction of the light transport operator, we can state that iteration uses a more precise approximation of the
contraction to randomly terminate the walk.

10.2.2 Stochastic iteration using ray-bundles

Let us recall that finite-element formulation needed by ray-bundles modifies the rendering equation to the following
form:

L(!) = Le(!) +

Z

F(!0; !) �A(!0) � L(!0) d!0: (10.15)

This section proposes a stochastic iteration type solution for the solution of this equation. Let us define a random
operatorT �F that behaves like the projected transport operator in the average case in the following way:

A random direction is selected using a uniform distribution and the radiance of all patches is transferred into
this direction.

Formally, the definition is
T �(!0)L(!) = 4� �T(!0; !) � L(!0): (10.16)

If direction!0 is sampled from a uniform distribution — i.e. the probability density of the samples is1=(4�) —
then according to equation (8.17) the expected value of the application of this operator is

E[T �(!0)L(!)] =
Z

4� �T(!0; !) � L(!0) d!
0

4�
= TFL(!): (10.17)

In the definition of the random operator! is the actually generated and!0 is the previously generated directions.
Thus a “randomization point” is a global direction in this method.

The resulting algorithm is quite simple. In a step of the stochastic iteration an image estimate is computed
by reflecting the previously computed radiance estimate towards the eye, and a new direction is found and this
direction together with the previous direction are used to evaluate the random transport operator. Note that the
algorithm requires just one variable for each patchi, the previous radianceL[i].

The ray-bundle based stochastic iteration algorithm is:

10.2. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 96

Generate the first random global direction!1
for each patchi doL[i] = Lei (!1)
for m = 1 to M do // iteration cycles

Calculate the image estimate relfecting the incoming radianceL[1]; L[2]; : : : L[n] from !m towards the eye
Average the estimate with the Image
Generate random global direction!m+1

for each patchi doLnew[i] = Lei (!m+1) + 4� �
Pn

j=1
~fi(!m; !m+1) � A(i; j; !m)=Ai � L[j]

endfor
Display Image

Using Phong interpolation, on the other hand, the radiance is evaluated at each point visible through a given
pixel using the incoming radiance field, the surface normal and the BRDF of the found point.

Due to the fact thatA(i; j; !0), A(j; i;�!0) can simultaneously be computed, the algorithm can easily be
generalized to simultaneously handle bi-directional transfers.

Note that this algorithm is quite similar to the global walk algorithm, but it does not reinitialize the irradiance
vector after eachDth step. In fact, it generates a single infinite walk, and adds the effect of the lightsources to the
reflected light field and computes the image accumulation after each step.

Figure 10.3: Images rendered by stochastic iteration

Chapter 11

Implementation of the path-tracing
algorithm

This chapter presents a C++ program that implements thepath-tracing algorithm.

Figure 11.1: UML component diagram of the path tracer

A path-tracer consists of the following modules (figure 11.1):

� Scene modulein which the path tracing is executed.

� Model module that stores the objects of the scene, which can be interrogated in geometric sense when
tracing rays, and also optically when reflections are calculated.

� Light module that introduces emission functions and abstract lightsources in the scene.

� Camera modulethat represents the camera parameters.

� Material models moduleparticipates in the specification of objects by defining BRDFs, albedos and func-
tions for BRDF sampling.

� Color module can handle spectra and color information.

� Array module is a supplementary module that provides a generic, dynamic array.

� Vector module is also a supplementary module that defines 2D and 3D vector classes and implements all
vector operations.

97

11. IMPLEMENTATION OF THE PATH-TRACING ALGORITHM 98

Figure 11.2: UML class diagram of the path tracer

11.1. VECTOR MODULE 99

11.1 Vector module

11.1.1 Point3D class

ThePoint3D class defines a 3D point and implements all operations, including addition, subtraction, scalar and
vector products, multiplication and division with a scalar, length computation and normalization. TypeVector3D

is equivalent toPoint3D .

//===
class Point3D { // 3D point in Cartesian coordinates
//===

Coord x, y, z;
public:

Point3D(Coord x0 = 0, Coord y0 = 0, Coord z0 = 0) { x = x0; y = y0; z = z0; }
Point3D operator-() { return Point3D(-x, -y, -z); }
Point3D operator+(Point3D& p) { return Point3D(x + p.x, y + p.y, z + p.z); }
Point3D operator-(Point3D& p) { return Point3D(x - p.x, y - p.y, z - p.z); }
void operator+=(Point3D& p) { x += p.x; y += p.y; z += p.z; }
void operator/=(double d) { x /= d; y /= d; z /= d; }
Point3D operator*(double s) { return Point3D(x * s, y * s, z * s); }
Point3D operator/(double s) { return Point3D(x / s, y / s, z / s); }
Point3D operator%(Point3D& v) { // vector product

return Point3D(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
}
double operator*(Point3D& p) { return (x * p.x + y * p.y + z * p.z); }
double Length() { return sqrt(x * x + y * y + z * z); }
void Normalize() { *this = (*this) * (1/Length()); }

Coord& X() { return x; }
Coord& Y() { return y; }
Coord& Z() { return z; }

};

typedef Point3D Vector3D;

11.1.2 Transformation class

ClassTransform3D represents a homogeneous linear transformation, which can be built according to different
transformation types, can be concatenated and can be applied to 3D points.

//===
class Transform3D { // 3D homogeneous linear transformation
//===

double m[4][4]; // 4 x 4 transformation matrix
public:

Transform3D();
Transform3D(Point3D v1, Point3D v2 , Point3D v3, Point3D v4);
Point3D Transform(Point3D& p);

};

11.2 Container module

TheArray is a container class that implements a generic, dynamic array. Dynamic array means that the maximum
number of elements is not fixed, but the array may reallocate itself if an index refers to an element that has not
been defined yet.

//---
template < class Type > class Array {
//---

int alloc_size; // allocated number of elements
int size; // maximum index of used elements
Type * array; // start address on the heap

public:
Array(int s = 0);
Type& operator[] (int idx);
int Size() { return size; }

};

11.3. COLOR MODULE 100

11.3 Color module

Colors are defined by theSColor class. Objects of this class are spectrum functions whose values are stored in
arrayI on wavelengths stored in arraylambdas . TheColorMatch member function computes the equivalentR,
G,B primaries.SColor also provides a set of operations on spectra, including addition, subtraction, multiplication
and division by a scalar, etc.

//===
class SColor { // spectrum
//===

static double lambdas[NLAMBDA]; // wavelengths
double I[NLAMBDA]; // intensities

void ColorMatch(double lambda, double& r, double& g, double& b);
public:

SColor() { for(int l = 0; l < NLAMBDA; l++) I[l] = 0; }
SColor(double gray) { for(int l = 0; l < NLAMBDA; l++) I[l] = gray; }

double& Int(int l) { return I[l]; }

SColor operator*(double s) {
SColor res; for(int l = 0; l < NLAMBDA; l++) res.I[l] = I[l] * s; return res;

}
SColor operator*(SColor& m) {

SColor res; for(int l = 0; l < NLAMBDA; l++) res.I[l] = I[l] * m.I[l]; return res;
}
void operator*=(SColor& m) { (*this) = (*this) * m; }
SColor operator/(double d) {

SColor res; for(int l = 0; l < NLAMBDA; l++) res.I[l] = I[l] / d; return res;
}
void operator/=(double d) { (*this) = (*this) / d; }
SColor operator+(SColor& d) {

SColor res; for(int l = 0; l < NLAMBDA; l++) res.I[l] = I[l] + d.I[l]; return res;
}
void operator+=(SColor& d) { (*this) = (*this) + d; }
double Luminance() {

double sum = 0; for(int l = 0; l < NLAMBDA; l++) sum += I[l] / NLAMBDA; return sum;
}

int operator!=(double c) { return (c != Luminance()); }

double Red();
double Green();
double Blue();

};

11.4 Material models

The optical response to a point lightsource and to spherical illumination are defined by a BRDF function and an
albedo, respectively. The return value of aBRDFis a spectrum since the BRDF can depend on the wavelength. In
path tracing the albedo is used to randomly terminate the walk. Since the albedo is also wavelength dependent,
its luminance value is used as a probability of continuing the walk. To realize importance sampling, material
models also have aNextDirection member function which generates a random directionL with a probability
that is approximately proportional to the BRDF times the cosine of the angle between the surface normal and
the generated direction. TheUNIFORM(i) macro provides a pseudo-random or quasi-random value uniformly
distributed in[0; 1]. Its input parameter is relevant only for quasi-Monte Carlo quadrature, whenUNIFORM(i)

generates the next sample in theith independent low-discrepancy series. Note that when looking at the Neumann
series as a high-dimensional integral, the direction of each next bounce corresponds to two additional integration
variables and Russian-roulette also uses a new variable at each bounce. Low-discrepancy series number 0 and 1
are used for sampling the pixel area. Series number 2 is involved in the decision whether the first bounce is to be
computed by Russian-roulette. Series number 3 and 4 are used to determine the direction of the first bounce, etc.

11.4. MATERIAL MODELS 101

11.4.1 Diffuse material class

Diffuse materials reflect light uniformly into all directions. TheBRDFof the DiffuseMaterial class is thus
constant. For importance sampling, functionNextDirection generates a random direction inL with a proba-
bility density that is proportional to the cosine of the outgoing angle. The function also returns the probability of
the generated sample which will be used to divide the contribution of the selected direction, as required by impor-
tance sampling. Note that this function also gets parameterd that selects which low-discrepancy series should be
sampled. This parameter is equal to the index of the bounce actually computed.

//===
class DiffuseMaterial {
//===

SColor Kd;
public:

SColor& kd() { return Kd; }
SColor BRDF(Vector3D& L, Vector3D& N, Vector3D& V) { return Kd; }

double NextDirection(Vector3D& L, Vector3D& N, Vector3D& V, int d) {
double u = UNIFORM(3*d + 3), v = UNIFORM(3*d + 4);

double theta = asin(sqrt(u)), phi = M_PI * 2.0 * v;
Vector3D O = N %Vector3D(0, 0, 1);
if (O.Length() < EPSILON) O = N % Vector3D(0, 1, 0);
Vector3D P = N % O;
L = N * cos(theta) + O * sin(theta) * cos(phi) + P * sin(theta) * sin(phi);
double prob = cos(theta) / M_PI;
return prob;

}
double AverageAlbedo(Vector3D& N, Vector3D& V) { return Kd.Luminance() * M_PI; }

};

11.4.2 Ideal mirror class

An ideal mirror reflects light only to the ideal reflection direction. Its BRDF is thus infinite at a single direction
and zero in all other directions. Such a Dirac-delta function cannot be represented directly, thus this class does not
have BRDF member function. Instead, we can determine the direction in which reflection can happen by function
NextDirection .

//===
class IdealReflector {
//===
public:

SColor& kr(Vector3D& N, Vector3D& V);

double NextDirection(Vector3D& L, Vector3D& N, Vector3D& V) {
L = N * (N * V) * 2 - V; return 1;

}
double AverageAlbedo(Vector3D& N, Vector3D& V) { return kr(N, V).Luminance(); }

};

Functionkr may compute the Fresnel function on different wavelengths. For plastics,kr is usually assumed to
be constant. For metals, however, the wavelength and incident angle dependency defined by the Fresnel function is
not negligible. The following program provides the complex refraction index of aluminum and gold, and computes
the values of the Fresnel function.

#define NREFIDX 8

struct RefIdx {double lambda, n, k; }
alu[NREFIDX] = {

{400, 0.4900, 4.8600},
{450, 0.6180, 5.4700},
{500, 0.7690, 6.0800},
{550, 0.9580, 6.6900},
{600, 1.2000, 7.2600},
{650, 1.4700, 7.7900},
{700, 1.8300, 8.3100},
{750, 2.4000, 8.6200}

},

11.4. MATERIAL MODELS 102

gold[NREFIDX] = {
{400, 1.6580, 1.9560},
{450, 1.5102, 1.8788},
{500, 0.8469, 1.8753},
{550, 0.3485, 2.7144},
{600, 0.2177, 2.9097},
{650, 0.1676, 3.1138},
{700, 0.1605, 3.9784},
{750, 0.1680, 4.5886},

};

//===
class FresnelFunction {
//===

Array<RefIdx> refidx;
public:

FresnelFunction(RefIdx r[]) { for(int l = 0; l < NREFIDX; l++) refidx[l] = r[l]; }
double Fresnel(double lambda, double theta) {

double n, k;
for(int l = 1; l < refidx.Size(); l++) { // linear interpolation for n,k

if (lambda < refidx[l].lambda) {
double la2 = lambda - refidx[l-1].lambda;
double la1 = refidx[l].lambda - lambda;
double la = la1 + la2;
n = (la1 * refidx[l-1].n + la2 * refidx[l].n)/la;
k = (la1 * refidx[l-1].k + la2 * refidx[l].k)/la;
break;

}
}
double t1 = n*n - k*k - sin(theta) * sin(theta);
double t2 = sqrt(t1*t1 + 4.0*n*n*k*k);
double a2 = 0.5 * (t2 + t1), a = sqrt(a2);
double t3 = a2 + 0.5 * (t2 - t1);
double t4 = 2.0 * a * cos(theta);
double fsd = (t3 + t4 + cos(theta) *cos(theta));
double Fs = (fsd > EPSILON) ? (t3 - t4 + cos(theta) *cos(theta))/fsd : 0;
double t5 = 2.0 * a * sin(theta) * tan(theta);
double t6 = t3 + sin(theta)*sin(theta) * tan(theta)*tan(theta);
double Fp = (t6 + t5 > EPSILON) ? Fs * (t6 - t5)/(t6 + t5) : 0;
return ((Fp + Fs)/2.0);

}
};

11.4.3 Ideal refracting material class

An ideal refracting material can also refract into a single direction which is computed byNextDirection from the
refraction index of the material (N). Input parameters also include variableout that indicates whether the surface
has been approached from outside the material or from inside the material. If we come from inside, then we should
use reciprocal of the refraction index during the computation. The return value of the function shows whether or
not there is refraction direction due tototal reflection.

//===
class IdealRefractor {
//===

SColor Kt;
double N;

public:
IdealRefractor() : Kt(0) { N = 1; }
SColor& kt() { return Kt; }
double& n() { return N; }
double NextDirection(Vector3D& L, Vector3D& N, Vector3D& V, BOOL out) {

double cn = (out) ? n() : 1.0/n();
double cosa = N * V;
double disc = 1 - (1 - cosa * cosa) / cn / cn;
if (disc < 0) return 0;
L = N * (cosa / cn - sqrt(disc)) - V / cn;
return 1;

}
};

11.4. MATERIAL MODELS 103

11.4.4 Specular material class

TheSpecularMaterial class simulates the reciprocal Phong type reflection. TheKs reflection coefficient is the
approximation of the albedo. As for ideal mirrorsKs can be supposed to be constant or set proportionally to the
Fresnel function. Theshine parameter describes how smooth the surface is.

//===
class SpecularMaterial {
//===

SColor Ks;
double shine;

public:
SpecularMaterial() : Ks(0) { shine = 10; }
SColor& ks() { return Ks; }
double& Shine() { return shine; }
SColor BRDF(Vector3D& L, Vector3D& N, Vector3D& V);

double NextDirection(Vector3D& L, Vector3D& N, Vector3D& V, double d) {
double u = UNIFORM(3*d + 3), v = UNIFORM(3*d + 4);
double cos_ang_V_R = pow(u, 1.0/(shine+1));
double sin_ang_V_R = sqrt(1.0 - cos_ang_V_R * cos_ang_V_R);

Vector3D O = V %Vector3D(0, 0, 1);
if (O.Length() < EPSILON) O = V % Vector3D(0, 1, 0);
Vector3D P = O % V;
Vector3D R = O * sin_ang_V_R * cos(2.0 * M_PI * v) +

P * sin_ang_V_R * sin(2.0 * M_PI * v) +
V * cos_ang_V_R;

L = N * (N * R) * 2.0 - R;
double cos_ang_N_L = N * L;
if (cos_ang_N_L < 0) return 0;
double prob = (shine+1)/2/M_PI * pow(cos_ang_V_R, shine);
return prob;

}
double AverageAlbedo(Vector3D& N, Vector3D& V) { return ks().Luminance() * (N * V); }

};

11.4.5 General material class

A general material may reflect some portion of the incoming light diffusely, some other portion specularly or as
an ideal mirror, and may also refract some portion according to the law of refraction. Thus a general material
combines the properties of all elementary material models.

BRDF sampling select from the elementary BRDFs randomly, according to the average albedos. Member func-
tion SelectReflectionModel makes this random selection and stores the result in theselected material

variable, or it may decide that the random walk should be terminated according to Russian-roulette. The calcula-
tion of the next random direction and the BRDF is based on only the selected model. Since in the program direct
lightsource calculation handles only point lightsources and the probability that a random direction finds a point
lightsource is zero, direct lightsource calculation uses only diffuse and specular components. To prepare for this,
variableselected material is reset by theDeselectReflectionModel function.

//===
class GeneralMaterial : public DiffuseMaterial, public SpecularMaterial,

public IdealReflector, public IdealRefractor {
//===

enum {NO, DIFFUSE, SPECULAR, REFLECTOR, REFRACTOR, INCOHERENT} selected_material;
public:

GeneralMaterial() { selected_material = INCOHERENT; }

double SelectReflectionModel(Vector3D& N, Vector3D& V, int d) {
double akd = DiffuseMaterial :: AverageAlbedo(N, V);
double aks = SpecularMaterial :: AverageAlbedo(N, V);
double akr = kr(N, V).Luminance();
double akt = kt().Luminance();
double r = UNIFORM(3*d + 2);
if ((r -= akd) < 0) { selected_material = DIFFUSE; return akd; }
if ((r -= aks) < 0) { selected_material = SPECULAR; return aks; }
if ((r -= akr) < 0) { selected_material = REFLECTOR; return akr; }
if ((r -= akt) < 0) { selected_material = REFRACTOR; return akt; }
selected = NO; return 0.0; // russian roulette

}

11.5. LIGHT MODULE 104

double NextDirection(Vector3D& L, Vector3D& N, Vector3D& V, BOOL out, int d) {
switch (selected_material) {
case DIFFUSE: return DiffuseMaterial :: NextDirection(L, N, V, d);
case SPECULAR: return SpecularMaterial :: NextDirection(L, N, V, d);
case REFLECTOR: return IdealReflector :: NextDirection(L, N, V);
case REFRACTOR: return IdealRefractor :: NextDirection(L, N, V, out);
default: return 0;
}

}
void DeselectReflectionModel() { selected_material = INCOHERENT; }
SColor BRDF(Vector3D& L, Vector3D& N, Vector3D& V) {

double cost;
switch (selected_material) {
case DIFFUSE: return DiffuseMaterial :: BRDF(L, N, V);
case SPECULAR: return SpecularMaterial :: BRDF(L, N, V);
case REFLECTOR: cost = N * L;

if (cost > EPSILON) return (kr(N, V) / cost);
else return SColor(0);

case REFRACTOR: cost = -(N * L);
if (cost > EPSILON) return (kt() / cost);
else return SColor(0);

case ALL: return (DiffuseMaterial :: BRDF(L, N, V) +
SpecularMaterial :: BRDF(L, N, V));

default: return SColor(0);
}

}
};

11.5 Light module

In addition to the background light, illumination can be introduced in two ways. Either primitives may have
non-zero emission, or abstract, point-lightsources may be placed at certain locations.

11.5.1 Emitter class

An Emitter emits light:

//===
class Emitter {
//===

SColor LE;
public:

SColor& Le() { return LE; }
};

11.5.2 Positional light class

PositionalLight represents abstract, point-lightsources:

//===
class PositionalLight {
//===

Point3D pos;
SColor intensity;

public:
PositionalLight(Point3D& p, SColor& inten) : intensity(inten), pos(p) { }
Point3D& Pos() { return pos; }
Vector3D LightDir(Point3D& x) { return (pos - x).Normalize(); }
SColor Le(Point3D& x, Vector3D& dir) { return (intensity / ((x-pos)*(x-pos)*4*M_PI)); }

};

11.6. MODEL MODULE 105

11.6 Model module

A virtual world model is hierarchical. A model is built of objects which, in turn, consist of primitives.

11.6.1 Primitive class

A Primitive3D is defined by its material properties and by its geometry. The geometry can be interrogated by
two functions:Intersect answers whether or not a ray intersects the object;Normal provides the normal vector
at a surface point.

//===
class Primitive3D : public Emitter, public GeneralMaterial {
//===
public:

virtual double Intersect(Ray& r) = 0;
virtual Vector3D Normal(Point3D& x) = 0;

};

In order to implement the geometric queries, the shape of the object must be known. For example, aSphere

class can be defined in the following way:

//===
class Sphere : public Primitive3D {
//===

Point3D center;
double radius;

public:
Sphere(Point3D& cent, double rad) { center = cent; radius = rad; }

Vector3D Normal(Point3D& x) { return ((x - center)/radius); }

double Intersect(Ray& r) {
Vector3D dist = r.Start() - center;
double b = (dist * r.Dir()) * 2.0;
double a = (r.Dir() * r.Dir());
double c = (dist * dist) - radius * radius;

double discr = b * b - 4.0 * a * c;
if (discr < 0) return -1;
double sqrt_discr = sqrt(discr);
double t1 = (-b + sqrt_discr)/2.0/a;
double t2 = (-b - sqrt_discr)/2.0/a;
if (t1 < EPSILON) t1 = -EPSILON;
if (t2 < EPSILON) t2 = -EPSILON;
if (t1 < 0 && t2 < 0) return -1;

double t;
if (t1 < 0 && t2 >= 0) t = t2;
else if (t2 < 0 && t1 >= 0) t = t1;
else if (t1 < t2) t = t1;
else t = t2;
return t;

}
};

11.6.2 Object class

An Object3D is a collection of primitives and a transform that moves the primitives from the local modeling
coordinate system to the world coordinate system.

//===
class Object3D {
//===

Array<Primitive3D *> prs;
Transform3D tr;

public:
void AddPrimitive(Primitive3D * p) { prs[prs.Size()] = p; }
Primitive3D * Primitive(int i) { return prs[i]; }
Transform3D& Transform() { return tr; }
int PrimitiveNum() { return prs.Size(); }

};

11.7. CAMERA MODULE 106

11.6.3 Virtual world class

The virtual world is a collection of objects.

//===
class VirtualWorld {
//===

Array<Object3D *> objs;
public:

Object3D * Object(int o) { return objs[o]; }
void AddObject(Object3D * o) { objs[objs.Size()] = o; }
int ObjectNum() { return objs.Size(); }

};

11.7 Camera module

A Camera3D is a collection of parameters that define a generally positioned and oriented 3D camera with general
zoom settings.

vrp

x

y

z

u
v

w
eye

window

vpn

Figure 11.3: Parameters of the camera

TheGetRay function provides a ray which starts at the eye and goes through the specified point on the window.

//===
class Camera3D {
//===
protected:

Point3D vrp;
Vector3D vpn, vup, eye,u, v, w, world_eye;
RectAngle window, viewport;

void CalcViewTranform() {
w = vpn; w.Normalize();
u = w % vup; u.Normalize();
v = u % w;
Transform3D Tuvw(u, v, w, vrp);
world_eye = Tuvw.Transform(eye);

}
public:

void SetCamera(Point3D& vrp0, Vector3D& vpn0, Vector3D& vup0,
Vector3D& eye0, RectAngle& window0) {

vrp = vrp0; vpn = vpn0; vup = vup0; eye = eye0; window = window0;
}
RectAngle Viewport() { return viewport; }
void SetViewport(RectAngle v) { viewport = v; }
Ray GetRay(Coord X, Coord Y) {

double x, y;
x = window.HSize()/viewport.HSize() * (X - viewport.HCenter());
y = window.VSize()/viewport.VSize() * (Y - viewport.VCenter());
Vector3D dir = u * x + v * y ;
return Ray(world_eye + vrp, dir);

}
};

11.8. SCENE MODULE 107

11.8 Scene module

11.8.1 Scene class

The scene consists of a virtual world model, a camera, a number of abstract lightsources and also the background
illumination (i.e. sky-light).

//===
class Scene {
//===

VirtualWorld world; // virtual world model
Camera3D camera; // camera
Array< PositionalLight * > lightsources; // abstract, point-lightsources
SColor La; // background illumination

Primitive3D * Intersect(Ray& r, Point3D& x);
BOOL IntersectShadow(Ray r, double maxt);
SColor DirectLightsource(Primitive3D * q, Vector3D& V, Vector3D& N, Point3D& x);
SColor Trace(Ray r, int depth);

public:
void Define();
void Render();

};

11.9 Dynamic model of path tracing

The main controller of the program is theScene class. The operation is shown in the sequence diagram of
figure 11.4.

11.9.1 Finding the visible primitive

The Intersect member function finds that primitive which is first intersected by the ray, and returns both the
primitive and the location of the intersection (x).

//---
Primitive3D * Scene :: Intersect(Ray& r, Point3D& x) {
//---

double t = -1;
Primitive3D * po = NULL;
for(int actobj = 0; actobj < world.ObjectNum(); actobj++) {

for(int actprim = 0; actprim < world.Object(actobj)->PrimitiveNum(); actprim++) {
Primitive3D * p = world.Object(actobj)->Primitive(actprim);
double tnew = p -> Intersect(r);
if (tnew > 0 && (tnew < t || t < 0)) { t = tnew; po = p; }

}
}
if (t > 0) x = r.Start() + r.Dir() * t;
return po;

}

11.9.2 Detecting the visible lightsources

The IntersectShadow function checks whether or not a point lightsource is visible from a point. It traces the
shadow rays until the maximal ray-parametermaxt corresponding to the lightsource, and checks whether any
object is intersected before reaching the lightsource.

//---
BOOL Scene :: IntersectShadow(Ray r, double maxt) {
//---

for(int actobj = 0; actobj < world.ObjectNum(); actobj++) {
for(int actprim = 0; actprim < world.Object(actobj)->PrimitiveNum(); actprim++) {

Primitive3D * p = world.Object(actobj)->Primitive(actprim);
double t = p -> Intersect(r);
if (t > 0 && t < maxt) return TRUE;

}
}
return FALSE;

}

11.9. DYNAMIC MODEL OF PATH TRACING 108

Figure 11.4: Sequence diagram of path tracer

11.9. DYNAMIC MODEL OF PATH TRACING 109

11.9.3 Direct lightsource computation

Member functionDirectLightsource determines the single reflection of point lightsources.

//---
SColor Scene :: DirectLightsource(Primitive3D * q, Vector3D& V, Vector3D& N, Point3D& x) {
//---

q->DeselectReflectionModel();
SColor c;
for(int l = 0; l < lightsources.Size(); l++) {

Vector3D L = lightsources[l] -> Pos() - x;
double lightdist = L.Length();
L /= lightdist;
if (IntersectShadow(Ray(x, L), lightdist) == FALSE) { // is lightsource occluded?

double cost = N * L;
if (cost > 0) c += q->BRDF(L, N, V) * lightsources[l] -> Le(x, -L) * cost;

}
}
return c;

}

11.9.4 Path tracing

The core of the program is theTrace function which recursively traces rays. On a single level of the recursion a ray
passed as a parameter is traced and the point hit by the ray is identified. The sum of the emission and the reflection
of the direct lightsources is computed. In order to continue the walk, first an elementary BRDF model is selected
according to the average albedos or it is decided that the walk is stopped according to Russian roulette. If the walk
is to be continued, then a random next direction is found using BRDF sampling. The radiance coming from this
new direction is computed by the recursive call of the same function. The incoming radiance is multiplied by the
BRDF and the cosine of the incoming angle and divided by the selection probability as required by importance
sampling.

//---
SColor Scene :: Trace(Ray r, int d) {
//---

if (d > MAXDEPTH) return La;
Point3D x;
Primitive3D * q = Intersect(r, x);
if (q == NULL) return La;

Vector3D normal = q -> Normal(x);
BOOL out = TRUE;
if (normal * (-r.Dir()) < 0) { normal = -normal; out = FALSE; }

SColor c = q -> Le(x, -r.Dir());
c += DirectLightsource(q, -r.Dir(), normal, x);

double prob = q->SelectReflectionModel(normal, -r.Dir(), d);
if (prob < EPSILON) return c; // Russian roulette

Vector3D newdir;
prob *= q->NextDirection(newdir, normal, -r.Dir(), out, d);
if (prob < EPSILON) return c;

double cost = newdir * normal;
if (cost < 0) cost = -cost;
if (cost > EPSILON) {

SColor w = q->BRDF(newdir, normal, -r.Dir()) * cost;
if (w.Luminance() > EPSILON) c += PathTrace(Ray(x, newdir), d+1) * w / prob;

}
return c;

}

Note that theTrace function also gets the level of recursion as a second parameter. On the one hand, this can
be used to deterministically truncate the Neumann series. On the other hand, this depth parameter selects which
low-discrepancy series should be used to find the next sample of the integral quadrature.

11.9. DYNAMIC MODEL OF PATH TRACING 110

11.9.5 Rendering complete images

Rendering sends a number of rays through each pixel, gets their radiances and sets the pixel color according to
their averages.

//---
void Scene :: Render() {
//---

for(int y = 0; y < camera.Viewport().VSize(); y++) { // for each pixel of the viewport
for(int x = 0; x < camera.Viewport().HSize(); x++) {

SColor col(0);
for(int i = 0; i < NSAMPLE; i++) { // NSAMPLE samples are computed

double dx = UNIFORM(0) - 0.5; // uniform distribution on the pixel
double dy = UNIFORM(1) - 0.5;
Ray r = camera.GetRay(x + dx, y + dy); // Calculate the ray
col += Trace(r, 0); // Calculate the power of the ray

}
col /= NSAMPLE; // average
WritePixel(x, y, col);

}
}

}

BIBLIOGRAPHY

[Ábr97] Gy.Ábrahám. Optika. Panem-McGraw-Hill, Budapest, 1997.

[AH93] L. Aupperle and P. Hanrahan. A hierarchical illumination algorithms for surfaces with glossy reflection.Computer
Graphics (SIGGRAPH ’93 Proceedings), pages 155–162, 1993.

[AK90] J. Arvo and D. Kirk. Particle transport and image synthesis. InComputer Graphics (SIGGRAPH ’90 Proceedings),
pages 63–66, 1990.

[Arv95] J. Arvo. Stratified sampling of spherical triangles. InComputer Graphics (SIGGRAPH ’95 Proceedings), pages
437–438, 1995.

[BBS96] G. Baranoski, R. Bramley, and P Shirley. Fast radiosity solutions for environments with high average reflectance.
In Rendering Techniques ’96, pages 345–355, 1996.

[Bek97] P. Bekaert. Error control for radiosity. InRendering Techniques ’97 (8th Eurographics Workshop on Rendering),
Porto, Portugal, 1997.

[BF89] C. Buckalew and D. Fussell. Illumination networks: Fast realistic rendering with general reflectance functions.
Computer Graphics (SIGGRAPH ’89 Proceedings), 23(3):89–98, July 1989.

[BKP91] J. C. Beran-Koehn and M. J. Pavicic. A cubic tetrahedral adaptation of the hemicube algorithm. In James Arvo,
editor,Graphics Gems II, pages 299–302. Academic Press, Boston, 1991.

[Bli77] J. F. Blinn. Models of light reflection for computer synthesized pictures. InComputer Graphics (SIGGRAPH ’77
Proceedings), pages 192–198, 1977.

[BNN+98] P. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y. Willems. Hierarchical Monte-Carlo radiosity. InRender-
ing Techniques ’98, pages 259–268, 1998.

[BS63] P. Beckmann and A. Spizzichino.The Scattering of Electromagnetic Waves from Rough Surfaces. MacMillan,
1963.

[BS95] P. Bodrogi and J. Schanda. Testing the calibration model of colour crt monitors.Displays, 16(3):123–133, 1995.

[CG85] M. Cohen and D. Greenberg. The hemi-cube, a radiosity solution for complex environments. InComputer
Graphics (SIGGRAPH ’85 Proceedings), pages 31–40, 1985.

[Chi88] H. Chiyokura.Solid Modelling with DESIGNBASE. Addision Wesley, 1988.

[CLSS97] P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. Clustering for glossy global illumination.ACM
Transactions on Graphics, 16(1):3–33, 1997.

[CMS98] F. Castro, R. Martinez, and M. Sbert. Quasi Monte-Carlo and extended first-shot improvements to the multi-path
method. InSpring Conference on Computer Graphics ’98, pages 91–102, 1998.

[CPC84] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. InComputer Graphics (SIGGRAPH ’84 Proceed-
ings), pages 137–145, 1984.

[CSK98] B. Csébfalvi and L. Szirmay-Kalos. Interactive volume rotation.Machine Graphics and Vision, 7(4):793–806,
1998.

[CSSD96] P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose. Global illumination of glossy environments
using wavelets and importance.ACM Transactions on Graphics, 15(1):37–71, 1996.

[CT81] R. Cook and K. Torrance. A reflectance model for computer graphics.Computer Graphics, 15(3), 1981.

[Dav54] H. Davis. The reflection of electromagnetic waves from a rough surface. InProceedings of the Institution of
Electrical Engineers, volume 101, pages 209–214, 1954.

[DBW97] Ph. Dutre, Ph. Bekaert, and Y. D. Willems. Bidirectional radiosity. InRendering Techniques ’97, pages 205–216,
1997.

[Deá89] I. Deák. Random Number Generators and Simulation. Akadémia Kiadó, Budapest, 1989.

[DLW93] Ph. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light tracing with direct computation of pixel intensities.
In Compugraphics ’93, pages 128–137, Alvor, 1993.

[DW96] Ph. Dutre and Y. D. Willems. Potential-driven Monte Carlo particle tracing for diffuse environments with adaptive
probability functions. InRendering Techniques ’96, pages 306–315, 1996.

111

BIBLIOGRAPHY 112

[Erm75] S.M. Ermakow.Die Monte-Carlo-Methode und verwandte Fragen. R. Oldenbourg Verlag, Wien, 1975.

[FP94] M. Feda and W. Purgathofer. A median cut algorithm for efficient sampling of radiosity functions. InEurograph-
ics’94, 1994.

[Gla95] A. Glassner.Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, Inc., San Francisco, 1995.

[Hec91] P. S. Heckbert.Simulating Global Illumination Using Adaptive Meshing. PhD thesis, University of California,
Berkeley, 1991.

[Her91] Ivan Herman.The Use of Projective Geometry in Computer Graphics. Springer-Verlag, Berlin, 1991.

[HMF98] M. Hyben, I. Martisovits, and A. Ferko. Scene complexity for rendering in flatland. In L. Szirmay-Kalos, editor,
Spring Conference on Computer Graphics, pages 112–120, 1998.

[HSA91] P. Hanrahan, D. Salzman, and L. Aupperle. Rapid hierachical radiosity algorithm.Computer Graphics (SIG-
GRAPH ’91 Proceedings), 1991.

[HTSG91] X. He, K. Torrance, F. Sillion, and D. Greenberg. A comprehensive physical model for light reflection.Computer
Graphics, 25(4):175–186, 1991.

[ICG86] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for non-diffuse environments. InComputer
Graphics (SIGGRAPH ’86 Proceedings), pages 133–142, 1986.

[JC95] H. W. Jensen and N. J. Christensen. Photon maps in bidirectional Monte Carlo ray tracing of complex objects.
Computers and Graphics, 19(2):215–224, 1995.

[JC98] H. W. Jensen and P. H. Christensen. Efficient simulation of light transport in scenes with participating media
using photon maps.Computers and Graphics (SIGGRAPH ’98 Proceedings), pages 311–320, 1998.

[Jen95] H. W. Jensen. Importance driven path tracing using the photon maps. InRendering Techniques ’95, pages 326–
335, 1995.

[Jen96] H. W. Jensen. Global illumination using photon maps. InRendering Techniques ’96, pages 21–30, 1996.

[JGMHe88] K. I. Joy, C. W. Grant, N. L. Max, and Lansing Hatfield (editors).Computer Graphics: Image Synthesis. IEEE
Computer Society Press, Los Alamitos, CA., 1988.

[Kaj86] J. T. Kajiya. The rendering equation. InComputer Graphics (SIGGRAPH ’86 Proceedings), pages 143–150,
1986.

[Kel95] A. Keller. A quasi-Monte Carlo algorithm for the global illumination in the radiosity setting. In H. Niederreiter
and P. Shiue, editors,Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 239–251.
Springer, 1995.

[Kel96a] A. Keller. Quasi-Monte Carlo Radiosity. In X. Pueyo and P. Schr¨oder, editors,Rendering Techniques ’96 (Proc.
7th Eurographics Workshop on Rendering), pages 101–110. Springer, 1996.

[Kel96b] A. Keller. The fast Calculation of Form Factors using Low Discrepancy Sequences. InProc. Spring Conference
on Computer Graphics (SCCG ’96), pages 195–204, Bratislava, Slovakia, 1996. Comenius University Press.

[Kel97] A. Keller. Instant radiosity.Computer Graphics (SIGGRAPH ’97 Proceedings), pages 49–55, 1997.

[Knu81] D.E. Knuth.The art of computer programming. Volume 2 (Seminumerical algorithms). Addison-Wesley, Reading,
Mass. USA, 1981.

[Kón85] A. Kónya.Fizikai kézikönyv műszakiaknak. Műszaki Könyvkiadó, Budapest, 1985.

[Kra89] G. Krammer. Notes on the mathematics of the phigs output pipeline.Computer Graphics Forum, 8(8):219–226,
1989.

[Lan91] B. Lantos.Robotok Irányitása. Akadémiai Kiadó, Budapest, Hungary, 1991. (in Hungarian).

[LB94] B. Lange and B. Beyer. Rayvolution: An evolutionary ray tracing algorithm. InPhotorealistic Rendering Tech-
niques, pages 136–144, 1994.

[Lep80] G. P. Lepage. An adaptive multidimensional integration program. Technical Report CLNS-80/447, Cornell
University, 1980.

[Lew93] R. Lewis. Making shaders more physically plausible. InRendering Techniques ’93, pages 47–62, 1993.

[LW93] E. Lafortune and Y. D. Willems. Bi-directional path-tracing. InCompugraphics ’93, pages 145–153, Alvor, 1993.

[LW94] E. Lafortune and Y. D. Willems. Using the modified phong reflectance model for physically based rendering.
Technical Report RP-CW-197, Department of Computing Science, K.U. Leuven, 1994.

[LW96] E. Lafortune and Y. D. Willems. A 5D tree to reduce the variance of Monte Carlo ray tracing. InRendering
Techniques ’96, pages 11–19, 1996.

[Mát81] L. Máté. Funkcionálanalı́zis műszakiaknak. Műszaki Könyvkiadó, Budapest, 1981.

[Min41] M. Minnaert. The reciprocity principle in lunar photometry.Astrophysical Journal, 93:403–410, 1941.

[Mit92] D. Mitchell. Ray Tracing and Irregularities of Distribution. InRendering Techniques ’92 (Proc. 3rd Eurographics
Workshop on Rendering), pages 61–69, Bristol, UK, 1992.

BIBLIOGRAPHY 113

[Mit96] D. P. Mitchell. Consequences of stratified sampling in graphics.Computer Graphics (SIGGRAPH ’96 Proceed-
ings), pages 277–280, 1996.

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by fast
computing machines.Journal of Chemical Physics, 21:1087–1091, 1953.

[Nem90] A. Nemcsics.Sz´ındinamika, sz´ınes környezet m´erése. BME, Budapest, 1990.

[Neu95] L. Neumann. Monte Carlo radiosity.Computing, 55:23–42, 1995.

[NFKP94] L. Neumann, M. Feda, M. Kopp, and W. Purgathofer. A new stochastic radiosity method for highly complex
scenes. InProc. of the 5th. EG Workshop on Rendering, 1994.

[Nie92] H. Niederreiter.Random number generation and quasi-Monte Carlo methods. SIAM, Pennsilvania, 1992.

[NNB97] L. Neumann, A. Neumann, and P. Bekaert. Radiosity with well distributed ray sets.Computer Graphics Forum
(Eurographics’97), 16(3):261–270, 1997.

[NNSK98a] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Analysis and pumping up the albedo function. Tech-
nical Report TR-186-2-98-20, Institute of Computer Graphics, Vienna University of Technology, 1998.
www.cg.tuwien.ac.at/.

[NNSK98b] L. Neumann, A. Neumann, and L. Szirmay-Kalos. New simple reflectance models for metals and other specular
materials. Technical Report TR-186-2-98-17, Institute of Computer Graphics, Vienna University of Technology,
1998. www.cg.tuwien.ac.at/.

[NNSK99a] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Compact metallic reflectance models.Computer Graphics
Forum (Eurographics’99), 18(3):161–172, 1999.

[NNSK99b] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Reflectance models with fast importance sampling.Computer
Graphics Forum, 18(4):249–265, 1999.

[NPT+95] L. Neumann, W. Purgathofer, R. F. Tobler, A. Neumann, P. Elias, M. Feda, and X. Pueyo. The stochastic ray
method for radiosity. InRendering Techniques ’95, pages 206–218, 1995.

[ON94] M. Oren and S. Nayar. Generalization of lambert’s reflectance model.Computer Graphics (SIGGRAPH ’94
Proceedings), pages 239–246, 1994.

[Pel97] M. Pellegrini. Monte Carlo approximation of form factors with error bounded a priori.Discrete and Computa-
tional Geometry, 1997.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in C (Second Edition).
Cambridge University Press, Cambridge, USA, 1992.

[Pho75] B. T. Phong. Illumination for computer generated images.Communications of the ACM, 18:311–317, 1975.

[PM95] S. N. Pattanik and S. P. Mudur. Adjoint equations and random walks for illumination computation.ACM Trans-
actions on Graphics, 14(1):77–102, 1995.

[PP98] J. Prikryl and W. Purgathofer. Perceptually based radiosity. InEurographics ’98, STAR — State of the Art Report,
1998.

[PTG95] W. Purgathofer, R. Tobler, and M. Geiler. Improved threshold matrices for ordered dithering. In Alan W. Paeth,
editor,Graphics Gems V, pages 297–301. Academic Press, Boston, 1995.

[Rén62] Alfréd Rényi. Wahrscheinlichkeitsrechnung. VEB Deutscher Verlag der Wissenschaften, Berlin, 1962.

[Rén81] A. Rényi. Valószinűségsz´amı́tás. Tankönyvkiadó, Budapest, Hungary, 1981. (in Hungarian).

[RVW98] G. Renner, T. V´arady, and V. Weiss. Reverse engineering of free-form features. InPROLAMAT 98, CD proceed-
ings, Trento, 1998.

[SAWG91] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illumination solution for general reflectance
distributions.Computer Graphics (SIGGRAPH ’91 Proceedings), 25(4):187–198, 1991.

[Sbe96] M. Sbert. The Use of Global Directions to Compute Radiosity. PhD thesis, Catalan Technical University,
Barcelona, 1996.

[Sbe99] M. Sbert. Optimal absorption probabilities for random walk radiosity.to be published, 1999.

[SC94] F. Sillion and Puech C.Radiosity and Global Illumination. Morgan Kaufmann Publishers, Inc., San Francisco,
1994.

[Sch93] Ch. Schlick. A customizable reflectance model for everyday rendering. InFourth Eurographics Workshop on
Rendering, pages 73–83, Paris, France, 1993.

[Sch96] J. Schanda. CIE colorimetry and colour displays. InIS&T/SID Conf. Scottsdale, 1996.

[SDS95] F. Sillion, G. Drettakis, and C. Soler. Clustering algorithm for radiance calculation in general environments. In
Rendering Techniques ’95, pages 197–205, 1995.

[Se66] J. Shrider (editor).The Monte-Carlo Method. Pergamon Press, Oxford, 1966. Also inThe method of statistical
trials (The Monte Carlo Method), Fizmatgiz, Moscow, 1965.

BIBLIOGRAPHY 114

[SGCH94] P. Schr¨oder, S.J. Gortler, M.F. Cohen, and P. Hanrahan. Wavelet projections for radiosity.Computer Graphics
Forum, 13(2):141–151, 1994.

[SH81] R. Siegel and J. R. Howell.Thermal Radiation Heat Transfer. Hemisphere Publishing Corp., Washington, D.C.,
1981.

[Shi90] P. Shirley. A ray-tracing method for illumination calculation in diffuse-specular scenes. InProc. Graphics
Interface, pages 205–212, 1990.

[Shi91a] P. Shirley. Discrepancy as a quality measure for sampling distributions. InEurographics ’91, pages 183–194.
Elsevier Science Publishers, 1991.

[Shi91b] P. Shirley. Time complexity of Monte-Carlo radiosity. InEurographics ’91, pages 459–466. Elsevier Science
Publishers, 1991.

[SK95] L. Szirmay-Kalos. Stochastic sampling of two-dimensional images. InCOMPUGRAPHICS ’95, Alvor, 1995.

[SK98a] L. Szirmay-Kalos. Global ray-bundle tracing. Technical Report TR-186-2-98-18, Institute of Computer Graphics,
Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.

[SK98b] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination. Technical Report TR-186-2-98-21,
Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.

[SK99a] L. Szirmay-Kalos.Monte-Carlo Methods in Global Illumination. Institute of Computer Graphics, Vienna Uni-
versity of Technology, Vienna, 1999.

[SK99b] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination.Computer Graphics Forum (Euro-
graphics’99), 18(3):233–244, 1999.

[SK99c] L. Szirmay-Kalos.Számı́tógépes grafika. ComputerBooks, Budapest, 1999.

[SKCP98] L. Szirmay-Kalos, B. Cs´ebfalvi, and W. Purgathofer. Importance-driven quasi-Monte Carlo solution of the ren-
dering equation. InWinter School of Computer Graphics ’98, pages 377–386, Plzen, Czech Republic, 1998.

[SKCP99] L. Szirmay-Kalos, B. Cs´ebfalvi, and W. Purgathofer. Importance driven quasi-random walk solution of the ren-
dering equation.Computers and Graphics, 23(2):203–212, 1999.

[SKDP99] L. Szirmay-Kalos, P. Dornbach, and W. Purgathofer. On the start-up bias problem of metropolis sampling. In
Winter School of Computer Graphics ’99, pages 273–280, Plzen, Czech Republic, 1999.

[SKe95] L. Szirmay-Kalos (editor).Theory of Three Dimensional Computer Graphics. Akadémia Kiadó, Budapest, 1995.
http://www.iit.bme.hu/˜szirmay.

[SKF97] L. Szirmay-Kalos and T. F´oris. Radiosity algorithms running in sub-quadratic time. InWinter School of Computer
Graphics ’97, pages 562–571, Plzen, Czech Republic, 1997.

[SKFNC97] L. Szirmay-Kalos, T. F´oris, L. Neumann, and B. Cs´ebfalvi. An analysis to quasi-Monte Carlo integration applied
to the transillumination radiosity method.Computer Graphics Forum (Eurographics’97), 16(3):271–281, 1997.

[SKFP98a] L. Szirmay-Kalos, T. F´oris, and W. Purgathofer. Non-diffuse, random-walk radiosity algorithm with linear basis
functions.Machine Graphics and Vision, 7(1):475–484, 1998.

[SKFP98b] L. Szirmay-Kalos, T. F´oris, and W. Purgathofer. Quasi-Monte Carlo global ray-bundle tracing with infinite number
of rays. InWinter School of Computer Graphics ’98, pages 386–393, Plzen, Czech Republic, 1998.

[SKM95] L. Szirmay-Kalos and G. M´arton. On convergence and complexity of radiosity algorithms. InWin-
ter School of Computer Graphics ’95, pages 313–322, Plzen, Czech Republic, 14–18 February 1995.
http//www.iit.bme.hu/˜szirmay.

[SKP98] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing with hardware acceleration. InRendering
Techniques ’98, pages 247–258, 1998.

[SKP99] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing with infinite number of rays.Computers and
Graphics, 23(2):193–202, 1999.

[SMP98] M. Sbert, R. Martinez, and X. Pueyo. Gathering multi-path: a new Monte-Carlo algorithm for radiosity. InWinter
School of Computer Graphics ’98, pages 331–338, Plzen, Czech Republic, 1998.

[Sob91] I. Sobol.Die Monte-Carlo Methode. Deutscher Verlag der Wissenschaften, 1991.

[SP89] F. Sillion and C. Puech. A general two-pass method integrating specular and diffuse reflection. InComputer
Graphics (SIGGRAPH ’89 Proceedings), pages 335–344, 1989.

[SPNP96] M. Sbert, X. Pueyo, L. Neumann, and W. Purgathofer. Global multipath Monte Carlo algorithms for radiosity.
Visual Computer, pages 47–61, 1996.

[SPS98] M. Stamminger, Slussalek P., and H-P. Seidel. Three point clustering for radiance computations. InRendering
Techniques ’98, pages 211–222, 1998.

[ST93] G. Stoyan and G. Tak´o. Numerikus m´oszerek. ELTE, Budapest, 1993.

[SW93] P. Shirley and C. Wang. Luminaire sampling in distribution ray tracing.SIGGRAPH ’93 Course Notes, 1993.

BIBLIOGRAPHY 115

[SWZ96] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for direct lighting calculations.ACM Transac-
tions on Graphics, 15(1):1–36, 1996.

[Tam92] F. Tampieri. Accurate form-factor computation. In David Kirk, editor,Graphics Gems III, pages 329–333.
Academic Press, Boston, 1992.

[Vea97] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University,
http://graphics.stanford.edu/papers/veachthesis, 1997.

[VG95] E. Veach and L. Guibas. Bidirectional estimators for light transport. InComputer Graphics (SIGGRAPH ’95
Proceedings), pages 419–428, 1995.

[VG97] E. Veach and L. Guibas. Metropolis light transport.Computer Graphics (SIGGRAPH ’97 Proceedings), pages
65–76, 1997.

[VMC97] T. Várady, R. R. Martin, and J. Cox. Reverse engineering of geometric models - an introduction.Computer-Aided
Design, 29(4):255–269, 1997.

[War92] G. Ward. Measuring and modeling anisotropic reflection.Computer Graphics, 26(2):265–272, 1992.

[War95] T. Warnock. Computational investigations of low-discrepancy point sets. In H. Niederreiter and P. Shiue, editors,
Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 354–361. Springer, 1995.

[WCG87] J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to the rendering equation: A synthesis of
ray tracing and radiosity methods. InComputer Graphics (SIGGRAPH ’87 Proceedings), pages 311–324, 1987.

[WS82] G. Wyszecki and W. Stiles.Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New
York, 1982.

[ZS95] K. Zimmerman and P. Shirley. A two-pass solution to the rendering equation with a source visibility preprocess.
In Rendering Techniques ’95, pages 284–295, 1995.

SUBJECT INDEX

1

1-equidistribution 42

5D adaptive tree 57

A

abstract lightsource model 11
acceptance probability 50, 78
adaptive importance sampling 57
adjoint basis 35, 84
adjoint operator 10
albedo 11, 57, 93
ambient light 15
Array 98
Array module 96

B

base 56
Beckmann distribution 24
Bi-directional algorithms 75
bi-directional path-tracing 52, 75
Bi-directional Reflection Distribution Function 11
bi-directional reflection/refraction function 8
BRDF 8, 11, 99
BRDF sampling 57
brick-rule 40

C

camera 1, 12
Camera module 96
camera parameter 13
Camera3D 105
caustics 69
central limit theorem 41
CIE XYZ 3
closed environment 33
clustering 31
coherent component 7
color 2
color matching functions 3
Color module 96
ColorMatch 99
complexity of algorithms

linear equation 85
contraction 14
contribution indicator function 62
cubic tetrahedron 39

D

density 56
DeselectReflectionModel 102

detailed balance 50
differential solid angle 5
diffuse 17
Diffuse material 100
diffuse radiosity 31
DiffuseMaterial 100
dimensional core 41, 52
dimensional explosion 41, 52
Dirac-delta 18
direct contribution 9
direct lightsource calculations 59
directional distributions 31
directional-lightsource 11
DirectLightsource 108
discrepancy 42
distributed ray-tracing 52, 68
domain of discontinuity 53

E

emission 7
Emitter 103
Energy balance 11
energy conservation 17
equidistribution 42
error measure 13
expansion 27
explicit equation 10
explicitly 89
eye 1

F

filtering 13
finite-element method 27, 31, 34
first-shot 82
flux 6
form factor 37
Fresnel coefficients

parallel 18
perpendicular 18

Fresnel equations 18, 25
fundamental law of photometry 6

G

Galerkin’s method 36
gamma-correction 12
gathering 65
gathers 29
Gauss-Seidel iteration 85
Gaussian distribution 24
Gaussian quadrature 40
genetic algorithms 57
geometric optics 18

116

SUBJECT INDEX 117

geometry of the virtual world 1
GetRay 105
global illumination 15
Global illumination solution 15
global importance sampling 57
global lines 81
global method 52, 81
global pass 1, 2
global ray-bundle tracing 81
Grassmann laws 3

H

Halton-sequence 46
Hardy-Krause variation 43
Helmholtz-symmetry 17
hemicube 39
hemisphere algorithm 38
hemispherical projection 38
hidden surface problem 14
hierarchical methods 31
hierarchical radiosity 31
human eye 1, 12

I

ideal mirror 18, 100
illumination hemisphere 5
illumination networks 31
illumination sphere 5
image synthesis 1
image-buffer 12
image-space error measure 13
implicit equation 10
implicitly 89
importance function 60
importance sampling 45, 52
Instant radiosity 80
intensity 6
Intersect 104, 106
IntersectShadow 106
inversion 27
isotropic model 17
iteration 27
Iteration techniques 31, 84

K

k-uniform sequences 88
kd-tree 79
Koksma-Hlawka inequality 44
kr 100
Ks 102

L

lambdas 99
Light 2
Light module 96
light power 1
light-tracing 52, 72
lighting 1, 2
lightsource 11
lightsource sampling 57
links 57

Local illumination methods 14
local importance sampling 57
local method 52
local pass 1
look-up table 12
low-discrepancy 46
low-discrepancy series 45
luminance 60

M

masking 25
Material models module 96
material properties 2
max-Phong BRDF 21
measurement device 1
metamers 3
Metropolis light-transport 78
Metropolis sampling 57
microfacets 23
Model module 96
monitor 12
Monte-Carlo 41
Monte-Carlo radiosity 52
multi-path method 52, 81
multiresolution methods 31

N

NextDirection 99, 100, 101
norm 13
Normal 104

O

object-space error measure 13
Object3D 104
optical material properties 1
out 101
overrelaxation 85

P

parallel computing 30
participating media 2
partitioned hemisphere 31
path-tracing 52, 69, 96
Phong BRDF 20
Photon tracing 71
photon-map 57, 79
physically plausible 11
pinhole camera model 12
point collocation 36
point-lightsource 11
Point3D 98
PositionalLight 103
potential 8
potential equation 9
potential measuring operator 9, 10
power 6
power equation 37
Primitive3D 104
Progressive Monte-Carlo 87
pupil 12

Q

SUBJECT INDEX 118

quasi-Monte Carlo 41
quasi-Monte Carlo quadrature 42

R

radiance 1, 2, 6
radiance measurement operator 8, 10
radiosity method 36
randomization point 86
Ray-casting 66
reciprocal Phong BRDF 20
Reciprocity 11
Recursive ray-tracing 15
reflected/refracted component 7
reflection law 18
rendering 1
rendering equation 2, 8

short form 8
rendering problem 10
RGB 3
Russian roulette 61

S

scalar product 10
scaling value 8
Scene module 96
SColor 99
selectedmaterial 102
SelectReflectionModel 102
sensitivity function 8
shadow ray 66
shadowing 25
shine 102
shooting 30, 65, 70
Simpson-rule 40
sky-light illumination 11
Snellius-Descartes-law 20
solid angle 5
Southwell-iteration 85
specular reflection 20

probabilistic treatment 23
Torrance–Sparrow model 23

SpecularMaterial 102
Sphere 104
spherical coordinate system 5
splitting 29
standard NTSC phosphors 4
star-discrepancy 42
stochastic iteration 31, 85
stochastic radiosity 90
Stochastic ray-radiosity 91
stratification 45
surface 10

T

tentative path 78
tentative sample 50
tentative transition function 50, 78
tessellation 10
theorem of iterated logarithm 46
theorems of large numbers 41
tone mapping 2, 4
Torrance–Sparrow specular reflection 23

total expected value theorem 86
total reflection 101
Trace 108
transfer probability density 7
Transform3D 98
transillumination directions 90
transillumination radiosity method 90
trapezoidal-rule 40
triangle mesh 10
tristimulus 2
two-pass methods 52

U

uniform 42
UNIFORM(i) 99

V

Van der Corput sequence 46
variation 43
variation in the sense of Vitali 43
Vector module 96
Vector3D 98
VEGAS method 51, 57
virtual world 1
visibility calculation 14
visibility function 8
visibility indicator 37
visibility ray-tracing 15, 67

W

wavelet 31
well-distributed ray-sets 31
white point 4

X

XYZ 3

