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Abstract

We present a novel boundary handling scheme for incompressible fluids based on Smoothed Particle Hydro-

dynamics (SPH). In combination with the predictive-corrective incompressible SPH (PCISPH) method, the

boundary handling scheme allows for larger time steps compared to existing solutions. Furthermore, an adaptive

time-stepping approach is proposed. The approach automatically estimates appropriate time steps independent

of the scenario. Due to its adaptivity, the overall computation time of dynamic scenarios is significantly reduced

compared to simulations with constant time steps.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The efficient animation of fast and turbulent fluids
can be successfully realized with a variety of Eule-
rian [MMS04, TKPR06], Lagrangian [APKG07] and semi-
Lagrangian [FF01, LTKF08] methods. This paper focuses
on the simulation of incompressible fluids with large time
steps using the Lagrangian Smoothed Particle Hydrodynam-
ics (SPH) method.

In SPH approaches, the enforcement of the incompress-
ibility is a challenging problem and there exist differ-
ent strategies to address this issue. For example, projec-
tion schemes - similar to Eulerian methods [EFFM02] -
are successfully employed for particle based approaches,
e. g. [CR99, LKO05, HA07, SBH09]. In these methods, ve-
locities are projected onto a divergence-free space by solving
a Poisson equation. Small density fluctuations are enforced.
The projection, however, is rather expensive to compute for
growing particle numbers.

In order to reduce expensive computations, state equations
are commonly used in Computer Graphics. These equations
relate the density with the pressure, while a stiffness parame-
ter governs the compressibility. For compressible fluids, the
gas equation [MCG03] and for weakly compressible SPH
(WCSPH), the Tait equation [Mon94, BT07] are employed.
In order to achieve small density fluctuations, however, the
stiffness has to be chosen rather large. This results in large

pressure jumps for small density variations, which in turn
requires small time steps.

Recently, a promising method for incompressible SPH
has been proposed by Solenthaler and Pajarola [SP09].
In this approach, incompressibility is enforced by itera-
tively predicting and correcting the density fluctuation. This
predictive-corrective incompressible SPH method (PCISPH)
provides very smooth density and pressure distributions, re-
sulting in significantly larger time steps compared to the
WCSPH method. Although the computation time per sim-
ulation step is larger compared to WCSPH, the overall com-
putation time is much smaller. In PCISPH, the density error
is propagated within the fluid until the compression is re-
solved. For large time steps or huge impacts, however, the
generally low number of required iterations can grow. In
those cases, a smaller time step with less iterations might
be more efficient.

The number of required iterations also depends on the
boundary handling scheme. Basically, existing schemes ap-
ply penalty forces, e. g. [MST∗04], or force and position cor-
rections, e. g. [BTT09] and [HKK07]. However, for large
time steps, typically used in PCISPH, either stiff penalty
forces are required or particle stacking occurs in high den-
sity regions. High density fluctuations can occur close to
the fluid-boundary interface with a negative influence on the
time step.
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Figure 1: Wave scene. Gentle wave showering three bears, 1.8 million particles. Overall computation time 19.7 hours for 20
real seconds, ∆tmin = 5.1 ·10−4

,∆tmax = 2.56 ·10−3.

Our contribution: In this paper, a predictive-corrective
boundary handling method for one way fluid-rigid cou-
pling is presented. In contrast to the direct forcing method
of [BTT09], the pressure on the boundary is taken into ac-
count. Particle stacking is avoided and thus, high density dif-
ferences at the boundary. The proposed scheme is applied to
the PCISPH method and it is shown that high compressions
are resolved more smoothly compared to existing boundary
methods. Therefore, larger time steps can be used.

Furthermore, an adaptive time-stepping scheme for
PCISPH is presented. This scheme automatically adapts the
time step according to the density fluctuation, the maximum
velocity and acceleration. The adaptive time-stepping re-
duces the overall computation time and can handle shocks.
The initial time step is automatically determined.

In combination with PCISPH, the proposed boundary
method can handle larger time steps compared to [BTT09]
and [HKK07]. The adaptive time-stepping scheme further
improves the performance up to an order of magnitude com-
pared to constant time-stepping. A first example is illustrated
in Fig. 1.

2. Related work

In most SPH simulations, boundary conditions are enforced
using penalty forces that scale with the distance of the
fluid particle to the boundary. [Mon94] sampled the bound-
ary with particles which exert central Lennard-Jones penalty
forces. For this formulation, the boundary force scales poly-
nomially with the distance of the fluid particle. This causes
large pressure variations in the fluid. Thus, the time step
has to be chosen very small for weakly compressible flu-
ids. Müller et al. [MST∗04] adapted the penalty based forces
to simulate the interaction of SPH fluids with particle sam-
pled deformable meshes. They achieved very realistic two-
way coupling by using a smooth formulation of the Lennard-
Jones forces. Later, Monaghan [Mon05, MK09] employed a

more stable form of the repulsion forces using a scaled ver-
sion of the cubic spline kernel. But still, the main difficulty in
pure penalty based approaches is controlling the stiffness pa-
rameter. This parameter has to be balanced such that bound-
ary penetration is avoided, while not causing pressures that
are too high. Therefore, small time steps are required to pro-
duce smooth pressure distributions. Unfortunately, the stiff-
ness parameter and consequently the time step must be cho-
sen carefully for each scenario.

In order to achieve a smoother pressure distribution on
the boundary, two methods also account for the density on
the boundary, namely the ghost particle and the frozen-
particle method. In the ghost particle method, fluid parti-
cles close to the boundary are mirrored across the bound-
ary. A ghost particle gets the same pressure, viscosity, mass
and density of its corresponding fluid particle while the nor-
mal component of the velocity is inverted. This method
was successfully employed to simulate different slip con-
ditions for straight [HA06] and curved [MM97] boundary
surfaces. Ghost particles are generated on the fly and thus,
for complex boundaries, they are hard to generate. Further-
more, ghost masses might be introduced in sharp regions.
In [FG07], fixed predefined mirror particles are proposed in
order to handle sharp regions.

Some authors proposed to sample boundaries with frozen

fluid particles. The frozen to fluid particle interaction is
computed in the same way as the fluid to fluid particle in-
teraction. However, the frozen particle positions are not in-
tegrated for static boundaries, while for rigid bodies they are
restricted to rigid-body motion [SSP07, KAD∗06].

The density variation on the boundary is quite smooth for
ghost and frozen particles boundary methods since the pres-
sure forces are computed in the same way as for the fluid.
However, for turbulent flows, the time step has to be chosen
small enough, in order to guarantee non-penetration.

None of the above-mentioned boundary handling methods
control the particle position after collision directly. There-
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fore, high pressure forces might be introduced if the repul-
sion force is too strong. In order to overcome this prob-
lem and to have more control on the boundary condition,
direct-forcing approaches were applied. In [BTT09], one-
and two-way coupling of rigid bodies and fluids was realized
by computing control forces and velocities using a predictor-
corrector scheme. This method can simulate different slip-
conditions. Furthermore, non-penetration is guaranteed for
each time step which prevents large (penalty) forces. There-
fore, larger time steps can be used in this method. However,
stacking of particles occurs in high-density and sharp-feature
regions like corners. The stacking leads to irregular density
distributions close to the boundary. Harada et al. also applied
a distance-based control force [HKK07] that constrains the
fluid particle positions to the boundary surface if formulated
in a predictive-corrective way. In order to avoid stacking ar-
tifacts, a wall weight function is employed which adds a
weighted contribution of the boundary to the fluid density.
This value is precomputed and depends only on the distance
of the fluid particle to the boundary. We experienced that the
stacking of particles is reduced in this approach. However, it
also suffers from irregular density distributions at the bound-
ary which might lead to unnatural accelerations.

In this paper, we propose a new boundary scheme that
incorporates density estimates at the boundary into the pres-
sure force acting on the fluid. Similar to [BTT09], we pre-
dict and correct the particle positions. However, by tak-
ing the current pressure on the boundary into account,
smoother density distributions at fluid-boundary interfaces
are achieved and stacking of particles is prevented. For the
proposed scheme, larger time steps can be used compared
to existing approaches while parameter tweaking is not re-
quired.

3. Method

3.1. PCISPH algorithm

In the SPH method, a quantity A at position x is approxi-
mated by a smooth function. This function interpolates A(x)
using a finite set of sampling points x j located within a dis-
tance h >

∥

∥x−x j

∥

∥. It is defined as

A(x) = ∑
j

V jA jW (x−x j,h), (1)

where V j is the volume represented by x j and W (x− x j,h)
is a kernel function with support radius h.

In order to simulate fluids, the continuum is discretized
into a finite set of particles i with position xi, mass mi, den-
sity ρi, pressure pi and velocity vi. The particle positions
and velocities are integrated according to internal and ex-
ternal forces. Internal forces are viscosity Fυ, surface ten-
sion Fst and pressure forces Fp. Among these, the pressure
force is a very dominant force as it governs the macroscopic

Algorithm 1: PCISPH method

while animating do

foreach particle i do
find neighbors Ni(t);

foreach particle i do

compute forces F
υ,st,ext
i (t);

set pressure pi(t) = 0;
set pressure force F

p
i (t) = (0,0,0)T ;

k = 0 ;
while (max(ρ∗

erri
) > η or k < 3) do

foreach particle i do

predict velocity v∗i (t +∆t);
predict position x∗i (t +∆t);

foreach particle i do
update distances to neighbors Ni(t);
predict density ρ∗

i (t +∆t);
predict density variation ρ∗

erri
(t +∆t);

update pressure pi(t)+ = δρ∗
erri

(t +∆t);

foreach particle i do

compute pressure force F
p
i (t);

k+ = 1;

foreach particle i do
compute new velocity vi(t +∆t);
compute new position xi(t +∆t);

behavior of the fluid. We integrate the proposed boundary
handling scheme and the adaptive time-stepping into the
PCISPH method, which can handle large time steps.

The PCISPH method [SP09] predicts density fluctuations
which are then corrected using pressure forces. Thereby, the
pressure pi(t) is iteratively computed for each particle such
that the predicted density fluctuation ρ∗

erri
(t + ∆t) is lower

than a predefined maximum value η. In each iteration, the
predicted particle position x∗i (t +∆t) and velocity v∗i (t +∆t)
are estimated based on x(t), v(t) and the predicted accelera-
tion.

Based on the predicted positions, the predicted densities
ρ∗

i (t +∆t) are computed as

ρ∗
i (t +∆t) = ∑

j

m jW (x∗i j,h), (2)

where x∗i j = x∗i (t +∆t)−x∗j (t +∆t).

Subsequently, the deviation from the reference density
ρ∗

erri
(t +∆t) = ρ∗

i (t +∆t)−ρ0 is taken to update the pressure
that corrects the predicted density error

pi(t)+ = δρ∗
erri

(t +∆t), (3)

where δ is a precomputed value which is defined as

δ =
−1

β(−∑ j ∇W 0
i j ·∑ j ∇W 0

i j −∑ j(∇W 0
i j ·∇W 0

i j))
(4)
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Figure 2: Influence of the boundary method on the pressure distribution. Particles are colored according to the current pressure

where red is maximum and white is minimum. The position correction of direct-forcing approaches might lead to stacking of

particles (middle [BTT09]) and high density ratios (middle [BTT09] and right [HKK07]). By additionally taking the pressure

on the boundary into account, a smooth distribution is achieved (left, proposed method). All boundary methods are integrated

into PCISPH.

and

β = 2

(

mi ·∆t

ρ0

)2

, (5)

where mi is assumed to be same for all particles. In (4), W 0
i j =

W (x0
i j) with x0

i denoting the initial position of a prototype
particle with a filled neighborhood j.

Finally, the pressure force

F
p
i (t) = −mi ∑

j

m j

(

pi(t)

(ρ∗
i )2 +

p j(t)

(ρ∗
j )

2

)

∇W (xi j,h) (6)

is used to recompute the predicted positions and velocities
for all particles. This procedure is repeated until all predicted
particle variations are smaller than a user-defined thresh-
old value η. Solenthaler and Pajarola suggest a minimum of
three iterations in any loop in order to limit temporal fluctua-
tions in the pressure field. The PCISPH method is illustrated
in Alg. 1.

Note that in this paper η is used as an absolute value and
not as the percentage η%. Thus, for a density fluctuation of
2%, η = 2 ρ0

100 .

3.2. Boundary handling

External forces such as boundary forces Fb influence the
density distribution of the fluid. High pressure forces have
to be employed to counteract the compression when, e. g.
a fast moving fluid hits a static obstacle. The fluid-rigid in-
teraction, therefore, challenges the simulation method for in-
compressible fluids. In this section, we present a new bound-
ary method that combines the idea of direct-forcing [BTT09]
with the pressure-based frozen-particles method. The pro-
posed boundary method enforces non-penetration of rigid
objects even for large time steps. By incorporating density
estimates at the boundary into the pressure force, unnatural
accelerations resulting from high pressure ratios are avoided.

Similar to [BTT09], we sample the boundaries (walls and
rigid-bodies) with non-moving fluid particles which we call
boundary particles. Each boundary particle b stores its po-
sition xb, normalized normal nb, mass mb, density ρb and

pressure pb. In the following, we assume that the spacing
of the boundary particle is equal to the equilibrium distance
r0 = 0.5 · h of the fluid particles. Thus, a fluid particle i

is considered to penetrate the boundary at position xb, if
‖xi −xb‖ < r0.

In [BTT09], the penetration is predicted after the fluid and
rigid body forces are computed. For penetrations of non-
moving rigid bodies, the position and velocity of i is updated
as

vi(t +∆t) = ε
[

v
∗
i (t +∆t)

]

t
−δ [vi(t)]n (7)

xi(t +∆t) = x
∗
i (t +∆t)+

∥

∥(x∗i (t +∆t)−xb)
∥

∥ ·nb (8)

where [vi(t)]n = (vi(t) ·nb) ·nb denotes the normal velocity
and [v∗i (t +∆t)]t = v∗i (t + ∆t)− [v∗i (t +∆t)]n the tangential
velocity. ε,δ ∈ [0,1] are controlling the friction and the elas-
ticity of the collision.

According to the boundary sampling, it is possible that a
fluid particle i penetrates more than one boundary particle
at the same time. Thus, for concave objects with sharp fea-
tures, iteratively correcting the positions might lead to time-
inconsistent corrections of the particle positions. We propose
to estimate the penetration depth and direction by employing
a weighting function to compute a time-consistent correction
force Fb

i in the sense of [HTK∗04].

We average the boundary normals nc
i of all boundary par-

ticles b which are penetrated by particle i as

n
c
i = ∑

b

w
c
ibnb (9)

w
c
ib = max

(

0,
r0 −‖x∗ib‖

r0

)

(10)

where ‖x∗ib‖ = ‖(x∗i (t +∆t)−xb)‖. The position of the par-
ticle i is then corrected according to nc

i with

xi(t +∆t) = x
∗
i (t +∆t)+

1

∑b wc
ib

∑
b

w
c
ib(r0 −

∥

∥x
∗

ib

∥

∥)
nc

i
∥

∥nc
i

∥

∥

(11)
while the resulting velocity is computed as

vi(t +∆t) = ε
[

v
∗
i (t +∆t)

]

t
. (12)
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As stated in [BTT09], the position update leads to higher
density ratios in the fluid at the boundary interface (see
Fig. 2). Thus, smaller time steps might be required in or-
der to enforce incompressibility. Furthermore, stacking of
particles might occur in boundary regions since the normal
velocities are fully damped for δ = 0 in (7). In order to pre-
vent stacking, the coefficient of restitution δ might be chosen
larger than zero. However, this can lead to rigid-body-like
collisions for the fluid particles. In the proposed model, these
drawbacks of the direct-forcing approach are eliminated by
taking the density contribution of the boundary particles and,
hence, the pressure at the boundary into account.

In the presented method, the densities of fluid and bound-
ary particles i are updated in each prediction step as

ρ∗
i (t +∆t) = ∑

j

m jW (x∗i j,h)+∑
b

mbW (x∗ib,h). (13)

where we use the same support radius h for fluid and bound-
ary particles. Thus, the different particle sets interact in the
usual way. Since the pressure of the boundary particles in-
creases with the surrounding fluid density, it counteracts
high density fluctuations. Therefore, compressions can be
rapidly resolved while stacking of particles is avoided.

The proposed approach can be applied to any SPH algo-
rithm. We employed it for the PCISPH method since it al-
lows for large time steps (see Alg. 2). In contrast to [SP09],
we suggest to predict a non-penetrating fluid particle po-
sition x∗i before computing the density fluctuation ρ∗

erri
.

Therefore, the predicted density fluctuation is more precise.
Consequently, the compression is quickly resolved. As we
show in Sec. 4, only the combination of the direct-forcing
method with the density based pressure of the boundary par-
ticles yields smooth density distributions.

In this section, we have described a boundary handling
method that exerts distance- and density-based forces on the
fluid. In combination with the PCISPH method, high den-
sity ratios at the boundaries are rapidly resolved. Therefore,
larger time steps can be used in comparison to existing meth-
ods as shown in Sec. 4. In the next section, we propose how
the overall computation time can be further reduced by using
adaptive time-stepping.

3.3. Adaptive time-stepping

For numerical stability and convergence, several time step
constraints must be satisfied. The Courant-Friedrich-Levy
(CFL) condition for SPH

∆t ≤ λv

(

h

vmax

)

(14)

states that the speed of numerical propagation must be
higher than the speed of physical propagation, where vmax =
max∀t,∀i(‖vi(t)‖) is the maximum magnitude of the veloc-
ity throughout the simulation. λv is a constant factor, e. g.
λv = 0.4 in [Mon92]. In other words, a particle i must not

Algorithm 2: PCISPH with the proposed boundary han-
dling and adaptive time-stepping.

while animating do

foreach particle i,b do
find neighbors Ni,b(t);

foreach particle i do

compute forces F
υ,st,g
i (t);

set pressure pi(t) = 0;
set pressure force F

p
i (t) = (0,0,0)T ;

foreach particle b do
set pressure pb(t) = 0;

k = 0 ;
while k < 3 do

foreach particle i do

predict velocity v∗i (t +∆t);
predict position x∗i (t +∆t);
predict world collision x∗i (t +∆t);

foreach particle i,b do
update distances to neighbors Ni,b(t);
predict density ρ∗

i,b(t +∆t);
predict density variation ρ∗

erri,b
(t +∆t);

update pressure pi,b(t)+ = δρ∗
erri,b

(t +∆t);

foreach particle i do

compute pressure force F
p
i (t);

k+ = 1;

foreach particle i do
compute new velocity vi(t +∆t);
compute new position xi(t +∆t);
compute world collision (11) and (12);

adapt time step ∆t;
recompute β (5) and δ (4);

move more than its smoothing length h in one time step. Fur-
thermore, high accelerations might influence the simulation
results negatively. Therefore, the time step must also satisfy

∆t ≤ λ f

(

√

h

Fmax

)

(15)

where Fmax = max∀t,∀i(‖Fi(t)‖) denotes the magnitude of
the maximum force per unit mass for all particles throughout
the simulation. In [Mon92], λ f = 0.25 is suggested.

As stated in [SP09], the force term (15) dominates the
time step for the PCISPH method. However, the maximum
force Fmax of all fluid particles is not known a priori, but
must be estimated according to the initial setting of the
scene, e. g. [BT07]. Unfortunately, nearly every change in
the scene setting (for example the density fluctuation or
the number of particles) requires resetting of the time step.
For complex scenarios with moving and non-moving ob-
jects, it can be tedious to find an appropriate time step. Fur-
thermore, the maximum velocity and pressure can heavily
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vary throughout the simulation. In constant time stepping
schemes, the minimum time step is used over the whole
simulation time, even though the time step might be too re-
strictive for the main part of the simulation. In this section,
we propose an adaptive time-stepping scheme for PCISPH,
which smoothly adapts to the current simulation state. The
proposed method does not require any manual setting of the
time step.

The adaptive time integration discussed in [DC96] works
only for WCSPH algorithms, e. g. [MCG03], but not for
PCISPH. For PCISPH, computing the time step for each
simulation step using (14) and (15) directly, causes spuri-
ous density shocks in the fluid if the instantaneous time step
variation is not smooth. In PCISPH, the time step directly
influences the pressure correction term where a smaller
time step results in larger pressures (see (4) and (5)). Thus,
large time step variations change the pressure field which
changes the convergence of the simulation. In this case, the
PCISPH method is not able to solve the compression, i. e.
the prediction-correction loop does not converge. However,
our observations suggest that those problems are completely
prevented if the change in time step is not larger than 0.2%
from one simulation step to the next.

The proposed method varies the time step ∆t for n

particles according to the current (overall) volume com-
pression ρ

avg
err = 1

n ∑i ρerri(t), the maximum density fluc-
tuation ρmax

err = max∀i(ρerri(t)), the maximum velocity
vmax

t = max∀i(‖vi(t)‖) and the maximum force Fmax
t =

max∀i(‖Fi(t)‖). These values are related with the user-
defined maximum volume compression ηavg and the max-
imum allowed density fluctuation ηmax.

We observed that the difference of the maximum density
fluctuation and the overall fluid compression ρmax

err −ρ
avg
err is

small for the main part of the simulation. However, for high
impacts, this value might become more than ten times bigger
without affecting the overall compression. Thus, we suggest
to choose ηmax = 10 ·ηavg.

We underestimate the initial time step as ∆t =

0.25
(

h
vmax

0

)

. During the simulation, the time step is in-

creased by 0.2%, if and only if each of the following criteria
is satisfied:

0.19

(
√

h

Fmax
t

)

> ∆t (16)

ρmax
err < 4.5 ·ηavg (17)

ρ
avg
err < 0.9 ·ηavg (18)

0.39

(

h

vmax
t

)

> ∆t (19)

On the other hand, the time step is decreased by 0.2%, if one

Figure 3: Shock scene. High impact velocities might cause

shocks for large time steps. The proposed adaptive time-

stepping method handles such shocks in a predictive-

corrective manner. The time step evolution is shown in Fig. 4.

of the following holds:

0.2

(
√

h

Fmax
t

)

< ∆t (20)

ρmax
err > 5.5 ·ηavg (21)

ρ
avg
err ≥ ηavg (22)

0.4

(

h

vmax
t

)

≤ ∆t (23)

The constants in (16) to (23) have been chosen empirically.
Generally, these criteria underestimate the required time step
according to (14), (15) and the density fluctuation. They can
be relaxed and restricted by changing the constant parame-
ters.

The proposed method adjusts the time step such that
for the PCISPH method not more than three iterations
are needed to resolve the volume compression. In contrast
to [SP09], we therefore limit the number of iterations to
three. Still, the overall volume compression is enforced ac-
cording to (18), (22).

However, for simulations with large shocks, e. g. the cor-
ner breaking dam, the maximum density fluctuation might
increase dramatically in one time step. In these scenarios,
decrementing the time step by only 0.2% is not sufficient
to resolve the density fluctuation. Therefore, we propose to
handle such shocks separately.

Shock handling. The proposed adaptive time-stepping
method varies the time step smoothly, if the density fluc-
tuation, maximum force and velocity do not exceed prede-
fined values. However, for high impact velocities, the time
step might be too large. In order to handle those shocks,
we go two simulation steps backwards and resume the sim-
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ulation using an appropriate time step ∆tnew. In case of a
detected shock, the required time step is estimated with re-
spect to the maximum force and velocity computed for the
shock/impact:

∆tnew = min

(

0.2

√

h

Fmax
t

,0.25
h

vmax
t

)

. (24)

A shock is detected, if one of the following criteria is met:

ρmax
err (t)−ρmax

err (t −∆t) > δshock (25)

ρmax
err (t) > ηmax (26)

0.45

(

h

vmax
t

)

< ∆t (27)

with ηavg < δshock < ηmax. The method handles shocks in
a predictive-corrective manner. Since a shock is detected, if
ρmax

err exceeds ηmax, any user-defined maximum density fluc-
tuation can be guaranteed.

Note that (24) varies the time step by more than 0.02.
Thus, the pressure field is instantaneously changed. How-
ever, we prevent shocks in the subsequent simulation steps
by explicitly underestimating the new, required time step.
Thereby, the overall simulation result is not visibly changed
(see accompanying video).

Our time stepping scheme automatically computes the re-
quired time step which enforces a predefined volume com-
pression ηavg and guarantees a maximum density fluctuation
ηmax. The proposed scheme reduces the overall computation
time without affecting the simulation results. Generally, the
state of the fluid evolves very smoothly, therefore increasing
and decreasing the time step by 0.2% is sufficent for most of
the time. Shocks occur rarely and can be resolved instantly
by the proposed scheme. Therefore, the shock handling does
not affect the simulation results.

3.4. Implementation

In the presented method, walls and rigid bodies are repre-
sented by boundary particles. In order to represent the shape
of the rigid bodies precisely, we require a sampling den-
sity equal to the rest distance of the fluid. For achieving a
close to uniform sampling, we apply an isotropic, feature-
sensitive remeshing algorithm to a two-manifold bound-
ary object with borders [BK04, BPR∗06]. Afterwards, the
boundary particles are placed at the vertices of the resultant
mesh.

As the number of boundary particles influences the com-
putational amount, we only take active boundary particles
into account. Boundary particles are activated in the neigh-
borhood search, for which we use the grid-based spatial
hashing method [THM∗03]. As the fluid is only in contact
with a small percentage of all boundary particles at once,
the effect of boundary particles on the computation time is
small.

In our SPH implementation, the viscosity and the surface
tension forces are computed as described in [BT07]. In all
SPH equations, we use the cubic spline kernel explained
in [Mon92]. Furthermore, we use the constant correction
technique as described in [BK02] in order to correct the den-
sity at the fluid surface. Positions and velocities are updated
using the Euler-Cromer scheme.

For the videos, the fluid surface is reconstructed as pro-
posed in [SSP07] and rendered using POV-Ray. Our simula-
tion software is parallelized with OpenMP [Ope05].

4. Results

In this section, we show the capabilities of our approach.
First, we show the effect of the boundary method on the den-
sity distribution and the required time step. Then, we discuss
our adaptive time-stepping scheme with respect to perfor-
mance, stability and influence on the simulation. Finally, our
method is applied to complex scenarios. For these scenes,
performance measurements and simulation data are summa-
rized. All timings are given for an Intel Xeon 7460 with 24
2.66 GHz CPUs. In the given scenarios, we use either 8 or
24 CPUs.

4.1. Boundary method

In order to show the capabilities of our boundary scheme,
we compared it with the direct-forcing methods [BTT09]
and [HKK07]. The methods were tested for a simple cor-
ner breaking dam scene with 23k particles. Both refer-
ence boundary methods were integrated into the proposed
PCISPH algorithm (see Alg. 2) without adapting the time
step.

We compared the different schemes with respect to the
influence on the density distribution and the time step. For
all methods, we tried to find the maximum time step which
satisfied an overall volume compression η%

avg smaller than
1%. Since for the PCISPH method, these values are also in-
fluenced by the number of iterations required to correct the
density error, we used three iterations in all simulation steps.
For all methods, we used a free-slip condition, i.e. the tan-
gential velocity was not damped.

In Fig. 2, a side-by-side comparison of the tested methods
is given. We colored the particles according to the pressure
distribution. The coloring scheme assigns the color red to
the highest pressure and white to the lowest pressure in the
current time step. These values are interpolated according

to
√

pi(t)
pmax(t)

. Note that the maximum pressure and hence the

color schemes are not normalized, i.e. for different methods,
the same color might refer to different pressures.

As can be observed, the pressure distribution differs a lot
for the three boundary methods. In [BTT09], the normal
velocity of colliding fluid particles is fully damped. In the
test scenario, the fluid volume covers the floor completely
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scene # p CPUs treal tsim adaptive tsim constant speed up max
∀t

(ρavg
err (t))

#pboundary

#p f luid

Glass up to 75K 24 10s 4min 6min 1.5 0.65% 31.4%
(∆tmin = 0.0015, ∆tmax = 0.0028) ∆t = 0.0018

CBD small 120K 8 20s 29min 1h 43min 3.55 0.95% 14%
(∆tmin = 0.00114, ∆tmax = 0.00388) ∆t = 0.00116

Shock 1.3M 24 20s 11h 25min 166h 38min 14.50 0.70% 9.1%
(∆tmin = 0.00011, ∆tmax = 0.00311) ∆t = 0.00012

CBD large 1.7M 24 20s 16h 30min 85h 42min 5.20 1.30% 5.4%
(∆tmin = 0.00017, ∆tmax = 0.00166) ∆t = 0.00018

Wave 1.8m 24 20s 19h 41min 29h 43min 1.51 0.50% 6.5%
(∆tmin = 0.00051, ∆tmax = 0.00256) ∆t = 0.00058

Table 1: Comparison of constant time step and adaptive time step performance. The last column lists the average ratio of the

number of active boundary particles to the number of fluid particles.

and therefore, particles on the floor get stuck. This results
in a high pressure ratio of the particles ’colliding’ with the
boundary and their ’non-colliding’ neighbors (on top). Due
to high pressures of the colliding particles, a spatial gap be-
tween the particles arises (see Fig. 2, middle). Furthermore,
the high pressure ratio causes unnatural acceleration.

In [HKK07], the boundary contributes to the density of
the fluid particles. However, the contribution is only related
to the distance and not to the current pressure on the bound-
ary. This results in a noisy pressure distribution with local
high pressure ratios (see Fig. 2, right).

We observed, that large pressure ratios might result in
strong pressure force and hence high acceleration. In con-
trast to [HKK07, BTT09], the proposed method computes
the pressure on the boundary particles like for fluid parti-
cles. Therefore, particles do not get stuck on the boundary,
while the pressure distribution is very smooth (see Fig. 2,
left). Thus, our method can generally handle larger time
steps compared to [HKK07, BTT09]. For the test scene, the
following time steps could be used: ∆t = 0.0008 [BTT09],
∆t = 0.0015 [HKK07] and ∆t = 0.0045 for the proposed
boundary method.

Note that in penalty-based boundary methods, large forces
and, thus, small time steps are required to resolve the pen-
etration into the boundary. Since the proposed method en-
forces non-penetration by directly correcting the positions,
much larger time-steps can be used.

4.2. Adaptive time-stepping

Our adaptive time-stepping method requires no manual set-
ting of the time step, since it increases and decreases ac-
cording to the current state of the simulation. Adaptively
changing the time step might, however, change the simu-
lation results. In order to show that our scheme does not
affect the simulation results, we computed a corner break-
ing dam with 120k particles (CBD small) using constant
and adaptive time-stepping. For the adaptive time-stepping,
vmax and Fmax is tracked. These values are used to compute
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Figure 4: Time step evolution for the Shock scene. Two

shocks have occured around 1s and 6s.

the required constant time step according to (14) and (15).
Note that for adaptive time-stepping, the time step is under-
estimated and thus, ∆tmin is smaller than the constant time
step. Both scenes were computed with the proposed bound-
ary handling method.

As is shown in the accompanying video, the visual result
of the adaptive time-stepping is in good agreement with the
constant time-stepping. In this scene, the overall computa-
tion time tsim to compute 20 real seconds treal of simulation
was 1 hour and 43 minutes with constant time-stepping and
29 minutes with our adaptive time-stepping method. Thus,
for this scene the overall speed up is 3.55 (see Table 1).

In order to demonstrate the shock handling, we designed
a scene with high impact velocities. A fluid volume with 1.3
million particles is dropped from a large height. The fluid
hits some spheres with high impact velocities (see Fig. 3).
In this case, a shock is detected and starting from two sim-
ulation step backwards, the simulation is resumed using an
appropriate time step. Fig. 4 shows the evolution of the time
step for this scenario. According to the pessimistic estima-
tion of the required time step, subsequent shocks are pre-
vented.

For scenarios with high impact velocities, like the Shock
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Figure 5: Glass scene. Filling up a glass with up to 75K fluid particles. The whole glass consists of 39K boundary particles.

Overall computation time 4 minutes, ∆tmin = 0.0015,∆tmax = 0.0022.

scene, our adaptive time-stepping method reduces the over-
all computation time significantly. For other scenes, like the
Wave scene, the speed up might be rather small. However,
in every case, it adapts to the current state of the simulation
and prevents numerical instabilities.

4.3. Performance and application

We applied the proposed algorithm (see Alg. 2) to a scene
where up to 75K particles fill a concave glass (see Fig. 5).
In this scene, the fluid interacts realistically with the static
object while comparatively large time steps could be used.

Furthermore, we simulated a corner breaking dam with
1.7 million particles (see Fig. 6). According to the large
number of particles, small details are well preserved. Due
to the turbulent flow, a speed up of 5.2 is achieved with
adaptive-time stepping.

The proposed boundary handling algorithm is designed
for one-way rigid-fluid coupling with static objects. In order
to show that the algorithm might also work for moving rigid
bodies, we simulated a wave generator with a moving wall.
In the Wave scene (see Fig. 1), the wave generator moves in
one dimension according to a cosine function with peak ve-
locity vmax

w = (1,0,0)T . Hence, the 1.8 million fluid particles
forming a gentle wave that runs up a beach. Since the moving
boundary did not cause any problems to the simulation, we
believe that the proposed algorithm might be extended for
two-way coupling of rigid bodies with fluid and deformable
solids with fluid.

5. Conclusion

We proposed a new boundary handling scheme which com-
bines the advantages of the direct-forcing approach with
the frozen-particle method. The combination eliminates the
drawbacks of both methods. Applied to the PCISPH method,
high density ratios at the boundary are rapidly resolved.

Figure 6: CBD large scene. A corner breaking dam with 1.7
million particles. Overall computation time 16.5 hours for

20 real seconds, ∆tmin = 1.7 ·10−4
,∆tmax = 1.66 ·10−3.

Smooth density and pressure distributions are enforced and,
therefore, larger time steps can be used.

Furthermore, we suggested an adaptive time-stepping
method for the PCISPH method. This method increases and
decreases the required time step according to the state of
the simulation. While the adaptive time-stepping method re-
duces the overall computation time for turbulent fluids, the
visual result of the simulation is in good agreement with the
constant time-stepping. Moreover, our method does not re-
quire any initial time step decisions, since the time step is
computed according to the current state of the fluid.

Our system reduces the overall computation time for the
PCISPH method, since comparatively large time steps can
be used.
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