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Direct Forcing for Lagrangian Rigid-Fluid Coupling
Markus Becker, Hendrik Tessendorf, Matthias Teschner

Abstract— We propose a novel boundary handling algorithm
for particle-based fluids. Based on a predictor-corrector scheme
for both velocity and position, one- and two-way coupling with
rigid bodies can be realized. The proposed algorithm offers
significant improvements over existing penalty-based approaches.
Different slip conditions can be realized and non-penetration is
enforced. Direct forcing is employed to meet the desired boundary
conditions and to ensure valid states after each simulation step.
We have performed various experiments in 2D and 3D. They
illustrate one- and two-way coupling of rigid bodies and fluids,
the effects of hydrostatic and dynamic forces on a rigid body
as well as different slip conditions. Numerical experiments and
performance measurements are provided.

Index Terms— Physically-based simulation, Fluid dynamics,
Smoothed Particle Hydrodynamics, Rigid bodies, Boundary han-
dling

I. I NTRODUCTION

T HE simulation of fluids has attracted increasing attention
in Computer Graphics in recent years. Various sophisticated

methods have been proposed and a thorough introduction of fluid
simulation techniques has been presented by Bridson and Müller-
Fischer in their ACM SIGGRAPH’07 course notes [1].

As a fluid is generally simulated in a domain with fixed and
moving obstacles, it is necessary to consider the interaction of
the fluid with these obstacles. Often, different kinds of boundary
conditions need to be incorporated. While this problem has been
dealt with extensively in the context of grid-based methods, there
are still only a few approaches to boundary conditions for particle-
based methods such as Smoothed Particle Hydrodynamics (SPH).
This is to some extent due to the fact that one is interested
in preserving the local nature given in many Lagrangian fluid
simulations. Despite these challenges, the interest in boundary
conditions for particle-based fluids is motivated by the usefulness
of Lagrangian fluids for irregular domains. Typically applied
penalty methods as e. g. provided by Monaghan [2] offer only lim-
ited control of the boundary handling. To enforce non-penetration,
large penalty forces have to be applied which introduce stiffness
to the equations.

We propose a novel method for the two-way coupling of com-
pressible Lagrangian fluids and rigid objects. Control forces are
incorporated in the discretized momentum equations in order to
obtain specific relative velocities at a boundary in each timestep.
This is known as direct forcing. It is realized in a predictor-
corrector fashion. Using the proposed formulation, a largerange
of slip and Neumann boundary conditions can be imposed for
arbitrarily shaped, fixed or moving boundaries. Regularly and
irregularly shaped boundaries can be handled in a unified manner.
Dynamic and hydrostatic fluid forces acting on the boundaries
are considered. The local nature of employed SPH method is
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preserved by the boundary handling. Many drawbacks of penalty-
based methods such as oscillations at the boundary and limited
control of the boundary conditions can be avoided.

The proposed technique extends previous Lagrangian boundary
approaches such as the one of Hieber [3]. In contrast to [3], it
avoids force interpolations and it guarantees non-penetration for
fixed and moving rigid boundaries. To enforce the boundary ve-
locities, we adopt the interpenetration resolution proposed in [4],
[5]. Fluid leaking through boundaries is avoided by controlling
particle velocities and positions in separate substeps. A minimal
parameter set with a known parameter range allows for an
intuitive setup of the simulation.

Experiments are performed using the corrected SPH algorithm
of Bonet and Kulasegaram [6] and the weakly compressible pres-
sure formulation described e. g. in [7] and [8]. Fig. 1 illustrates
a first example. In this stone-skipping simulation, the reflection
of the stone from the fluid surface is realized using the proposed
boundary handling.

The remainder of the paper is organized as follows. After
discussing related approaches in Sec. II, we briefly describe the
employed fluid model and the particle-based representationof the
rigid bodies in Sec. III and Sec. IV, respectively. The boundary
handling approach for the two-way coupling of Lagrangian fluids
and rigid objects is presented in Sec. V. Parameters, implemen-
tation issues and limitations are discussed. In Sec. VI, various
experiments are described to illustrate the capabilities of the
proposed approach. The experiments cover the major features
of the boundary handling approach. They include a comparison
with the penalty approach of [2], performance measurements, the
effects of hydrostatic and dynamic forces, as well as one- and
two-way coupling.

II. RELATED WORK

In this section, we discuss some related literature concerning
boundary handling and rigid-fluid coupling for different fluid
simulations. The related work covers Eulerian boundary handling
approaches, mixed formulations and Lagrangian approaches.

Many sophisticated solutions have been proposed for the solid-
fluid coupling of Eulerian fluids and early coupling approaches
date back to e. g. Chen and Lobo [9]. The authors introduce
two types of one-way coupling for a 2D Navier-Stokes solver
where the third dimension is modeled using a height field. An
idea for the two-way coupling is outlined, but not implemented.
Various authors have realized a one-way solid-fluid coupling and
fixed boundaries in 3D by voxelizing the boundaries on the
fluid grid [10]–[13]. These approaches commonly adjust the fluid
velocity of grid points covered by the solid to the velocity of the
solid. Several improvements have been proposed, e. g. a corrected
normal for free tangential slip [14]. Still, this method tends to
produce stair-step artifacts for boundaries that are not aligned
with the grid. This is especially noticeable in the case of coarse
grids. Takahashi et al. [15] provide a simple two-way coupling
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Fig. 1. Three frames of a stone-skipping simulation. The stoneis reflected from the surface in case of an impact. This effect is obtained using a novel
two-way coupling approach of rigid bodies and particle-based fluids.

for voxelized buoyant rigid bodies. They take the pressure on the
surface into account. However, dynamic forces, i. e. forcesdue
to relative velocities in the fluid, are neglected. Yngve et al. [16]
provide an approach to the two-way coupling of deformable and
fracturing solids with a compressible fluid. Still, solids need to be
voxelized on the grid in order to realize a solid-to-fluid coupling.

To avoid voxelization artifacts, some authors have proposed to
adaptively align the fluid grid at boundaries or to use remeshing.
An octree refinement is introduced by Losasso et al. [17]. Irving
et al. [18] introduce a regular one-layer refinement for MAC
grids with moving objects. Klingner et al. [19] and Chentanez et
al. [20] address irregular geometries by using tetrahedralmeshes
for the fluid simulation. The mesh is regenerated in each timestep
according to the current configuration of the boundaries. [19]
is extended by Chentanez et al. [21] to handle both rigid and
deformable solids. Feldman et al. [22] handle moving boundary
conditions by deforming the underlying simulation mesh.

There exist alternative concepts to incorporate boundary con-
ditions for Eulerian fluids. Batty et al. [23] improve the FLIP
method of [24] for two-way rigid-fluid coupling. In this approach,
the pressure projection is formulated as a kinetic energy mini-
mization problem. Carlson et al. [25] use Distributed Lagrangian
multipliers to project fluid nodes covered by rigid bodies onto
rigid body motion. Genevaux et al. [26] use damped springs to
attach solids to fluid marker particles. Guendelmann et al. [27]
present an alternating two-way coupling for deformable andrigid
thin shells. This algorithm uses ray-casting to avoid fluid leaking
through thin solids represented by triangles. Liu et al. [28]
present a GPU approach for the semi-Lagrangian scheme of
Stam [12]. Arbitrary boundary conditions for the fluid simulation
are generated directly in image space.

Some authors propose a mixed formulation, using an Eulerian
formulation for the fluid and a Lagrangian formulation for the
solid. The Immersed Boundary Method (IBM) introduced by
Peskin [29], [30] samples a solid with a finite set of force points.
As the boundary velocities are interpolated on the grid, boundaries
are not required to coincide with the fluid grid. Therefore, the
approach is appropriate for irregular and detailed geometries. In
the context of IBM, direct forcing has been employed [31]–[33].
A force term is added to the discretized momentum equations
to obtain the adequate velocity of the fluid along the boundary
after a single timestep. This direct forcing approach is free
of parameters and can therefore be handled conveniently. The
Immersed Interface Method of Le et al. [34] improved on IBM
for rigid boundaries and moving deformable solids. It can handle
sharp interfaces, since forces are not distributed on the boundary.

Fedkiw [35] uses so-called ghost fluid nodes to couple com-
pressible Eulerian fluids and deformable Lagrangian solids. Ghost
fluid nodes can be covered by the solid, but are used in the
finite difference scheme for the fluid update. The Eulerian and
the Lagrangian parts of the simulation are properly interpolated.
Combining Eulerian grids and Lagrangian meshes has also been
proposed in the finite-element ALE (Arbitrary Lagrangian Eu-
lerian) method of Hirt et al. [36]. A mixed formulation that
couples SPH particles and particle level sets has been introduced
by Losasso et al. [37] to reduce volume loss for free surfaces.
Robinson-Mosher et al. [38] recently proposed an approach to
couple Cartesian fluid grids and Lagrangian solids derived from
the law of conservation of momentum.

Most of the aforementioned methods cannot directly be applied
to pure particle-based fluids and only a few methods have been
proposed for pure particle-based simulations until now. Most
authors use penalty-based approaches to handle static or moving
rigid boundaries. The main concept of penalty-based approaches
is to use either frozen or ghost particles. Frozen particlesinteract
with other particles in the usual way, but they do not move. Ghost
particles on the other hand are fluid particles mirrored across solid
boundaries in each timestep. Monaghan [2] proposes a force-
based penalty method for fixed and moving boundaries and in [6],
a penalty boundary potential is used to calculate penalty forces.
Keiser et al. [39] present a Lagrangian formulation to handle
solids, fluids, and phase transitions. Solenthaler et al. [40] and
Keiser et al. [41] process fluid and rigid-body particles in similar
ways. Rigid-body particles are restricted to rigid-body motion in
the update step. Falappi and Galatti [42] handle interacting fluids
and granular materials by using SPH for both phases. Müller et
al. [43] employ a penalty approach based on Lennard-Jones forces
for repulsion and adhesion between mesh-based deformable solids
and particle-based fluids.

There have been few approaches that try to model differ-
ent kinds of boundary conditions with penalty methods. Ghost
particles with the same mass, density, pressure and viscosity,
but different velocity than their fluid counterpart have been
employed to handle different slip conditions for straight [44]
and curved [45] surfaces. However, penalty methods suffer from
severe difficulties. As penalty forces only react upon penetration,
the distance of SPH particles to the boundary slightly varies over
time and particles might be accelerated at the boundary. Only
limited control is offered to realize specific boundary conditions.
Most approaches so far do not offer an easy way to adjust
tangential damping in the full range from no- to free-slip. Finally,
to ensure non-penetration, large forces have to act on the fluid,



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008 3

leading to stiff equations. To illustrate the benefits of theproposed
direct forcing approach, we provide a comparison with the penalty
approach of [2] in Sec. VI.

Few approaches have taken into account the actual forces acting
on the boundary for the boundary handling so far. Oger et al. [46]
propose a method for the two-way coupling of a particle-based
fluid and a moving solid in two dimensions. However, only the
local pressure on the solid surface is evaluated. Dynamic forces,
e. g. due to viscosity, are neglected. Hieber [3] adopts IBM for
the boundary handling of particle-based fluids with deformable
solids and fixed boundaries, thereby allowing a greater amount of
control of the fluid and taking into account all forces actingon the
boundary. However, non-penetration is not addressed. Addition-
ally, a fixed number of Lagrangian force points is used to sample
the boundary and an underlying Eulerian grid is used to transfer
values between the fluid simulation and the force points. We share
the idea of [3] to modify the underlying momentum equation
to ensure the chosen boundary conditions with a direct forcing
approach. However, in contrast to [3], forces can be applied
directly at the contact point and thereby, force interpolations are
avoided. Non-penetration is guaranteed after each timestep and
fluid leaking is avoided. This is especially important for the two-
way coupling with rigid bodies due to the limited number of
degrees of freedom. We furthermore propose a simple scheme
to cover different kinds of velocity boundary conditions. The
approach is realized in a predictor-corrector fashion.

The concept of direct forcing has been successfully appliedin
other simulation areas such as constraint handling for rigid [47]–
[49] and deformable [50], [51] solids. However, these approaches
are beyond the scope of this paper. The same applies to boundary
conditions for other fluid methods such as the Lattice Boltzmann
method [52]. The idea of predictor-corrector schemes has also
been successfully applied in contact and collision handling for
rigid and deformable bodies, see e. g. [4], [53].

III. F LUID MODEL

For the fluid simulation, we use a corrected SPH formulation
(CSPH) [6] and the weakly compressible pressure formulation
employing the Tait equation [7], [8].

The basic idea of SPH is to represent a functionf(x) as a
smoothed function〈f(x)〉 using a finite set of sampling points
xb with massmb and densityρb, and a kernel functionWb(x) =

W (x − xb):
〈f(x)〉 =

X
b

mb

ρb

f(xb)Wb(x). (1)

However, this original SPH formulation developed independently
by Gingold and Monaghan [54] and Lucy [55] suffers from
inaccurate calculations at boundaries. Since the number ofneigh-
boring particles at boundaries is smaller than inside the fluid,
an incorrect lower density is calculated and negative pressures
can occur. As we extensively deal with boundaries in rigid-
fluid coupling, we address this problem by using the constant
correction technique for SPH proposed in [6]. By using an adapted
kernel function

W̃b(x) =
Wb(x)P

c VcWc(x)
(2)

for the density calculation, this model avoids inaccurate pressures
at boundaries. The overhead for the computation of the adapted
kernel functionW̃b(x) is negligible. Since the volumeVc of a
particle is constant, it can be precomputed. Thus, an additional

Fig. 2. Triangulated surface and particle representation of the teddy model.

loop over the particles is avoided. For the computation of the fluid
dynamics, we use the reformulated Euler equation with external
forces denoted byg

dv

dt
= −

�
∇

�
P

ρ

�
+

P

ρ2
∇ρ

�
+ g (3)

with pressureP , densityρ and velocityv. It results in a sym-
metrized discrete momentum equation that conserves linearand
angular momentum [2]. The discrete momentum equation for the
accelerationdva

dt
of a particle with added artificial viscosity [2]

and the original kernel functionWb thereby reads

dva

dt
= −

X
b

mb

 
Pa

ρ2
a

+
Pb

ρ2

b

+ Πab

!
∇aWb(xa) + g (4)

with the viscosity term

Πab = −ν

 
vT

abxab

|xab|2 + δh2

!
. (5)

The pressureP is calculated using the Tait equation [7], [8] to
ensure small density ratios between the current densityρ and the
initial densityρ0

P =
ρ0c2s

7

 �
ρ

ρ0

�7

− 1

!
. (6)

The speed of soundcs is usually chosen such that the Mach
number of the simulation is below0.1. For further details see
e. g. [8].

IV. R IGID BODY MODEL

In the context of rigid-fluid coupling, various rigid-body
representations have been proposed, e. g. triangle meshes [43],
adaptively sampled distance fields [56], and particles [2].Similar
to [2], we employ a particle representation for arbitrary rigid-
body surfaces. The particle representation is generated ina
preprocessing step using a distance field [57]. An example is
shown in Fig. 2.

Although the proposed rigid-body representation allows for a
unified handling of rigid bodies and fluids in certain aspectsof the
simulation, e. g. particle-particle collision tests, our boundary han-
dling approach could be combined with alternative representations
such as triangle meshes or distance fields. These representations,
however, are beyond the scope of this paper.
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Fig. 3. Rigid particlexP and fluid particlexF in contact. The position
xcp denotes the contact point of the fluid and the rigid body. The valuesrF

andrP denote the radii of the respective particles. The vectorr denotes the
distance of the contact pointxcp to the center of massxc of the rigid body.

V. BOUNDARY HANDLING

In this section, we introduce a novel technique to en-
force boundary conditions for particle-based rigid-fluid contacts.
Boundary conditions model the relative velocities and positions
of the fluid at the boundary. Our approach allows to control
both the normal and tangential relative velocities and the rela-
tive positions effectively to realize various boundary conditions.
The relative velocities and positions are controlled in separate
substeps as e. g. proposed in [4], [53] for collision and contact
handling of rigid and deformable solids. The boundary model
for the relative velocities is discussed in Sec. V-A. Enforcing
the desired velocities and positions is realized using a direct
forcing approach discussed in Sec. V-B and V-C, respectively. It
is implemented in a predictor-corrector fashion. Non-penetration
is thereby addressed. In Sec. V-D, we discuss the entire pipeline
of a single simulation step. At the end, simplifications for one-
way solid-to-fluid coupling and static boundaries are discussed.
To detect collisions, we follow [53] in advancing the positions
without boundary forces and performing the collision detection on
that advanced positions. Intermediate advanced values aredenoted
with a single or double asterisk (∗,∗∗).

A. Controlling the relative velocity

In this section, we discuss the employed model for the velocity
control at the boundary. As noted in Sec. IV, rigid bodies are
sampled with particles. If we detect a collision between a fluid
particle with positionxF , velocity vF , massm and a rigid body
particle xP , we calculate a contact pointxcp = xP + rP n at
the boundary of the colliding rigid body particle (see Fig. 3). n

denotes the unit surface normal of the rigid body atxcp. mc is
the total mass of the colliding rigid body.

The rigid body velocity at the contact point is given by

v
∗

cp(t + h) = v
∗

c (t + h) + ω
∗

c (t + h) × r
∗(t + h) (7)

with r∗(t+h) = x∗

cp(t+h)−x∗

c(t+h) being the relative position
of x∗

cp(t + h) with respect to the center of massx∗

c(t + h) of the
rigid body.v∗

c (t+h) andω∗

c (t+h) denote the linear and angular
velocity of the rigid body, respectively.

Now, we want to impose a boundary condition on the relative
velocity vr = vF − vcp of the following form:

vr(t+h) := vF (t+h)−vcp(t+h) = ε
�
v
∗

r(t + h)
�
t
−δ [vr(t)]n .

(8)
The current normal velocity is thereby given as[vr(t)]n = (vr(t)·

n)n and the uncontrolled tangential velocity of the next time step
is given as[v∗

r(t + h)]t = v∗

r(t + h) − [v∗

r(t + h)]n. The first
term of (8) controls the slip. It can be used to damp the relative

tangential velocity of the fluid and the rigid body. Here, we use the
predicted velocity of the subsequent timestep to properly consider
accelerations due to body forces such as gravity. E. g., for afree-
slip condition, the component of the fluid velocity tangential to a
vertical boundary would not be damped. The second term of (8)
controls the elasticity of the collision.δ is called the coefficient
of restitution.δ = 1.0 thereby corresponds to a perfectly elastic
collision, while δ = 0.0 results in a perfectly inelastic collision.
If not stated otherwise, we useδ = 0.0 in our scenarios, i. e. the
relative normal velocity between the fluid and the rigid bodyat
the boundary layer is zero. Both damping parametersε andδ are
always in the interval[0, 1].

To avoid sticking, we substitute the boundary condition (8)by

vr(t + h) = ε
�
v
∗

r(t + h)
�
t
+
�
v
∗

r(t + h)
�
n

(9)

for v∗

r(t + h) · n > 0. This leaves the normal component of the
relative velocity unchanged if the fluid particle and the rigid body
are moving away from each other. To simplify the subsequent
explanations, we generally use (8) and omit (9) due to the
similarities of both cases.

B. Velocity update

In this section, the enforcement of the velocity constraints is
described. We first handle the case of a single fluid particle in
contact with a rigid body. Then, we generalize the idea to several
fluid particles in contact with a single rigid body. For a single
fluid particle with indexi, the contact point of the fluid particle
with the rigid body has the absolute positionx∗

cp,i(t+h) and the
relative positionr∗i (t+h) with respect to the center of mass of the
rigid body. To enforce our boundary condition (8) on the relative
velocity vr,i, we exchange a control forceFi between the fluid
particle and the rigid body. Assuming a simple Euler step, we
end up with the constrained velocities for the fluid particle

vi(t + h) = v
∗

i (t + h) +
h

mi
Fi (10)

and the rigid body at the contact point

vcp,i(t + h) =v
∗

cp,i(t + h) −
h

mc
Fi

+ hr̃
∗

i (t + h)I−1(t)r̃∗i (t + h)Fi (11)

with r̃ being the cross product matrix of the vectorr. In order
to predict the velocitiesv∗

i (t + h) andv∗

cp(t + h), we take into
account all forces such as pressure forces, viscous forces and
gravity.

Using the right hand sides of (10) and (11) for the relative
velocity vr,i(t + h) in the constraint equation (8) and solving for
the unknown control forceFi yields

Fi =
1

h

��
1

mi
+

1

mc

�
E3 + r̃

∗T
i (t + h)I−1(t)r̃∗i (t + h)

�
−1

v̂i

(12)
with v̂i := ε

�
v∗

r,i(t + h)
�
t
−δ
�
vr,i(t)

�
n
−v∗

r,i(t+h) and the 3x3
identity matrixE3. If we havek fluid particles in contact with a
single rigid body, solve each contact separately using (12), and
simply add up the forces and torques on the rigid body, we term
this local approach.

Now, we assume that a single rigid body is in contact with
k fluid particles and we want to enforce all contact velocities
simulateneously. This is termedglobal approach. Similar to the
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case of a single contact, we apply symmetric control forcesFi at
each contact point. For the rigid body these control forces sum
up to a net forceF and a net torqueτ :

F = −
X

i
Fi (13)

τ = −
X

r
∗

i (t + h) × Fi. (14)

OnceF and τ are known, we can calculate the future linear
and angular velocity of the rigid body and thereby the rigid-body
velocities vcp,i(t + h) at the i-th contact point. The velocities
of the fluid particlesvi(t + h) can then be calculated using the
constraint equations

vi(t + h) = ε
�
v
∗

r,i(t + h)
�
t
− δ

�
vr,i(t)

�
n

+ vcp,i(t + h). (15)

To derive our system of equations forF andτ , we express the
future velocity at thei-th contact point as

vcp,i(t + h) = v
∗

cp,i(t + h) +
h

mc
F + hr̃

∗T
i (t + h)I−1(t)τ. (16)

Plugging this future velocityvcp,i(t + h) for the contact point
and the future velocityvi(t + h) = v∗

i (t + h) + h
mi

Fi for the
fluid particle into the constraint equation (15) and solvingfor the
unknown constraint forceFi yields

Fi =
mi

h

�
v̂i +

h

mc
F + hr̃

∗T
i (t + h)I−1(t)τ

�
(17)

with the unknown net forceF and the net torqueτ on the
right hand side. The control forcesFi are now plugged into the
equations (13) and (14) for the net forceF and torqueτ on the
rigid body. As a result, we get the symmetric, positive definite
6x6 linear system of equations for the unkownsF andτ

A

"
1

mc
F

I−1(t)τ

#
=

�
−
P mi

h
v̂i

−
P mi

h
r̃∗i (t + h)v̂i

�
(18)

with the system matrix

A :=

"
(mc +

P
mi)E3

P
mir̃

∗T
i (t + h)P

mir̃
∗

i (t + h) I(t) +
P

mir̃
∗

i (t + h)r̃∗T
i (t + h)

#
.

The employed concept is closely related to the interpenetration
resolution scheme of [4], [5]. In this approach, collisionsbetween
several rigid bodies are handled by setting one rigid body as
central body and the others as outer bodies. The outer bodiesare
pushed out of the central body in a two-way coupled fashion.
However, instead of interpenetration resolution we adopt this
method to enforce our boundary velocity constraints in a two-
way coupled fashion by applying symmetric forces.

Since the velocities of the fluid particles at the boundary are
completely determined by the constraint equations, the boundary
velocity calculations fork contact points at a single rigid body
can be reduced to the linear 6x6 system of equations in (18). In
Sec. VI, we discuss several experiments using both the localand
the global approach. Additionally, we compare the performance
of both approaches.

This section has discussed the velocity update of the rigid body
and the fluid particles. The position update for interpenetration
handling is adressed in the following section.

C. Position update

In addition to the correct relative velocity at the boundary,
we want to enforce non-penetration of the fluid particles with
respect to the boundary. We therefore control the position of
the fluid particles at the boundary in a separate substep. We
enforce the centers of the boundary fluid particles with radius
ri to retain a distanceri to the contact pointxcp,i. Since we
have considered this contact point for the computation of the
control force, such a position correction does not influencethe slip
condition. The corrected position update is implemented using an
additional control impulseji = jin acting in normal direction,
that is only applied in the position update of the integration step.
It is calculated in the same manner as the control force for the
velocity update. To meet the desired distance, we need to enforce�

x
∗∗

i (t + h) + hji − xcp,i(t + h)
�
n = rF . (19)

As the update is only applied to the fluid particles, we can use
the final contact point positionxcp,i(t+h). Both,xcp,i(t+h) and
the predicted future fluid positionsx∗∗

i (t+h) are calculated using
the modified velocities from the subsequent step. The control
impulsesji are then computed as

ji =
1

h

�
(xcp,i(t + h) − x

∗∗

i (t + h)) · n + rF

�
n. (20)

Unfortunately, the position update leads to a higher compres-
sion of the fluid at the boundary layer. However, higher density
ratios are rapidly balanced in subsequent timesteps with the
employed weakly compressible pressure approach. The maximum
density ratios encountered in our simulations are given in Table I.

D. Two-way coupling

In Alg. 1, we show all stages of a single simulation step. As we
need to know the unconstrained velocitiesv∗

i (t+h) andv∗

cp,i(t+

h) to calculate our control forceF and torqueτ , we perform a
predictive integration step for the fluid and the rigid bodies. In the
correction step, we only consider fluid particles and rigid bodies
that are in contact. The same holds for the position update. We
thereby take into account the modified velocities. Overall,up to
three collision detection steps are performed.

Algorithm 1 Pseudo code for two-way coupled moving bound-
aries
Require: n fluid particles, m rigid bodies

1: Detect fluid-fluid collisions
2: Calculate fluid and rigid-body forces
3: Integrate fluid and rigid body (prediction)x(t) → x∗(t + h),

v(t) → v∗(t + h)

4: Detect rigid-fluid collisions
5: Calculate net forceF and net torqueτ
6: Integrate fluid and rigid body (correction)x∗(t) → x∗∗(t+h),

v∗(t + h) → v(t + h)

7: if (any contacts in 4)then
8: Detect rigid-fluid collisions
9: Correct fluid positionsx∗∗(t + h) → x(t + h)

10: end if

Steps 7-9 in Alg. 1 are only performed once, even if some
penetrations are not resolved due to conflicting constraints. See
Sec. VII for some notes on this issue.
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E. One-way solid-to-fluid coupling and static boundaries

For the two-way coupling, we need up to three collision
detection steps which are comparatively time-consuming. In some
cases, however, the influence of the fluid on the solid is small
and could be neglected (e. g. heavy objects) or the solid doesnot
move at all. For this case, we propose to use a more efficient one-
way solid-to-fluid coupling. In this one-way coupling, the solid
influences the fluid, but not vice versa. The rigid body velocity at
the contact point in (11) or (16), respectively, thereby simplifies
to

vcp,i(t + h) = v
∗

cp,i(t + h) (21)

for one-way coupling or

vcp,i(t + h) = vcp,i(t) = 0 (22)

for static boundaries, respectively. The fluid velocity canbe
calculated from the boundary conditions (8) in the usual way.

As the rigid body is integrated prior to the control force
calculation and as the rigid body is not affected by any cor-
rections, we can calculate the velocity and position correction
for the fluid in one step. This saves one collision detection step
compared to the two-way coupling. As the collision detection is
comparatively time-consuming, the efficiency can be significantly
improved using the one-way coupling. Additionally, there is no
need to solve a system of equations, as the fluid velocities can be
directly computed from the boundary conditions. All stagesof a
single simulation step for the one-way coupling are summarized
in Alg. 2.

Algorithm 2 Pseudo code for one-way coupled boundaries
Require: n fluid particles, m rigid bodies

1: Detect fluid-fluid collisions
2: Calculate fluid and rigid body forces
3: Integrate fluid and rigid body (prediction)x(t) → x∗(t + h),

v(t) → v∗(t + h)

4: Detect fluid-rigid collisions
5: Calculate fluid velocity and position (correction)x∗(t+h) →

x(t + h), v∗(t + h) → v(t + h)

F. Parameters

The timestep for the simulation is chosen according to the
Courant-Friedrichs-Lewy (CFL) convergence condition. The re-
sulting timestep is generally rather restrictive with respect to
stability of the fluid and it has turned out that the simulations
remain stable when the two- or one-way coupling is incorporated.
For the rigid-fluid interaction, we basically need to ensurethat two
particles do not move more than their diameter towards each other
in one timestep. In the experiments, we use timesteps ranging
from 6 · 10−5 to 1.5 · 10−4.

The estimation of appropriate parameters for different boundary
conditions can be a tedious task, particularly as the effects of the
parameters typically depend on the timestep. In our approach,
the handling of parameters is comparatively easy. First of all, the
total number of free parameters is only two, namely the damping
parametersε, δ. Second,ε, δ are always in the interval[0, 1].

Fig. 4. The diagram shows the computation time for the local andthe global
response scheme for the sinking ship scene. Both are linear inthe number of
contacts and make up only a small fraction of the total computation time of
250-280ms.

G. Implementation issues

The efficient detection of particle-particle contacts is one of the
fundamental issues in particle-based fluid simulations. Similar to
[57], we use a uniform spatial subdivision and store the results
in a hash table [58]. We also follow [57] in employing temporal
coherence, i. e. we only update the information of particlesif their
grid cell has changed. Due to the restrictive timestep, temporal
coherence significantly speeds up the insertion of particles into
the hash table.

VI. RESULTS

In this section, we illustrate the capabilities of our boundary
handling technique with 2D and 3D experiments that range from
some simple explanatory scenes to high-velocity impacts. We
make use of both the local and the global approach for updating
the boundary velocity. The following experiments are performed:
As many authors use penalty methods in their simulations, we
first compare the proposed approach to the penalty approach
of [2]. Then, we demonstrate different slip conditions in a 2D
setting. Handling high-velocity impacts and one-way coupling is
illustrated with a stone impacting a water basin. Sec. VI-E and
VI-F illustrate buoyancy and drag effects. Finally, we showsome
advanced two-way coupled scenes.

Tab. I gives an overview of the performance for the scenarios.
All performance measurements are given with respect to an
Intel Dual Core 2.13 GHz with 4 GB of RAM, running a single-
threaded version of the simulation. In all simulations, we use
an explicit leapfrog integration scheme. If not stated otherwise,
the viscosity is set toν = 0.1. As pointed out in [8], the
compressibility of the fluid is governed by the speed of sound.
The speed of sound has been chosen with respect to the maximum
relative velocity between fluid and solids to ensure a certain
density ratio. Both values, the speed of sound and the measured
density ratio are stated in Tab. I. We also give the performance
for a single fluid calculation step without boundary handling and
a complete simulation step including the boundary handling.

For the performed experiments, we have used either the local
or the global approach. Both approaches are linear in the number
of contacts and make up less than 1% of the total computation
time in most scenarios. Both approaches show plausible results,
whereas in the global approach the boundary velocities are met
more accurately. All timings in Tab. I are given using the local
approach. In Fig. 4, we compare the local and the global response
with respect to their performance for the sinking ship scene
illustrated in Fig. 5.
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TABLE I

SOME EXEMPLARY SCENES: NUMBER OF PARTICLES, COMPUTATION TIME FOR ONE SIMULATION STEP, SOUND SPEED AND MAXIMUM DENSITY RATIO.

scene fluid particles cluster particles fluid calc. [s] simulation step [s] speed of sound max density ratio

Impact 850k 9k 3.47 7.07 600 1.19
Floating cuboids 2M 7.5k 5.79 11.4 250 1.13
Floating spheres 130k 760 0.56 1.14 250 1.026
Stone-skipping 240k 94 0.83 1.64 300 1.07
Flotsam 2.57M 18.6k 7.61 15.03 225 1.16

Fig. 5. Two-way coupling of a sinking ship with a fluid. Colored particles
on the left indicate the flow of the fluid. The picture on the right indicates
the accuracy of the boundary handling.

For the reconstruction of the fluid surface, we employ marching
cubes [59], while single particles are handled as blobs. Triangu-
lated surfaces are employed for visualizing the rigid bodies. Sur-
faces and blobs are rendered in POV-Ray (http://www.povray.org).
In some cases, we visualize the underlying particle simulation for
illustration purposes.

A. Comparison to a penalty based approach

Many authors employ penalty methods for handling boundaries
in particle-based simulations. We compare the proposed local
approach with the penalty based approach of [2]. We have chosen
a 2D example of a leaking ship sinking into a fluid to illustrate the
effects of both boundary methods without getting distracted by the
surface reconstruction. Large parts of the ship are only represented
by a single layer of particles. As for the penalty method, several
effects can be observed in the experiment:

• Penalty methods offer only limited control. To ensure non-
penetration, large penalty forces have to be applied. This
leads to elastic collisions with an unknown coefficient of
restitution.

• Penalty methods can only react in a subsequent timestep, if
a penetration has already occured. Therefore, the distanceof
fluid particles to the boundary slightly varies over time. Ad-
ditionally, unnatural accelerations can occur. For the sinking
ship, this leads to the effect that the ship is not correctly
filled and single particles are bouncing on the surface.

The proposed local and the global approach can cope with these
issues. As velocity and position are controlled in different sub-
steps, non-penetration and inelastic collision can be realized at the
same time. As velocity and position are predicted and corrected
in the same simulation step, constant distances can be realized
and unnatural accelerations of fluid particles at the boundary are
avoided. The ship is properly filled with fluid particles and sinks
into the basin. Even in case where it is fully submerged, non-
penetration with constant distance can be enforced. Some results
can be seen in Fig. 5.

Fig. 6. A vessel is floating in a water basin. No fluid is leakingthrough the
boundary.

Fig. 7. Experimental set-up for the slip condition.

B. Accuracy

To illustrate accuracy and non-penetration of our method in
3D, we simulate a vessel falling into a large basin of fluid.
Fig. 6 illustrates this setting. Although the boundary is represented
only by a single layer of particles, no fluid is leaking through
the boundary. The velocity update is performed using the local
approach.

C. Slip condition

Imposing different kinds of slip conditions is a challenging
issue. However, using the proposed method, slip can easily be
controlled. In Fig. 7, we show the experimental setup for the
illustration of different slip conditions. Particles are emitted on the
left-hand side, flowing down a static ramp. Different slip condition
ranging from ε = 0.0 (no-slip) to ε = 1.0 (free-slip) lead to
different flow properties. We refer the reader to the accompanying
video to assess the effects in a dynamic simulation.
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Fig. 8. Impact: High-velocity impact of an asteroid.

Fig. 9. Buoyancy effects: Cuboids of different densities dropped into a fluid.

D. One-way solid-to-fluid coupling

Fig. 8 illustrates one-way solid-to-fluid coupling with an impact
scene of an asteroid model. Due to the high velocity of the aster-
oid, the speed of sound is set to600. The maximum density ratio
at the time of the impact is1.19. For the rest of the simulation,
the density ratio is below1.1. The experiment indicates that high
relative velocities can be handled.

E. Buoyancy effects

In Fig. 9, we illustrate that buoyancy effects are properly cap-
tured using the proposed global response scheme. Three cuboids
of different densities are dropped into a fluid. As expected,the
lightest cube (red) is floating, the cube with medium density
(green) is sinking slowly and the heaviest cube (blue) is sinking
fast.

F. Drag effects

Some approaches such as [46] take into account only the
pressure forces acting on the boundary. Effects due to dynamics
forces such as viscosity, are not properly captured. The following

experiment illustrates that the influence of dynamic forceson
moving rigid bodies is properly captured with our method. A
rigid sphere is dropped into fluids of different viscosities(ν = 0.1,
ν = 3.0). Fig. 10 depicts both scenarios at the same time point.
The images show that the sphere is sinking deeper in the low-
viscous fluid compared to the high-viscosity fluid. The local
velocity update is employed for the boundary handling in this
setting.

Fig. 10. Viscous effects: Spheres dropped into fluids with different viscosi-
ties. Viscosity is set to0.1 in the left image and to3.0 in the right image.

G. Two-way coupling

The following two experiments further illustrate the proposed
two-way coupling approach. Fig. 1 and Fig. 11 show a stone-
skipping experiment. Due to its high velocity, the stone is reflected
at the fluid surface. The initial velocity is about 90% of the
velocity of the impact scenario. For low velocities at the end, the
stone finally sinks. Again, we would like to refer the reader to
the accompanying video to assess the dynamics. In this scenario
the local and the global boundary handling approach show very
similar dynamics. Fig. 11 is simulated using the global approach.
Fig. 1 illustrates the local approach.

Fig. 11. Stone-skipping.

A second experiment to illustrate the two-way coupling is
shown in Fig. 12. Here, complex-shaped rigid objects are floating
on a wave. Again, the boundary handling is performed using the
local approach.

VII. C ONCLUSION AND FUTURE WORK

We have presented an efficient Lagrangian method for the
handling of fixed and moving boundaries. Direct forcing is
employed to realize a large range of slip and Neumann boundary
conditions. The proposed technique can be used for one- and
two-way coupling with arbitrarily shaped boundaries that are
represented with particles. Static and dynamic forces are properly
taken into account to allow for buoyancy and drag effects. In
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Fig. 12. Boundary handling for arbitrarily shaped objects illustrated with
flotsam on the beach.

contrast to previous Lagrangian methods, overlaps of fluid and
rigid-body particles are avoided. The proposed method is superior
to previously used penalty-based approaches such as [2]. Itoffers
a greater amount of control, ensures non-penetration and itdoes
not introduce stiffness to the system. At the same time, it is
computationally efficient and scales linearly in the numberof
contact points. We have made several tests using two variants
of the approach, namely handling each contact point separately
and solving all boundary velocities at once. Both methods show
plausible results and a very similar performance. While theglobal
approach is more accurate, the local approach allows to directly
process collision pairs. The set up of a system of equations is
thereby avoided.

The presented schemes work with compressible and weakly
compressible models. This restriction allows to avoid global
computations, i. e. computations that take into account thestate
of the whole fluid domain. Since particle-based fluids scale well
for large scenes, the proposed boundary handling approach is par-
ticularly interesting for complex scenes with irregular simulation
domains. Further, the underlying model for controlling therelative
velocities is easy to adjust, as the number of free parameters is
low. Additionally, the range of the parameters is known.

We currently do not handle simultaneous contact of a single
fluid particle with more than one rigid body and simultaneous
contact of several rigid bodies in a fluid. We believe that sophis-
ticated but often expensive methods such as contact graphs could
be employed to handle such settings.
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