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Abstract

A survey of the development of the marching cubes algorithm [W. Lorensen, H. Cline, Marching cubes: a high resolution 3D surface

construction algorithm. Computer Graphics 1987; 21(4):163–9], a well-known cell-by-cell method for extraction of isosurfaces from

scalar volumetric data sets, is presented. The paper’s primary aim is to survey the development of the algorithm and its computational

properties, extensions, and limitations (including the attempts to resolve its limitations). A rich body of publications related to this aim

are included. Representative applications and spin-off work are also considered and related techniques are briefly discussed.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Marching cubes; Isosurface extraction; Indirect volume rendering; Volume visualization; Scientific visualization
1. Introduction

Volume visualization has been applied in many problem
domains and, as such, has become an important tool for
exploring data and discovering knowledge. Commonly, the
domain data to be visualized is scalar volumetric data.
Scalar volumetric data can be defined as a collection A of
3D points Pi ¼ ðxi; yi; ziÞ, each of which has its own scalar
value or property [1]. Volumetric data sets are often
rendered using indirect volume rendering (IVR) techni-
ques. The indirect techniques involve rendering of an
intermediate structure—such as an isosurface—that has
been extracted from the data, typically via automatic
means.

This paper is a survey of the literature involving one IVR
method for scalar volumetric data sets, the marching cubes
(MC) algorithm [2]. The MC is probably the most popular
isosurfacing algorithm [3], and a rich body of literature has
grown up around it. In addition to being a subject of
ongoing visualization research, the MC is also influencing
research in other areas.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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1.1. Historical background

The MC is a sequential-traversal method that was
described in 1987 by Lorensen and Cline [2]. MC, while
popular, is not the oldest isosurface extraction method. For
instance, Wyvill et al. [4] presented a propagation-based
method in 1986. That method is somewhat similar to MC,
and it is sometimes identified as an MC approach [5].
However, MC and the Wyvill et al. method are distinctive
in several ways. For example, they use quite different
traversal orderings. The isosurfaces they extract also differ.
Due to the differences, and since most teams who have
described application of an ‘‘MC’’ methodology have
employed the Lorensen–Cline approach, we restrict the
MC designation to the Lorensen–Cline approach.
1.2. Some preliminaries

An isosurface can be defined as follows. Given a scalar
field F ðPÞ, with F a scalar function on R3, the surface that
satisfies F ðPÞ ¼ a, where a is a constant, is called the
isosurface defined by a. The value a is called the isovalue. In
practice, isosurface extraction usually involves generation
of an approximate, piecewise isosurface (usually composed
of a collection of triangles) on a sampled scalar field.
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The isosurface could consist of a single component or of
multiple, disjoint ones.

1.3. Utility and motivation

Past usage of many volumetric data sets often involved
viewing only 2D cross-sectional ‘‘slices’’ (i.e., a plane of
data points) through the data. For example, a slice image
from a CT data set of a lobster is shown in Fig. 1.
Isosurface extraction, in contrast, can enable one or more
phenomena or structures of interest in a data set to be
isolated and rendered (using conventional surface-based
graphics methods). Moreover, isosurface display is usually
fast since most isosurfacing methods output a mesh
composed of triangular facets; rendering of triangles is
fast on typical graphics hardware. An isosurface extracted
from the lobster data set is shown in Fig. 2. The isosurface
shown approximately corresponds to the exoskeleton’s
boundary.

Although MC is not the oldest isosurfacing method, it is
very well-known and widely applied. Part of its appeal is
that it follows a straightforward, practical approach. The
MC has been applied in many application areas, including
biochemistry (e.g., [6]), biomedicine (e.g., [7]), deformable
modeling (e.g., [8]), digital sculpting (e.g., [9]), environ-
mental science (e.g., [10]), mechanics and dynamics (e.g.,
[11]), natural phenomena rendering (e.g., [12]), visualiza-
tion algorithm analysis (e.g., [13]), etc. Processing involving
depth maps (e.g., [14]) has also been influenced by MC
isosurface extraction, especially in the development of
methods based on distance fields (e.g., [15]).
Fig. 1. Cross-sectional view through CT lobster data set.

Fig. 2. An isosurface extracted from CT lobster data set.
The MC does pose certain challenges, including achieve-
ment of high performance and the potential for the
extracted isosurface to have degeneracies and ambiguities.
Although extensive work has been done to address these
challenges, aside from a brief summary of three early
isocontouring methods [16] and brief reviews of some of
the isocontour extraction literature [17–19], to our knowl-
edge there has been no survey of the development and
extensions of MC. This paper presents such a survey,
focusing on publications in the graphics and visualization
literature.

1.4. Organization

The paper is organized as follows. First, the standard
MC approach is described (Section 2). Then, extensions of
the algorithm, in particular those related to traversal, are
discussed (Section 3). In Sections 4–6, the algorithm’s
isosurface assembly component, which includes a triangu-
lation mechanism, is considered. These three sections
survey variant isosurface representations (Section 4), the
ambiguities in the triangulation mechanism and the known
methods for disambiguation (Section 5), and methods that
reduce the triangulation’s facet count (Section 6). Work
related to the final output, especially computing quantities
from isosurfaces, is discussed in Section 7. Section 8
concludes the paper.

2. The MC algorithm

The standard MC algorithm, as originally described by
Lorensen and Cline [2], takes as its input a regular scalar

volumetric data set. Such a data set has a scalar value
residing at each lattice point of a rectilinear lattice in 3D
space. Thus, the lattice point at row yi ð8iÞ and column
xj ð8jÞ of slice Sk (1okon, where n is the number of slices)
is directly adjacent to the lattice points at row yi and
column xj of slices Sk�1 and Skþ1. The MC processes the
volumetric data set by considering the ‘‘cubes’’ Cl that
make up the volume. The cubes are defined by the volume’s
lattice. Each lattice point is a corner vertex of a cube. Fig. 3
Slice Sk

Slice Sk+1

Fig. 3. Illustration of a cube formed on lattice points.

AFAR A

Fig. 4. Illustration of reflective (A with AF ) and rotational (A with AR)

symmetries.
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Fig. 5. The 15 basic intersection topologies (using the numbering of [2]).

1Although the original MC paper suggested use of a 15-entry table,

many realizations have used larger tables for disambiguation and/or

parallelization computational advantages.
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illustrates one cube defined by lattice points in adjacent
slices Sk and Skþ1. The lattice lines shown in the figure (i.e.,
the line segments that join adjacent corner vertices) define
the edges of the cube.

2.1. Methodology

The standard MC constructs a facetized isosurface by
processing the data set in a sequential, cube-by-cube
(scanline) manner. Thus, the approach first processes the
m cubes of the first row of the first layer of the data set in
sequential order: C1;C2; . . . ;Cm. During this processing,
each cube vertex V i that has a value equal to or above the
isovalue a is marked; all other vertices are left unmarked.
The isosurface intersects each cube edge Ej terminated by
one marked vertex Vjs

and one unmarked vertex V je
. Any

cube that contains an intersected edge is active. The
computations that find the active cubes can be viewed as
the active cube determination component of MC. This
component can be implemented as a stand-alone early
processing step or integrated with other processing, but in
either case it involves data set traversal in sequential,
forward-marching order.

Since each of the eight vertices of a cube can be either
marked or unmarked, there are 256 ð28Þ possible marking
scenarios for a cube. Each cube marking scenario encodes a
cube-isosurface intersection pattern (i.e., configuration).
However, the standard MC considers reflective and
rotational symmetry, which results in just 15 marking
scenarios. Cubes C and Ĉ are reflectively symmetric if each
vertex at position Vi in C has the opposite marking as the
vertex at the same position V i in Ĉ. Two reflectively
symmetric cubes (and their cube–isosurface intersections)
are shown at the center and right (i.e., cubes A and AF ) in
Fig. 4. In the figure, circle symbols denote marked
vertices. Cubes that are reflectively symmetric have the
same cube–isosurface intersection pattern. Two cubes C

and Ĉ are rotationally symmetric if there is some series of
rotations R which, when applied to C, transforms C to a
new orientation in which the marking at each trans-
formed vertex position V i is identical to the marking
at the same position Vi in Ĉ. The cubes A and AR in
Fig. 4 are rotationally symmetric. Rotationally symmetric
cubes have equivalent cube–isosurface intersection patterns
(the patterns vary only rotationally by the aligning
transformation R).
The 15 unique cube–isosurface intersection scenarios

that result when considering both of these symmetries are
shown in Fig. 5. We will use the topological case
numbering of Fig. 5, which is the same as the standard
MC [2], throughout this survey. For each scenario, the
standard MC facetization of the intersecting isosurface is
shown. Lorensen and Cline [2] stored facetization informa-
tion (specifically, the vertices of the triangle(s) to be
generated, each identified by the edge on which it lies)
about the 15 intersection topologies in a look-up table1

built offline prior to application of MC. This table has
usually been hand-built, which can be tedious, but methods
to enumerate the cases (e.g., [20,21]) now exist and are
discussed later in this paper.
The isosurface–edge intersection locations can be esti-

mated with subvertex accuracy using an interpolation
technique. Standard MC employs linear interpolation to
estimate the intersection point for each intersected edge. If
a unit-length edge E has end points V s and V e whose scalar
values are Ls and Le, respectively, then given an isovalue a,
the location of intersection I ¼ ðIx; Iy; IzÞ has components
of the form:

I fx;y;zg ¼ V sfx;y;zg þ rðVefx;y;zg � Vsfx;y;zg Þ,

where

r ¼
a� Ls

Le � Ls

.

One advantage of the cube-by-cube processing of
standard MC is that each edge intersection location only
needs to be computed once. Specifically, since each
intersected internal edge Ej (i.e., Ej is not on the data set
boundary) is shared by four cubes, the point of isosurfa-
ce–edge intersection I j on Ej only needs to be computed for
one cube Ca. The intersection point I j can be reused during
later processing of three other cubes Cb, Cc, Cd (where
b; c; d4a) sharing edge Ej. Nevertheless, algorithms that
use other traversal patterns can also achieve the same
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computational advantages via use of supplemental data
structures (e.g., hash tables).

The last step in MC is to generate triangular facets that
represent the portion of the isosurface that intersects each
cube. The intersection points define the vertices of the
triangles, and the collection of the triangular facets across
all the cubes forms the triangular mesh (or meshes) that
defines the isosurface. The facetization pattern in each cube
can be determined from the intersection topology look-up
table. The processing steps that build the facetization can
be viewed as the isosurface assembly component of the
MC.

2.2. Intersection topology count

While the standard MC exploited reflection and rotation
to yield 15 intersection topologies, some works (e.g.,
[22–24]) have described only 14 basic topologies. These
works exploit mirror symmetry. Cubes C and Ĉ are mirror
Table 1

Number of intersection topologies under different symmetries

Symmetry exploited # topologies

None 256

Reflection 128

Rotation 23

Rotationþmirror 22

Rotationþ reflection 15

Rotationþ reflectionþmirror 14

Case 2Case 0 Case 1

Case 8Case 7Case 6

Case 14Case 12 Case 13

Case 18 Case 20Case 19

Fig. 6. The 23 intersection topologies (using the numbering
symmetric if their vertex markings are symmetric about
some face of C. Since Cases 11 and 14 are mirror
symmetric, use of all three symmetries in union results in
14 basic topologies.
Table 1, which is adapted from Roberts and Hill [25],

summarizes the topology counts for each type of symmetry
exploitation. Banks and Linton [20,26] have confirmed
these topologies by modeling the marking scenario count-
ing problem as a computational group theory problem that
can be solved with readily available software packages.
Their approach also allows determination of the number of
basic topologies for extending MC to handle degeneracy
(i.e., when the isosurface passes through a lattice point due
to the isovalue equaling the lattice point’s value). The
choice of which symmetries to exploit in an implementation
should probably be governed by need, in particular in
consideration of speed and consistency requirements. This
paper considers consistency issues in Section 5.
The 23 topologies resulting from rotational symmetry

exploitation are shown in Fig. 6. The figure uses the same
case numbering as used in [27–29]. (Ref. [27] also includes
an unnecessary alternate set of topologies, however.) Since
the exploitation of rotational—or more accurately, the
non-exploitation of reflective [28,30]—symmetry over-
comes one of the key problems of the standard MC
(described later in Section 5.3.1), the topology table shown
in Fig. 6 is a practical choice for new implementations of
MC. It is also practical for such implementations to utilize
supporting tables (available in [28,29]) that allow quick
determination of each cube’s topology and rotational
orientation based on the vertex markings.
Case 3 Case 4

Case 21 Case 22

Case 10Case 9 Case 11

Case 5

Case 15 Case 16 Case 17

of [27–29]) that result when only rotation is exploited.
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3. MC extensions: data types and speed-ups

The MC has been extended in a number of ways. Here,
the extensions related to traversal through the data are
considered. Primary foci include (1) extensions of the
traversal mechanism to additional types of data (Section
3.1) and (2) computational improvements that limit
unnecessary effort, especially during traversal (Section
3.2), or that use parallel and distributed processing (Section
3.3). For comparison, alternative traversal mechanisms are
also discussed (in Section 3.4).
3.1. Extensions to other input types

Next, the extensions of the MC to other input types are
described. These extensions widen the utility of MC. To
assist in comparison, Table 2 classifies such extensions
according to the form of their inputs and outputs.

When the MC is extended to processing of other types of
data, the spatial unit of processing is often called a cell. In
this paper, we will use that term to denote any spatial unit
of processing.
3.1.1. Multi-resolution rectilinear data

Weber et al. [31] have extended the MC to rectilinear
grid data that has a hierarchy of resolutions in certain
regions. An example that contains two levels of such data is
shown in Fig. 7; the dense resolution subgrid in the center
of the figure refines part of the coarse mesh. Their
approach first extracts the isosurface (using MC) separately
in each subgrid. It then forms irregularly shaped cells
(pyramids, triangle prisms, deformed triangle prisms,
deformed hexahedra, or tetrahedra) that ‘‘stitch’’ together
Table 2

Classification of extensions of marching cubes to other input types

Input type Output type

Triangular mesh Spline mesh

3D rect. multi-res. grid [31] NA

4D grid [25,32–38] NA

n-D rect. grid [20,21,39,40] NA

Curved grid [41] NA

Other cell types [31,42–44], [45]a, [46,47] [48,49]

aThe entry marked extracts the isosurface in tetrahedral subcells (of a

rectilinear grid).

Fig. 7. An example of a component of a multi-resolution data set. The

central region enclosed by the dashed line segments was sampled at a

higher resolution than the rest of the data.
the subgrids. Finally, isosurface facets are constructed in
the irregularly shaped cells. The approach allows creation
of isosurfaces with no ‘‘cracks’’ between subgrids. Other
methods for isosurface crack-patching include [50–54].

3.1.2. Non-rectangular data

Means to extend MC to some types of non-rectangular
data have also been described. For instance, an extension
to cylindrical and spherical data that uses transformation
formulas based on the relationships of rectangular
coordinates with cylindrical and spherical coordinates has
been described [41]. Visualization of such data within its
natural coordinate system can aid understanding and
analysis.
Gallagher and Nagtegaal [48] reported one of the earliest

extensions of MC to unstructured grid data (e.g., sparse
data used for finite element analyses). The approach
couples sequential, forward-progression march with inter-
section determination by table look-up and is usable in
polyhedral regions of space, particularly for regions with
tetrahedral- and wedge-shaped cells. The approach also
produces a higher-degree isosurface than does the MC.
Interested readers might consult [49] in addition to [48]
since [49] contains some extra details.
Payne and Toga [45] have also described extension of the

MC to tetrahedral-shaped cells (tets). Their approach is the
initial demonstration of what has come to be called the
marching tetrahedra (MT). The term MT was actually
coined by Shirley and Tuchman [46], who described the
MT steps but did not reduce them to practice. MT involves
processing a mesh of tets by sequential, forward march
through the tets with intersection topology determination
via table look-up in each tetrahedron. Specifically, MT first
marks each tetrahedral vertex whose scalar value equals or
exceeds the isovalue. There are 16 (24) distinct markings for
each tetrahedron, although exploiting reflection and
rotation results in just three patterns [55,56]. Then, the
intersection points are found, typically using linear
interpolation. Finally, the triangulation is built on these
points.
Often, MT has been applied to rectilinear grids. In such

cases, the grid cubes must first be subdivided into
tetrahedral subcells. Schemes for subdivision into either
five or six tets exist. Several of the schemes have been
described by Carr et al. [57]. When MT is applied to
rectilinear grids, it will produce more isosurface facets than
does MC [42,58]. Methods to simplify the MT triangula-
tion (e.g., the wrapper [59] and regularized marching
tetrahedra [56] algorithms) are known, however.
The MT has been popular in many application areas and

has spawned spin-off work of its own (e.g., determining the
space swept by a solid [60] and reconstructing interfaces
between materials [61]). Readers interested in an overview
of MT may wish to consult the survey paper of Elvins [62].
Extension of MC to some other cell types, including

octahedra (e.g., [42,47]), hexahedra (e.g., [42]), and to some
irregularly shaped cell types (e.g., [31]), as mentioned in
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Table 3

Non-active cell avoidance papers, categorized by approach

Class Paper citations

Hierarchical geometric [34,35,64–69]

Interval-based [32,33,70–79]

Propagation-based [52,80–83]
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Section 3.1.1, has also been demonstrated. The MC has
also been extended to non-rectangular data by binning of
the data points into cube-shaped containers followed by
extracting the isosurface in sequential forward march over
the bins, as described recently by He et al. [43].

3.1.3. Higher-dimensional space

MC has also been extended to enable application to
higher-dimensional data sets. For example, approaches
that enable processing of 4D data sets [25,38] have been
described.

One difficulty in extending MC to higher dimensions is
determining the intersection topology look-up table. To
address this difficulty, Bhaniramka et al. [21,39] have
developed a convex-hull-based algorithm that automati-
cally generates the table for a regular rectilinear grid (or
grids of any type of convex polyhedra) of any dimension.
For each given marking scenario of a d-dimensional
hypercube, the approach first finds the midpoint of each
edge the isosurface intersects, then constructs the convex-
hull of the set of all such midpoints together with all
marked vertices in the hypercube. After this step, any
ðd � 1Þ-dimensional facets that lie on the faces (or
boundary) of the hypercube are removed from the
constructed convex-hull. The remaining ðd � 1Þ-dimen-
sional facets comprise that hypercube’s isosurface intersec-
tion configuration. Bhaniramka et al. have also shown that
the approach can construct a consistent facetization for all
intersection scenarios. Banks et al. [20] have independently
confirmed Bhaniramka et al.’s results for 4D.

A second difficulty for high-dimensional data is that
intersection topology table size increases with dimension.
One way to reduce this added memory pressure is to store
only the most common topologies in a hash table [40].

3.1.4. Time-varying data

Another area of extension is to time-varying data. Such
data often consists of several volumes, each collected at a
different time point. Typically, MC is applied to each time
point (e.g., [36]), with the collection of resultant isosurfaces
commonly displayed as transparent overlays. Another
approach for time-varying volumetric data represented as
4D arrays (in which time is the fourth dimension) is to
apply the Weigle and Banks [37,38] 4D isosurface/
isovolume approach. In their approach, an isovolume is
generated that represents the implicit function
f ðx; y; z; tÞ ¼ a, where t is the time, ðx; y; zÞ represents
position, and a is the isovalue. The generated isovolume is
the space that is swept by the isosurface over time.
Other methodologies that utilize MC-based isosurface
extraction from time-varying data sets have also been
described (e.g., [32,33,35]). Since those approaches focus
mainly on avoiding computation during traversal, they are
discussed with the other computation avoidance techniques
(Section 3.2).

One challenge in isosurface extraction for such data is
that if there are a moderate number of time points, the data
is often too large to reside in-core. Nevertheless, display of
isosurfaces extracted from time-varying data can aid in
understanding dynamic phenomena in many application
domains.
3.2. Computation avoidance

Interactive-rate data exploration and visualization can
be advantageous for many applications. Achieving such
performance levels has always been a challenge and, as the
size of data sets has grown, has remained one. One popular
way to hasten MC has been to avoid unnecessary
operations on the non-active (empty) cells, since 30–70%
of the processing time involves those cells [63]. Although
some processing involving empty cells is probably inevi-
table, since generating a correct isosurface requires each
cell to be visited at least once to learn if the cell is active,
avoiding unnecessary operations on non-active cells is an
effective way to accelerate the MC.
Methods that minimize unnecessary operations on non-

active cells are surveyed next. Table 3 summarizes the
methods according to processing characteristic. Typically,
these methods minimize the operations via representations
that can efficiently encode regions of non-activity, often by
recording extremes (i.e., minimum and maximum scalar
values) of each region, since any region whose interval (i.e.,
its range of extremes—also called its min–max range) does
not contain the isovalue is not active. Thus, a major focus
here is representations that encode non-active regions. It
should be noted that since many representations preprocess
the data to determine activity, it is often possible to use
either MC or other approaches to form the isosurface
facets in the active cells.
3.2.1. Hierarchical geometric approaches

One popular representation to encode non-active regions
is the hierarchical octree, which is a hierarchical geometric
data structure. Wilhelms and van Gelder [69] were the first
to use octrees to avoid examining empty cells. The octree
root node refers to the entire volume. Each child node
refers to an (approximately) equal-sized subvolume of the
volume described by its parent. Normally, each non-
terminal node has eight children, although if data set size is
not a power of 2 in all dimensions, some tree levels will not
be full. (Full octrees do not need to store explicit node
addressing information. Octrees that do not store addres-
sing information are pointerless.) Octrees that produce
equal-sized subdivisions are called even-subdivision octrees.
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In such octrees, the terminal nodes describe regions
composed of eight (or fewer) contiguous cells. To aid in
avoiding empty cells during isosurface construction, each
octree node also stores the extremes of the region described
by the node. It is worth noting that some early uses of
octrees did not store cell extremes, which reduces storage
requirements but necessitates visiting non-active cells of
active regions during isosurface extraction. Building the
octree (i.e., preprocessing) requires visiting each cell once.
However, each subsequent isosurface extraction utilizes the
octree to only visit the cells of nodes whose interval
includes the isovalue. Usually, the time saved by avoiding
empty cells is more than preprocessing time. In some
environments, fast octree creation is also possible (e.g.,
using multi-threading on shared-memory computers [84]).

If there are n cells, p of which are active, octree-based
isosurface extraction has a worst-case time complexity of
Oðpþ p logðn=pÞÞ [77]. Octree creation time complexity is
Oðn logðnÞÞ, but multiple extractions can reuse the octree.
Of course, the standard MC has OðnÞ complexity.

Octrees can also be used to extract only the part of an
isosurface that is visible from a given viewpoint, as first
described by Livnat and Hansen [66]. Avoiding non-visible
regions makes such approaches well-suited for remote
visualization, especially on slow networks. In the Livnat
and Hansen approach, the octree is traversed in a top-
down, front-to-back order to avoid non-active cells and to
enable coarse visibility testing. Specifically, node occlusions
are detected during traversal through a viewpoint-centric
projection of each non-terminal node’s subvolume onto a
virtual screen. Z-buffering is then applied to cells that
survive the coarse visibility test. Recently, approach
extensions that replace small isosurface facets with point
primitives and that use multi-threading have been pre-
sented [85]. Other improvements, such as pruning occluded
regions from the octree as soon as they are known to be
occluded [86] and partitioning space along spherical, rather
than cartesian, coordinates [87] are also possible.

The even-subdivision octree of a volumetric data set
whose size is not a power of 2 cannot be stored with
optimal efficiency. One way to reduce the storage needed
for such octrees is to not subdivide any node that describes
a region composed of few (e.g., 32) cells, as first described
by Globus [65]. Although such an approach can reduce the
octree’s storage requirements, Wilhelms and van Gelder
[69] have proposed a more space-efficient approach for
octree organization, the branch-on-need octree (BONO).
During the recursive subdivision process that constructs
the BONO, the volume subdivisions are created only when
necessary. In particular, the BONO does not subdivide any
subvolume composed entirely of non-active cells. The
BONO is space-efficient because unnecessary divisions are
avoided and because its divisions are of optimal size; each
division in a dimension Di will create one subdivision of
size 2qioni, where ni is the size in dimension Di of the
region to be divided and qi is the largest integer that
maintains the condition. (The other subdivision will be of
size ni � 2qi .) In addition, subdivisions that define sub-
volumes composed entirely of non-active cells are allocated
no space in the BONO. It should be noted that, unlike
pointerless octrees, the BONO does require storage of
pointers between levels (i.e., to child nodes). The storage
requirements can be reduced somewhat by using clusters of
adjacent cells that have nearly uniform scalar values as the
units that BONO organizes [68]. The resultant isosurface
can have ‘‘cracks’’ between blocks of different sizes,
however.
The temporal branch-on-need (T-BON) tree [34,35]

extends the BONO to time-varying data. For each time
point, a T-BON stores an octree of node extreme values. In
T-BON-based isosurface extraction, the time point’s octree
is first traversed to determine the needed data blocks. These
blocks are then read from disk, and isosurface extraction is
performed in them. Subsequent extractions using a
different isovalue at the same time point reuse resident
data blocks and load only the additional needed data
blocks. Thus, the T-BON can minimize disk accesses,
which is especially useful when the data set cannot reside
entirely in-core.
The 3D pyramid [64,67] is another hierarchical geometric

data structure useful to avoid traversal of empty cells. Like
the BONO, each node in the pyramid structure stores the
interval for the subvolume the node describes. The 3D
pyramid is essentially equivalent to a pointerless full octree,
but it includes a mechanism to handle data sets that are not
powers of 2 in all dimensions. Unlike a BONO, the 3D
pyramid subdivides all nodes that are at non-terminal
levels of the representation; it need not be reconstructed for
each isovalue.
3.2.2. Interval-based approaches

Interval-based representations, which group cells based
on cell intervals, are another class of data structures that
are useful in avoiding traversal of empty cells. One
advantage of many interval-based approaches is their
operational flexibility; since these approaches operate in
an interval space rather than in the geometric space of the
mesh, they are typically applicable on either regular or
unstructured (e.g., irregular tetrahedral) data. Many
interval-based approaches have been presented in the
literature, and these approaches are summarized next.
The active list of Giles and Haimes [76] was an early

interval-based representation for avoiding empty cells. The
active list is built from two supplemental lists: an
ascending-order list of cell minima and a descending-order
list of cell maxima. The initial active list contains the
minima list cells whose minima are less than the isovalue a
but greater than a� DL, where DL is the largest cell
interval. Isosurface extraction is performed only in the
active list cells that are actually active. When different
isoqueries are made, the lists of minima and maxima are
used to add cells to the active list. Although active list-
based isosurfacing has worst-case complexity of OðnÞ,
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Fig. 8. Span space illustrations. In (b), quantile categorization based on isovalue a is shown ((b) is an adaptation from [78]): (a) search in span space and

(b) quantization of span space.

2The Kd-Tree is a K-dimensional generalization of a binary tree. Kd is

an acronym for K-dimensions.
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where n is the number of cells, it can be effective when DL

is small.
Another early approach was the span filtering [75], which

can operate on either regular or unstructured data. Span
filtering equally divides the data set interval into subranges.
A bucket is associated with each subrange and holds lists of
the cells whose minima are within its subrange. Each list
holds the cells of a certain span length (cell span length is
the number of buckets whose ranges are intersected by its
interval). Active cells are located by first searching the lists
of the bucket Ul whose range includes the isovalue. Each
bucket Uj, jol, is also searched for active cells, although
only the linked lists that store cells of span length greater
than l � j need be searched. Span filtering has been
reported to significantly reduce finite element data iso-
surfacing time [75].

The sweeping simplices [79] is an approach that can allow
fast isosurface extraction from unstructured data. It also
uses bucketized subranges, although its subranges overlap.
Each cell is assigned to the bucket that completely contains
the cell’s interval. Candidate active cells are located by
retrieving the cells from each bucket whose interval
contains the isovalue. Then, each candidate active cell is
stored in two lists, one sorted by cell minima and the other
by cell maxima. Finally, actual active cells are determined
by searching the lists; each cell whose minimum is not
greater than the isovalue a and whose maximum is not less
than a is active.

3.2.2.1. Span space-based methods. Span space-based
methods exploit a 2D span space to avoid examining empty
cells. The 2D span space, which was first described by
Livnat et al. [77], has axes that are cell minima and
maxima, which we will denote as the min and max axes,
respectively. Each cell is mapped to a point in span space; a
cell with minimum scalar value Ma and maximum scalar
value Mb maps to (Ma, Mb) in span space. Active cells are
located by searching span space, as illustrated in Fig. 8(a)
for an isovalue a. The cells that are active have a cell
minimum less than or equal to a and a cell maximum that is
greater than or equal to a. The area in span space
containing the active cells is the active area. An active
area for an isovalue a is shown as a shaded region in
Fig. 8(a).
Several span space-based methods for efficient isosurface
extraction have been presented and are described next. The
primary difference in the approaches is the search
mechanism used.
The first span space-based method was the Near Optimal

ISosurface Extraction (NOISE) algorithm of Livnat et al.
[77]. The NOISE algorithm organizes the span space data
using a Kd-tree,2 which can be traversed quickly to find the
active cells. Livnat et al. have reported that NOISE-based
isosurfacing has excellent computational performance; its
time complexity is Oð

ffiffiffi

n
p
þ pÞ, where n is the number of

cells and p is the number of active cells. The time
complexity of the NOISE algorithm’s preprocessing
activities is Oðn logðnÞÞ.
The use of the Kd-tree to organize a span space that is

based on cell minima and maxima allows fast isosurface
extraction, although the cost of the speed is the storage of
the cell intervals. (Cell addressing information must also be
stored.) The storage requirement could be reduced by using
NOISE on region minima and maxima. Such a practice
would, of course, increase isosurface extraction time due to
the need to visit all cells (i.e., not just the active cells) within
an active region.
Another span space-based method, the isosurfacing in

span space with utmost efficiency (ISSUE), has been
presented by Shen et al. [78]. In ISSUE, span space is
quantized into an N �N regular lattice, where N is user-
specified. Given an isovalue a, each lattice element (i.e.,
quantile) is classified into one of five categories based on its
location, as illustrated in Fig. 8(b). A quantile can be either
outside the active area (Category 1), completely inside the
active area (Category 2), on the vertical (but not
horizontal) boundary of the active area (Category 3), on
the horizontal (but not vertical) boundary of the active
area (Category 4), or on both the horizontal and vertical
boundaries of the active area (Category 5). The cells that
map into Category 2 quantiles are active. The cells that
map into Category 3–5 quantiles are potentially active. A
Category 3 cell is active only if its minimum is less than the
a. Likewise, a cell in a Category 4 quantile is active if its
maximum is greater than the a. For the cells that map into
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the Category 5 quantile, both minima and maxima must be
examined to determine activity. By restricting the span
space search, ISSUE enables faster detection of active cells
than many other span space based techniques. Shen et al.
have reported the average time complexity of ISSUE is
Oðlogðn=NÞ þ

ffiffiffi

n
p

=N þ pÞ, assuming n cells, p of which are
active, and a user-specified lattice size of N.

ISSUE tends to yield very efficient computation. Yet,
standard ISSUE can exhibit only modest I/O performance
and consume moderate amounts of storage. Methods to
address these challenges using bucketing and transform
coding have been described. In bucketing, a row or column
of span space quantiles are stored into contiguous memory
locations or disk blocks. The bucketized span space was
introduced by Sulatycke and Ghose [88] and has been used
by a few teams (e.g., [89,90]). As used by Bordoloi and
Shen [70], the transform coding performs a fast transform
operation on the span space followed by a non-uniform
quantization that effects a lossy compression of the
transformed span space. Locating the active cells can be
performed directly on the compressed representation. Use
of transform coding has been observed to consume only
one-third the storage of the ISSUE and interval tree data
structures (the interval trees are discussed later in this
section) without materially impacting isosurface extraction
time [70].

For time-varying data, the temporal hierarchical index

tree (T-HIT) of Shen [33] can be used. The T-HIT is a
binary tree of time intervals that organizes cells based on
cell temporal variation (the change of a cell’s extreme values
over a time interval). Each node stores all the cells that
have a low temporal variation for the time interval
associated with the node. To determine active cells for a
time point t, the T-HIT is searched along a path from the
root to the node for time point t, and at each visited node,
ISSUE-based MC is applied. Using T-HIT enables good
time and space performance [33].

3.2.2.1.1. Interval trees and related structures. Most
other interval-based approaches have organized cell
extreme values in interval trees or related data structures.
The interval tree is a balanced binary search tree that
enables efficient retrieval of ranges that contain a given
query value.

Cignoni et al. [73,74] have utilized the interval tree to
search span space for active cells. Each node of their
interval tree is associated with a distinct extreme scalar
value, and each non-terminal node stores two lists that
organize the cells whose intervals include the value
associated with the node. One list, Ta, is an ascending-
order list of cell minima and the other, Td , is a descending-
order list of cell maxima. To find the active cells associated
with a given isovalue a, the interval tree is visited in
modified preorder. Specifically, if a is less than the extreme
value o associated with the node, all cells stored in the
node’s list Ta that have a minima less than a are active, and
the node’s left subtree (which holds the nodes associated
with values Loo) is visited next. The right subtree is not
visited. If a4o, all cells in Td with maxima greater than a
are active, and the node’s right subtree (which holds the
nodes associated with values L4o) is visited next. The left
subtree is not visited. If a ¼ o, all the cells in the node’s
lists are active and neither subtree is visited. The Cignoni
et al. algorithm has a low-order time complexity
Oðpþ logðvÞÞ, where p is the number of active cells and v

is the number of unique extreme values.
For data sets that are too large to fit into main memory,

slow disk access, especially due to excessive paging [88], can
become a major performance problem for MC. A few
methods to improve performance for large data sets by
reducing memory requirements or organizing secondary
memory accesses via interval tree-based processing have
been described. For example, Chiang and Silva [71] have
described the I/O-optimal interval tree data structure and
its use in isosurface extraction. The I/O-optimal interval
tree is constructed in secondary storage and used to find
the active cells. The active cells are the only ones loaded
into RAM. More recently, Chiang et al. [72] have proposed
a two-level indexing scheme that improves the computation
time for extractions based on the I/O interval tree. The
scheme partitions the original data set into clusters of cells
called meta-cells, and the interval tree is based on meta-cell
intervals. Only meta-cells that are determined to be active
are loaded into RAM. Chiang [32] has also extended the
meta-cell concept for I/O-efficient processing for large
time-varying data sets. The extension amends the meta-
cells with a data structure that organizes vertex data by
time. This extension has been coupled with an indexing
structure called a time tree that enables I/O-optimal search
for and access to the active meta-cells [32]. For visualiza-
tion pipeline application, it may be beneficial to store meta-
cells on disk in isosurface geometry order rather than
forward-marching order [91].
Another strategy to reduce I/O for a series of isoqueries

is to use the skip-list data structure to encode extreme
values [92]. The skip-list stores, for each extreme value, a
list of the cell edges whose activity state changes at that
value. It can be maintained hierarchically to allow rapid
determination of the changed cells even for large changes in
the isovalue [92]. Thus, only the cells whose activity status
changes from inactive to active need to be loaded when the
isovalue is changed.

3.2.3. Propagation-based approaches

Propagation-based approaches to isosurface construc-
tion can also naturally avoid traversal of empty cells since
the propagation process visits only active cells. Propaga-
tion-based approaches do not use forward cube-by-cube
marching but rather propagate outward from some active
seed cell. They are discussed here because such techniques
can be used to ‘‘gather’’ active cells (or subvolumes) on
which MC-like processing is then applied.
Most propagation-based approaches require manual

selection of seed cells since automatic selection can be
challenging. For example, the method of Shekhar et al. [52]
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recursively propagates from a user-specified cell using
isosurface connectivity. However, a few automatic seed cell
selection schemes exist, including methods based on search
through graphs (1) of local minima and maxima (i.e.,
extrema graphs) [81,82], (2) that capture isocontour
topology [83], or (3) of cell adjacencies [80].
3.2.4. Comparisons

An advantage of using hierarchical geometric data
structures is that they enable efficient isosurface extraction.
In particular, these data structures tend to be more
compact and allow quicker access than those used for
interval-based approaches. However, interval-based ap-
proaches that are coupled with seed cell determination
methods (such as the method of [80]) can also be compact.
In addition, the Kd-tree can be as compact as a full
pointerless octree, assuming that the Kd-tree stores a cell’s
address as compactly as it stores an extreme value. One
disadvantage of hierarchical geometric methods is that
extension to non-regular data sets can sometimes be
challenging.

A comparison of the computational complexity of
isosurface extraction based on one typical hierarchical
geometric approach (i.e., octrees [69]), several typical
interval-based approaches (i.e., active lists [76], NOISE
[77], ISSUE [78], and an interval tree-based approach
[73,74]), and one typical propagation-based approach (i.e.,
that exploits extrema graphs [81]) is presented in Table 4.
In the table, n is the number of cells, p is the number of
active cells, N is the user-specified lattice size, and v is the
number of different extreme values. Preprocessing times for
the approaches are not included, however.

Sutton et al. [93] have presented a comparative study of
the computational performance and memory behavior of
the standard MC and five accelerated approaches that use
auxiliary data structures to avoid non-active cell traversal
(i.e., approaches based on BONO [69], propagation [80],
the interval tree [73], ISSUE [78], and NOISE [77]). Sutton
et al. self-implemented and tested the approaches on two
data sets in the same hardware and software framework.
They found all five methods to deliver faster performance
than standard MC, with BONO the fastest. They also
found that their implementation of the interval tree
technique (which, in the worst case, will have theoretically
optimal performance) had the least acceleration on their
Table 4

Comparison of computational complexity of five representative acceleration s

Approach Class

Octree-based [69] Hierarchical geometr

Active lists [76] Interval-based

NOISE [77] Interval-based

ISSUE [78] Interval-based

Interval tree-based [73,74] Interval-based

Extrema graph-based [81] Propagation-based
machine due to many cache misses. Another case study by
Zhang et al. [90] found that, for single-threaded Pentium 4
CPUs, BONO-based approaches were fastest, although
ISSUE-based approaches were nearly as fast. Although the
approaches implemented in these studies might exhibit
variant behavior on different architectures or for other
data sets, the studies suggest that consumption of more
memory tends to yield (but does not necessarily deliver)
improved performance.
Saupe and Toelke [94] have also studied the time–space

tradeoff for isosurface extraction and presented a memory-
constrained optimization framework that uses hybrid
isosurface extraction approaches to optimally adapt to
any given amount of memory. The framework uses a
binary spatial partition (BSP) tree whose leaf nodes encode
regions. In each leaf node, there is an accelerated search for
the isosurface, using whichever acceleration method (from
a family of possible methods) which best satisfies an
optimality principle.
3.2.5. Minimizing number of extractions

An alternate perspective on improving the efficiency of
MC is to view isosurface extraction in the larger context of
data discovery. Data discovery using MC is often a trial-
and-error process involving repeated selection of isovalues
until a clear trend or phenomenon is discerned. Several
methods to reduce the number of isoqueries through
determination of key isovalue(s) have been reported. For
example, approaches based on histogramming/moments
[95–98], examining the gradient field [99,100], examining
the critical points [3] and critical regions [101] of an
interpolating field, and consideration of isosurface area
[102] have been reported. Another scheme uses look-up
tables that consider regional data values [103].
3.3. Parallel and distributed approaches

Parallel approaches have often been considered as a way
to improve performance of time-consuming graphics and
visualization activities. Many of the issues related to
efficient parallelization of traditional graphics and direct
volume rendering tasks have been summarized by Crockett
[104]. Since the MC exhibits a degree of intrinsic
parallelism (e.g., cube faces not shared with previously
visited cubes can be processed independently), its paralle-
trategies

Computational complexity for extraction

ic Oðpþ p logðn
p
ÞÞ (worst case)

OðnÞ (worst case)

Oð
ffiffiffi

n
p
þ pÞ (worst case)

Oðlogð n
N
Þ þ

ffiffi

n
p

N
þ pÞ (average case)

Oðpþ logðvÞÞ (worst case)

OðnÞ (worst case)
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Table 5

Load-balancing schemes, categorized by load-balancing and by computational paradigm

Balancing SIMD MIMD

Dynamic NA [23], [88]a, [105]a, [106], [107]a

Static [108] [78,85], [88]a, [90,109], [110]a, [111,112], [113]a, [114], [115]a, [116]a, [117]a, [118]a

aThe entries marked directly address out-of-core operation.
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lization offers the potential for performance improvement.
In this subsection, load-balanced-parallel, vector- and
pipeline-parallel, and distributed approaches to MC
computation are surveyed.

3.3.1. Load-balancing

Many of the parallelized approaches have focused on
static or dynamic load-balancing strategies to enable
efficient utilization of multiple processors. Static strategies
assign a subset of the total work to each CPU before
parallel execution begins and do not vary the work
assignment during it. Dynamic strategies allow work
redistribution during execution. Although dynamic strate-
gies tend to keep computational resources well-utilized,
they also tend to consume some resources due to the extra
overhead of work redistribution during execution.

The approaches surveyed here are summarized in
Table 5, categorized according to load-balancing paradigm
on one axis and computational paradigm on the other axis.
Some of the approaches have also directly considered the
challenges of data sets that are too large to be processed
entirely in-core. The parallel out-of-core approaches are
discussed within the context of their load-balancing
characteristic.

3.3.1.1. Dynamic load-balancing approaches. One of the
first dynamic load-balancing approaches based on MC or
its extensions was the approach of Miguet and Nicod [23]
for distributed-memory computers. In the approach, layers
of the data set are first evenly divided among the CPUs.
Then, per-layer work estimates are computed based on
weighted sums of the number of cells and interpolation
points, with weights determined by linear regression.
During execution, layer assignments are adjusted between
processors to better balance the workload.

Gerstner and Rumpf [106] have described a paralleliza-
tion of their multi-resolution technique (Section 6.1) for a
shared-memory computer. The approach initially assigns
each CPU an independent subtree of their representation’s
hierarchy. Each processor then recursively computes the
isosurface in its assigned subtree. CPUs that become idle
are supplied the largest remaining unprocessed subtree
subcomponent from another CPU.

3.3.1.1.1. Out-of-core dynamic balancing. Sulatycke
and Ghose [107] have presented a multi-threaded approach
to MC that delivers good performance on dual- and quad-
processor SMPs for data sets too large to reside in-core.
The approach organizes the data on disk using an interval
tree stored in a retrieval-efficient format. A set of circular
data buffers are filled from disk by a thread dedicated to
I/O. As the buffers fill, computation threads retrieve blocks
of data from a buffer and extract the component of the
isosurface in the retrieved data. One alternative to the
approach in [107] improves I/O times by about 33% by
organizing data on disk using a bucketed span space [88].
In the alternative, subsets of span space are initially
gathered into regions. Then, within each region, storage of
records of nearby span space buckets is interleaved. A
second alternative uses chessboarding [119], which stores
on disk information about only the even-numbered cells of
the data set. Information about the non-stored odd-
numbered cells can be retrieved from the stored cells.
Chessboarding was found to reduce interval tree storage
needs by 75%.
Chiang et al. [105] have described an efficient out-of-core

scheme for cluster computers that can be applied to both
rectangular and unstructured grids. It uses a master CPU
to first find all active meta-cells based on the I/O-optimal
interval tree and the two-level indexing scheme (Section
3.2.2). Each slave CPU is then assigned an active meta-cell
by the master CPU. Each slave computes the isosurface
(via MC for rectilinear data and MT for unstructured grid
data) in its assigned meta-cell and then receives a new
assignment, until all cells have been processed. The scheme
can reasonably balance workload among the processors.

3.3.1.2. Static load-balancing approaches. Techniques for
static load-balancing of MC are described next. For
comparison and completeness, we also describe a few
parallel isosurface extraction methods that do not follow a
forward march through the cubes.
Some of the attempts to parallelize MC, especially early

attempts, involved evenly dividing cells [108], data set
layers [109], or other equal-sized subvolumes [114] among
processors. The cell-based approach was implemented
initially on a SIMD computer and did not exploit
topological symmetries since complex conditional opera-
tions (e.g., conditional rotations) inhibit SIMD computa-
tion. The subvolume- and layer-based approaches were
implemented in MIMD environments. All three ap-
proaches achieved reasonable speed-ups, although full
balancing of workload was a challenge for the subvo-
lume-based approach due to the different number of active
cells (and hence, different workload) in each subvolume.
The lattice subdivision-based approach (Section 3.2.2)

has also been parallelized using static load-balancing by
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Shen et al. [78]. The parallel technique first distributes
quantiles of the span space in a round-robin manner to the
CPUs. The degree of load-balancing depends on
the quantile resolution, although there is a space cost for
the better load-balancing of finer resolutions. In order to
achieve goodness in both load-balancing and memory
utilization, Shen et al. used high-resolution quantiles
during distribution but low-resolution quantiles during
the isosurface extraction steps. Recently, Zhang et al. [90]
have found that use of a block-based span space can
improve the memory performance of the Shen et al.
approach. Block-based span space is defined on non-unit-
sized subdivisions of the volume; each block represents a
set of adjacent cells.

Two static load-balancing approaches that extract only
the portion of the isosurface visible from a given viewpoint
have been presented. One is the Livnat and Tricoche [85]
approach (Section 3.2.1). It splits computation based on
screen projection; each CPU is responsible for extraction
for an equal portion of the screen area. The other is the
octree-based approach of Gao et al. [112]. In it, an image-
based partitioning of space is used to distribute approxi-
mately equal numbers of active cells to each CPU. The
active cells are found by traversing the octree in front-to-
back order. Each CPU extracts the portion of the
isosurface in its partition. Performing visibility detection
(i.e., to find all visible active cells) between the octree
traversal and data distribution steps has been found to
allow better load-balancing since it allows distribution
based on the visible active cells [111]. Use of an octree
based on spherical partitioning of space can also improve
performance [87].

A recent comparative study of the performance of
several static load-balancing methods using multi-thread-
ing on uni- and dual-processor desktops by Zhang et al.
[90] found that methods that evenly divide cells, subvo-
lumes, or layers (e.g., [108,109,114]) were slower than span
space-based methods (e.g., [78]). The same study found
octree-based methods to be marginally faster than span
space-based methods. However, octree-based methods
require more memory and set-up time than span space-
based methods.

3.3.1.2.1. Out-of-core static balancing. Kurc et al. [113]
have developed the active data repository (ADR) frame-
work for very large data sets. ADR stores a data set as a set
of variably sized data chunks. The chunks are distributed
across the disks to fully utilize main memory and I/O
bandwidth. Isosurfacing based on ADR involves use of an
indexing scheme to determine the active chunks. Isosurfa-
cing is performed only on these chunks.

Bajaj et al. [110] have presented a parallelized version of
a propagation-based isosurfacing method that has been the
basis for several follow-ons. The method initially partitions
the data set into fixed-sized blocklets, which are small sets
of adjacent cells. Blocklets are then clustered into cell

blocks based on the contour spectrum [95]. The contour
spectrum is a collection of plots of a contour attribute (i.e.,
the isosurface–blocklet intersection count) over all poten-
tial isovalues. Blocklets are clustered into cell blocks such
that each cell block has a similar contour spectrum. An
(approximately) equal number of cell blocks are distributed
to each processor. The method can allow reasonably
efficient out-of-core performance for large data sets, with
linear-class speed-up of the computational steps. Workload
on each CPU can vary significantly, however. Zhang and
Newman [115] have reported a more accurate load
estimation scheme that can allow Bajaj et al.’s basic
formulation to exhibit better load-balancing. Zhang and
Newman [115] have also shown that the formulation can be
applied to MC-based (rather than propagation-based)
isocontouring. The more accurate load estimation scheme
for MC isosurfacing can also be combined with interval-
based organization of data on disk to deliver improved I/O
and isosurfacing time [116] through minimization of
unnecessary I/O and redundant computations.
Zhang et al. [117] have presented a variation on the

parallelized seed-set approach [110] that distributes data
among CPUs based on the contour spectrum and then uses
the I/O-optimal interval tree [71] (Section 3.2.2) to build a
search index structure for each CPU’s on-disk data. The
search structure enables loading of only the active blocks
into RAM. The isosurfaces extracted from active blocks
are finally compressed and transmitted to parallel render-
ing servers whose output images are composited and
displayed on a multi-tiled screen. Recently, Zhang et al.
[118] have extended their method for view-dependent
operation. This extension first finds the active blocks that
occlude the viewing of other blocks, then extracts the part
of the isosurface in these blocks, and finally extracts the
isosurface in any remaining blocks that are not occluded by
the initial isosurface extraction. The extension also uses a
random block distribution, which yields better parallel
performance than contour spectrum-based distribution.
However, the time to read the active blocks into memory
can be high [116]. One comparative study has also found
that while the method of Zhang et al. [118] is faster than the
earlier seed-set approach, random block distribution is still
not as fast as distributing blocks based on accurate work
estimation coupled with interval-based disk data organiza-
tion [116].
Lastly, Sulatycke and Ghose [88] have demonstrated that

their multi-threaded approach (described above as a
dynamically balanced approach) can also be coupled with
a static work assignment mechanism. Their mechanism
uses as its work estimate the number of active cells in a
data layer and assigns each computation thread at least
two consecutive layers for processing. Their static- and
dynamic-balancing mechanisms appear to deliver approxi-
mately equivalent performance.

3.3.2. Vector- and pipeline-parallelization

Newman and Tang [120] have shown that MC can be
efficiently vector-parallelized—especially for data sets with
a moderate number of active cells—by reorganizing



ARTICLE IN PRESS
T.S. Newman, H. Yi / Computers & Graphics 30 (2006) 854–879866
operations in its lattice point marking, intersection inter-
polation, topology determination, and facetization activ-
ities. Their approach processes the data set in several
passes, including vertex-by-vertex, edge-by-edge, and cube-
by-cube sequential, forward marches. Methods that exploit
small-scale vector-parallelism on commodity CPUs for fast
MC-based isosurfacing have also been described (for X86
[121] and G5 [85] CPUs).

Eldridge et al. [122] have demonstrated that MC can be
performed on a pipelined graphics rendering architecture.
The architecture can have up to 64 pipes, each with five
stages (i.e., for computation of geometry, rasterization,
texturing, merger, and display).
3.3.3. Distributed processing

Distributed approaches to MC have also been presented.
For example, a framework in which the MC functional
modules are viewed as pipeline stages that are distributed
among web clients and servers has been described
[123,124]. The framework also allows progressive isosur-
face extraction. A scheme that exploits multi-media
pipelines on a remote computer with results delivered over
the web and displayed locally via VRML has also been
described [125]. Other reports of web-based isosurfacing
include [126–128].
3.4. Other isosurfacing methods

Besides the propagation-based approaches mentioned
earlier, other alternative methods have been developed,
including face-by-face [129] and lattice point-by-lattice
point [130] forward-marching methods. Methods using
particle attraction [131] and processing on a graph that
tracks cell face adjacencies [132] have also been proposed.
4. Mesh considerations I: extending output

Although the standard MC produces an isosurface
composed of triangular facets, other representations of
the isosurface have been produced by some MC extensions.
Table 6 summarizes such extensions, which are discussed in
this section of the paper.
Table 6

Classification of the papers that extend MC to other types of output or to av

Input type Output type

Triangulation Quads

3D Rect. Grid [28,67,133–138] [139]

Unstructured grid NA NA

aThe entry marked acts on time-varying 3D data.
4.1. High-degree isosurfaces

One disadvantage of standard MC isosurfaces is that
they can exhibit visible faceting artifacts. Data sets with
cells of large size (relative to the desired viewing resolution)
and data sets with cells of variant sizes, such as finite
element data sets, tend to exhibit more severe artifacts. Use
of a higher-degree isosurface representation is one means
to reduce these artifacts. The existing high-degree exten-
sions of MC use bicubic [48], triangular rational-quadratic
Bezier [140], and triangular rational-cubic Bezier [141]
spline patches. In the triangular Bezier approaches, tri-
linear interpolation has been used within each cube to
determine patch constraints. Methods that postprocess MC
output, rather than modify its steps, also exist but are
beyond the scope of this survey.
A key advantage of higher-degree patches is that a more

smooth isosurface can be produced. However, parametric
polynomial fitting presents a heavier computational burden
than triangular mesh fitting. Thus, the tradeoff between
smoothness and speed should be considered in any decision
to use high-degree surface patches rather than triangular
facets.

4.2. Interval volume extractions

One complication that limits the MC is non-crisp
structure boundaries. An example is in some medical data
where the non-uniform signal response of certain structures
makes their boundaries not uniformly distinct. There may
not be a fixed isovalue that can be used to accurately
extract the boundaries of such structures.
Fujishiro et al. [146,147] have presented a geometric

model called the interval volume to address the non-crisp
boundary issue. The interval volume is the 3D solid space
that is associated with a closed interval ½b; g� of isovalues.
Interval volume approaches output polyhedral blocks
rather than triangular meshes [147].
Three types of methods have been used to construct the

interval volume. The first one, lattice point classification
[148,149], requires labeling each lattice point to indicate if
its scalar value is within, below, or above the interval ½b; g�.
Each cube’s labelings are used to find the polyhedral blocks
within the cube. The second category of methods uses two
special interval volumes based on subintervals ½b;max� and
½min; g�, where max and min represent the maximum and
oid a visual artifact

Spline mesh Points Polyhedra

[140,141] [85,89,142–144], [145]a [146–149]

[48,49] NA NA
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minimum scalar value in the data set, respectively
[146,147]. Since the basic cube–subinterval volume inter-
section scenarios exhibit similar topological patterns to
those in the standard MC, construction of the polyhedral
blocks for each subinterval volume is straightforward. The
interval volume for interval ½b; g� is exactly the intersection
of the blocks of the two subinterval volumes. A third
approach is to perform isosurfacing of a suitable derived
field of a higher dimension and then project the result back
to the base dimension [150].

4.3. Pixelized isosurfaces

In some isosurface renderings, multiple facets are
projected to a single pixel. This occurrence has led to
variations on the MC that save on computation by
generating 3D points (instead of triangles) as the output
primitives. The dividing cubes [143] is one such variant.
The dividing cubes subdivides each cube intersected by the
isosurface into subcells such that the subcells project onto a
single pixel on the image plane. Other uses of point-based
output primitives include [85,89,142,144,145].

4.4. Alternate triangulations

One MC extension that produces an alternative trian-
gulation is Montani et al.’s [136] discretized marching
cubes (DMC). Instead of using interpolation to find
isosurface–edge intersection points, the DMC uses inter-
sected edge midpoints. Thus, the DMC isosurface resolu-
tion is worse but its computation time is better. The use of
midpoints in DMC results in some adjacent facets being
coplanar. Such facets can be merged, reducing the mesh
size and resulting in lower memory consumption and
possibly faster mesh rendering. The DMC positional
imprecision can be improved by repositioning all intersec-
tion points unaffected by the facet merging to the positions
described by the linear interpolation scheme of the
standard MC [67]. The deformed cubes (DC) [137] also
produces a different triangulation. In DC, the triangular
mesh has just one triangle vertex per active cell. Each
vertex is at the mean of the cell’s edge–isosurface
intersections. DC is fast, but its mesh can omit small
features and contain gaps. Moreover, the mesh usually
contains nearly as many facets as the mesh of standard
MC.

4.4.1. Overcoming artifacts

A number of methods to overcome MC isosurface
artifacts have been presented and are discussed next.

Small structural features are often not well-preserved by
the MC. In particular, features of cell size or smaller may
not be included in the extracted isosurface [134] due to
resolution limitations; in a cell that includes a small feature,
all lattice points can have the same marking. Kaneko and
Yamamoto [134] have presented an iterative process that
can better preserve detail. The first step of each iteration is
to extract the isosurface in the usual way. The second step
is to adjust the values of lattice points that are adjacent to
the isosurface’s boundary. The iterations stop when the
extracted structure’s volume is close to an estimate of the
actual volume.
Another approach that can preserve up to one small

feature per cell (e.g., when adjacent lattice points have the
same marking but the isosurface crosses their connecting
edge twice) is Varadhan et al.’s [138] extended dual
contouring (EDC). The EDC builds a facetized mesh with
mesh vertices that are points within active cells. These
internal points are selected using a directed distance
measure proposed by Ju et al. [151].
In addition to faceting artifacts, MC renderings can

exhibit shading artifacts such as black spots on extracted
thin structures [152] and false highlights. For instance,
isosurface Gouraud shading, which typically estimates each
facet vertex normal vector by linear interpolation of the
gradients of the two nearest lattice points, can exhibit such
artifacts. The Gouraud shading artifacts result from
inappropriate estimates of local orientation. Orientation-
related artifacts are especially a concern for applications in
which there are meaningful data measures only near the
actual isosurface [28]. If such applications determine local
orientation based on estimating the gradient from data
values in cells adjacent to the facet, the determined
orientation may be quite incorrect.
An efficient means to estimate facet orientation using

only data within the cell containing the facet has been
described by Nielson et al. [28]. Their method can obtain
this information directly from the intersection topology
look-up table and a supporting table indexed by a bit
coding of vertex (or edge) markings. These data tables,
which are exhibited in full in [28], can be created offline
prior to extraction.
Another type of artifact in MC isosurfaces is aliasing

artifacts in isosurface regions that contain sharp edges or
corners [135]. One way to reduce such artifacts is to use
additional sample points in the vicinity of sharp edges and
corners and then generate a triangle fan about each
additional point [135]. Sharp edges and corners can be
detected using local gradient information [135]. Another
way to reduce aliasing artifacts is, instead of extracting the
standard isosurface, to extract the dual of a simplified
subset of the MC triangle edges, as proposed by Nielson
[139]. His approach uses quad patches whose edges pass
through the MC triangle vertices that lie on the data set’s
rectilinear lattice. The paper includes a topology table,
enabling application directly in data set traversal rather
than in postprocessing.
A method to address artifacts when MC is applied to

depth maps has also been described [133].

5. Mesh considerations II: challenges

In this section, geometric concerns related to the meshing
mechanism of the standard MC are discussed. The
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concerns include redundancy (Section 5.1) and correctness
and consistency (Section 5.2). The ambiguity problems
arising from inconsistency or incorrectness are also
described (Section 5.3). Section 5.4 overviews the sub-
stantial body of literature concerned with resolving
ambiguity in MC. In Section 5.5, computational concerns
related to disambiguation are considered.

5.1. Degenerate triangles (redundancy)

When the data set contains lattice points whose values
equal the isovalue, some isosurface triangles may be
degenerate (i.e., have collinear vertices). For example,
when a cube has only one marked lattice point V 1 and V1’s
scalar value is equal to the isovalue, the cube will contain
one facet whose vertices coincide at V 1. A degenerate
triangle in one cube Cd also implies that there will be at
least one degenerate triangle in some adjacent cube (unless
possibly if Cd is on the data set boundary). The degenerate
triangles contribute nothing to the isosurface yet they
consume time to build and storage to save. Since
degenerate triangles involve redundant computation, the
degeneracies in MC have been termed its redundancy

problem [153].
One way to solve the redundancy problem is to choose

an isovalue that is distinct from all scalar values [24].
However, in many cases, not all the scalar values are
known. In such cases, an approach such as the detect-and-
prevent scheme of Li and Agathoklis [154] can be used. For
each cube C, their scheme labels as redundant any
intersection point that is coincident with one or two other
intersection points in C. In cubes with redundancies,
degenerate facets are prevented by toggling the marking
of cube lattice points that coincide with redundant
intersections.

5.2. Correctness and consistency

In general, end-user understanding of a data set is
positively impacted if the extracted isosurface is both
correct and topologically consistent. An isosurface is correct
if it accurately matches the behavior of a known function
(or some assumed interpolant) that describes the phenom-
enon sampled in the data set. If each component of an
isosurface is continuous (i.e., there are no ‘‘holes’’ in any
component [155]), then it is topologically consistent. An
isosurface is also considered to be topologically consistent
if the isosurface’s only holes are on the data set’s boundary.
It is possible for an isosurface to have a consistent topology
but to not be correct.

The standard MC guarantees neither correctness nor
topological consistency. For example, Frühauf [156] has
noted that the linear interpolation used in MC is unlikely
to yield a correct result for computational fluid dynamics
(CFD) data since CFD data is usually generated by a non-
linear interpolating function. MC can also produce a
topologically inconsistent isosurface that contains holes
caused by one type of facetization ambiguity. Another type
of ambiguity produces topologically consistent but incor-
rect isosurfaces. Ambiguity analysis and disambiguation
methods have been considered extensively. The analyses
and approaches are described next.

5.3. Ambiguity in MC

Shortly after the MC was introduced, Dürst [157]
discovered that some of the basic intersection topologies
actually could be facetized in multiple ways. Although
Dürst did not identify the ambiguous topologies, others
(e.g., [24,158,159]) have demonstrated that seven topolo-
gies are ambiguous—Cases 3, 4, 6, 7, 10, 12, and 13.
Fig. 9(a) illustrates how an inconsistent isosurface can

arise from one type of ambiguity. In the figure, two
adjacent cubes that share a face (i.e., the face containing
coincident vertex V c) are shown. The isosurface facetiza-
tion in each cube follows the standard MC facet pattern
(the left and right cubes are the Cases 6 and 3, respectively).
In the figure, the shared face is intersected differently in
each cube. This difference arises because there are multiple
possible cube–isosurface intersection patterns in both
cubes, and the default intersection patterns are inconsistent
on the shared face. The unresolved ambiguity produces a
hole in the isosurface. Another way to understand that an
error in facetization has occurred is to consider the line
segment V aV b between unmarked vertex V a and marked
vertex Vb. Segment V aV b must, by definition, intersect the
isosurface yet the isosurface facets in Fig. 9(a) are not
intersected by V aV b.
Resolution of inconsistency requires variation from the

fundamental facetizations for one or both cubes. For
instance, for Fig. 9(a), just the left cube or just the right
cube could be facetized differently, as shown in Figs. 9(b)
and (c), respectively. The presence of multiple facetizations
to resolve inconsistency also demonstrates that an isosur-
face that has a consistent topology might not be correct
(e.g., the representations in Figs. 9(b) and (c) cannot both
be correct).

5.3.1. Face ambiguity

The topological inconsistencies of MC arise due to
ambiguous faces. In Fig. 9(a), the shared face that contains
the vertex V c is an example of such a face. Any face where
there are both two diagonally opposite marked lattice
points and two diagonally opposite unmarked lattice
points is an ambiguous face. We use the term face

ambiguity to describe inconsistent facetizations involving
an ambiguous face shared by two adjacent cubes. Most of
the ambiguity correction methods in the literature have
addressed only the face ambiguity. Face ambiguity arises in
the intersection topologies of Cases 3, 6, 7, 10, 12, and 13.
Although many face ambiguity resolutions have been

proposed, one direct solution is to use basic intersection
topologies that exploit only rotational symmetry [28,29],
since the exploitation of reflection is what injects face
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Fig. 9. Illustration of face ambiguity and resolutions: (a) isosurface with holes from an ambiguity in a face shared by two cubes, (b) one alternate

facetization that yields a topologically consistent isosurface for the cubes, and (c) another alternate facetization that yields a topologically consistent

isosurface for the two cubes.

(a) (b)

Fig. 10. Illustration of internal ambiguity (two facetizations of the Case 4

marking scenario): (a) disjoint facetizations and (b) a linking facetization.
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ambiguity to the standard MC. It is worth noting that
Nagae et al. [27] were the first to exploit only rotation,
although it is unclear if they realized that exploiting only
rotation was the key. Two recent papers [28,29] include an
explicit description of a complete, efficient mechanism for
employing the rotationally exploitive topologies in MC.

5.3.2. Internal ambiguity

The facetization of a cube that has no ambiguous faces
can still have internal ambiguity [158,159]. Internal
ambiguity does not cause any topological inconsistency
but it can yield an incorrect isosurface. Internal ambiguity
can arise in Cases 4, 6, 7, 10, 12, and 13. A typical example
of the internal ambiguity is Case 4. Fig. 10(a) illustrates its
standard facetization, which contains two disjoint facets
and may be incorrect. Fig. 10(b) shows a variant
facetization that does not contain those two facets but
rather contains several ‘‘linking’’ facets that form ‘‘tubes’’
[158] or ‘‘tunnels’’ [3,160] that connect two portions of the
isosurface. Natarajan [159] was the first to identify the
internal ambiguity problem. However, earlier work by
Heiden et al. [6] was the first to include a variant
facetization for an internally ambiguous case, although
that variant was aimed at logically completing a universe of
facetizations rather than correcting ambiguity. While MC
can have internal ambiguity, Chernyaev [158] has observed
that one of its variants (i.e., dividing cubes [143]) is free
from internal ambiguity.

5.4. Disambiguation approaches

One way to avoid ambiguous facetizations is to resample
[24] data at a higher resolution. An isosurface extracted
from a data set with a suitable resolution will be
topologically consistent and correct. Resampling is quite
appropriate when the function underlying the data set is
known. However, in most cases, the underlying function is
not known. Moreover, resampling may be impractical or
impossible. Finally, resampling can result in an isosurface
that has an increased number of facets. Other methods to
disambiguate MC are discussed next.

5.4.1. Classifying disambiguation approaches

Three types of disambiguation approaches that do not
involve resampling have been described by Ning and
Bloomenthal [58]: cell decomposition, topology inference,
and preferred polarity. In cell decomposition, each cell is
partitioned into unambiguous subcells (e.g., tets) to resolve
ambiguity. Such approaches produce an increased number
of triangles and thus exhibit higher memory and computa-
tional requirements. In topology inference, inferencing is
used to determine consistent facetizations based on lattice
point values. Such approaches can achieve topological
consistency and correctness if an appropriate inferencing
scheme is used. Preferred polarity approaches achieve
consistency by always choosing one of two connection
possibilities (polarities) in facetizing the ambiguous faces.
This choice is arbitrary, but the same polarity must be
chosen for all ambiguous faces. On ambiguous faces, there
is an intersection point I i on each edge Ei. Two pairs of
adjacent intersection points are connected (joined) by the
isosurface facets. In one connection polarity, these ‘‘joins’’
can be viewed to ‘‘separate’’ the marked lattice points (as
shown in Fig. 11(a)), while in the other polarity, the joins
can be viewed to separate the unmarked lattice points (as
shown in Fig. 11(b)). The former case can be termed the
‘‘separated’’ polarity while the latter case can be termed the
‘‘not-separated’’ polarity [161]. Arbitrary determination of
polarity (i.e., without considering the underlying data) can
result in a topologically incorrect isosurface [58]. Thus, if
correctness is critical, a topology inference method is
typically best [58].
An alternate taxonomy has been presented by van

Gelder and Wilhelms [24]: the simple boolean, extended

boolean, simple metric, and extended metric approaches. We
will use these classifications in this section. Simple boolean
approaches disambiguate a cube based only on its lattice
point markings; they do not directly consider lattice point
scalar values. In contrast, the simple metric approaches
disambiguate a cube by considering its lattice point values.
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Fig. 11. Ambiguous face connection polarities and criteria used by the

AD to determine polarity: (a) a4BðX Þ (separated) and (b) apBðX Þ (not

separated).

Table 7

Papers that consider (or allow) marching cubes disambiguation, categor-

ized by approach

Class Paper citations

Simple boolean [6,21,24,27,28,42,44–46,56,58,59,100,106,162–169]

Extended boolean [22,170–172]

Simple metric [4,24,29,30,141,158–161,173–180]

Extended metric [3,24,175,181]

T.S. Newman, H. Yi / Computers & Graphics 30 (2006) 854–879870
Extended boolean approaches examine inter-cell lattice
point markings. Extended metric approaches consider
inter-cell values. van Gelder and Wilhelms [24] also
empirically analyzed three categories of face disambigua-
tion approaches. (Their paper predates extended boolean
approaches.) They found that the approaches that use
more information tend to be more correct. For example,
they observed that the extended metric approaches tend to
produce the most correct isosurfaces.

Disambiguation adds complexity to the MC. Never-
theless, isosurface topological consistency and correctness
are necessary in most domains. The remainder of this
section describes and summarizes the published disambi-
guation techniques. The papers concerned with MC
disambiguation are listed by category in Table 7.

5.4.2. Simple boolean disambiguations

The simple boolean approaches generally succeed at
producing consistent facetizations for ambiguous faces.
Two simple boolean approaches already discussed are (1)
the convex-hull-based facetization algorithm [21] and (2)
exploiting only rotational symmetry, provided that topo-
logical base cases are defined consistently, such as in the 23-
case look-up table defined in [28]. The latter is also a
preferred polarity strategy that uses the separated polarity.
Not-separated polarity has also been used (e.g., [27]). The
other simple boolean approaches can be dichotomized by
the major mechanism—cell decomposition or a modified
intersection look-up table—that they use in disambigua-
tion. The approaches that utilize them in MC ambiguity
resolution are described next.

5.4.2.1. Cell decomposition. Most of the simple boolean
cell decomposition techniques have used the subdivision
component of the MT [45,46] to form tetrahedral sub-
divisions of the data set cubes. Subdivision into octahedra
has also been used [42]. As described earlier (Section 3.1.2),
after subdivision, the isosurface facets are constructed in
the subdivisions. Since processing on tets [58] or
octahedra [42] can generate consistent isosurfaces, both
MT and marching octahedra can be considered as
disambiguation approaches. Work to advance the state
of the art and understanding for MT includes [44,56,58,
59,100,106,164,165].
Although MT approaches can overcome ambiguity, the

different tetrahedral subdivisions of the cube can produce
different facetizations [169]. Specifically, there are two
schemes to subdivide a cube into five tets, and each scheme
results in a differing isosurface facetization. The new
marching tetrahedra (NMT) approach [169] can rectify this
difference. NMT produces a facetization pattern indepen-
dent of the subdivision scheme by finding facet vertices
using linear interpolation for points on cube edges and
using quadratic interpolation for points on cube face
diagonals.

5.4.2.2. Modified (extended) look-up tables. Use of a
modified look-up table is an attractive strategy because it
can be both fast and accurate [24]. Typically, the modified
table strategy supplements (extends) the cases in the basic
table with subcases for the ambiguous facetization
scenarios. Due to the low frequency of occurrence of
ambiguous cells, processing time usually is not seriously
impacted by subcase determination overhead. For exam-
ple, one small study suggested that typically about 3% (and
at worst 5:6%) of active cells exhibit face ambiguity [24].
Modified table strategies have been used by many (e.g.,

[162] and in the MC component of the visualization toolkit
(vtk) [167]), since the initial use by van Gelder and
Wilhelms [24]. The method of Montani et al. [166] also
uses a modified table strategy to resolve face ambiguity.
Montani et al.’s solution uses one additional facetization
pattern for the reflectively symmetric instances of the six
scenarios that exhibit face ambiguity.
Heiden et al. [6] have developed an extended look-up

table strategy that is based on their finding that for Cases
8–14 of the standard MC, reflection need not be used since
the reflective symmetric cases for these can be alternately
expressed by exploiting rotation. Use of only rotation also
naturally resolves the face ambiguity for Cases 10, 12, and
13. To overcome face ambiguity in Cases 3, 6, and 7,
Heiden et al. designed one additional facetization pattern
for the reflectively symmetric instance of each scenario. An
extra pattern suggested for Case 4 allows address of that
case’s internal ambiguity. Heiden et al.’s strategy appears
to be the first disambiguation approach for standard MC
that addresses both topological consistency and internal
ambiguity, although it only solves the internal ambiguity
problem for Case 4. A later paper by Zhou et al. [168]
independently suggested the same analysis and solution as
Heiden et al. for the Cases 3, 6, 7, 10, 12, and 13.
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5.4.3. Extended boolean disambiguations

The existing extended boolean approaches are: (1) an
extended look-up table method [172], (2) a variant on the
MT [22], and (3) a coarse facetization scheme [171]. The
first method [172] detects the conditions for a hole (i.e.,
whenever one cube adjacent to an ambiguous face has five
or six marked lattice points and the other adjacent cube has
two, three, or four marked lattice points) and then adds
triangles to span the hole. The method can produce non-
manifold surfaces. The second method [22] achieves a more
regular MT facetization for tets formed from subdivision.
Most MT facetizations are irregular due to the significant
differences in sizes of the subdivided tets. A more regular
facetization can be achieved using a variant subdivision
scheme based on a single tetrahedral shape, with all
tetrahedra spanning portions of two cubes [22]. Each
tetrahedron has one edge between the centroids of adjacent
cubes, four edges from centroids to lattice points, and one
edge between lattice points. The third method [171] is
motivated by combinatorial topology and produces an
isosurface that has facet vertices only at data set lattice
points. The approach can be applied such that facet edges
are either 18- or 26-connected (i.e., 26-connected edges are
either cube edges, face diagonals, or cube diagonals). The
approach can be encoded in a look-up table. It considers
adjacent cubes in only two intersection scenarios.

Extended boolean algorithms for binary data also exist
[170]. These algorithms optimize properties such as the
total number of facets via processing on graphs of certain
ambiguous cubes and classes of vertices.

5.4.4. Simple metric disambiguations

Most simple metric approaches are either facial aver-

aging, bilinear, or trilinear methods. These approaches,
which are discussed next, are also classifiable as topology

inference methods.
One rule-based simple metric approach [30] also exists.

The approach utilizes logical rules to detect ambiguous
faces arising from Cases 3, 6, and 7 of the standard MC
and generates the facetizations for these cases using the
separated connection polarity strategy. It is unclear if the
method is suitable for resolving facial ambiguity arising in
other cases.

5.4.4.1. Facial averaging. Facial averaging was first
employed in the Wyvill et al. [4] propagation-based
isosurface extraction. It can also be used to disambiguate
MC faces [24] and the interval volume [175]. Facial
averaging disambiguates each ambiguous face using the
average scalar value of the face’s lattice points. Specifically,
if the average value equals or exceeds the isovalue, the not-
separated connection polarity is chosen, otherwise, the
separated polarity is chosen. Facial averaging cannot
resolve internal ambiguity.

5.4.4.2. Bilinear approaches. One well-known bilinear
approach designed for MC face (or interval volume
[175]) disambiguation is the asymptotic decider (AD) of
Nielson and Hamann [161]. The AD uses the bilinear
interpolant B of each ambiguous face’s lattice values. For
any isovalue a, the contour curve (i.e., for a) on the bilinear
interpolant is hyperbolic in shape, and the hyperbola’s
branches intersect the ambiguous face. (If the bilinear
interpolant were applied to a non-ambiguous face, at most
one branch of the contour hyperbola would intersect the
face.) The AD determines the value BðX Þ of the interpolant
at the point X, where X is the place that the hyperbola’s
asymptotes intersect (i.e., X is the saddle point of the
interpolant [159]), and compares BðX Þ to the a to determine
the connection polarity for the ambiguous face. As
illustrated in Fig. 11(a), when a4BðX Þ, the separated
polarity is used. When apBðX Þ, the not-separated polarity
is used (since X, like the marked lattice points, is interior to
or on the boundary of the isosurface), as illustrated in
Fig. 11(b). The AD resolves only face (i.e., not internal)
ambiguity.
Two schemes similar to AD that correct both types of

ambiguity have also been described. One scheme computes
bilinear interpolants on two opposite faces of any
internally ambiguous cube and then projects the hyperbolic
contour curves for the isovalue onto one of the two faces
[158]. If the projected curves intersect, a linked facetization
is formed for the cube (as illustrated in Fig. 10(b)).
Otherwise, the facets inside the cube must be disjoint
(as shown in Fig. 10(a)). A variant scheme [158] considers
bilinear variation over any plane that is interior to the
internally ambiguous cube and parallel to one of its faces.
Both schemes can be implemented in a 33-entry look-up
table [158]. A full table-based implementation has also
been described [176] (and its source code made available
online). One fault in the table is that it can result in a
non-C0 facetization since some facets can lie on cube faces;
such facets may share an edge with more than one other
facet [160].

5.4.4.3. Trilinear approaches. Simple metric trilinear in-
terpolation strategies generally allow both face and internal
ambiguities to be resolved. Moreover, if a trilinear
interpolant accurately represents the underlying function
of the data set, topologically correct isosurfaces can be
produced.
When the underlying function of a data set is unknown

(which is usually the case), piecewise trilinear interpolation
on lattice point values has often been used as an
approximation of the distribution inside each cell. As such,
piecewise trilinear interpolation has also been used to
determine isosurface facetization, especially to resolve
ambiguity. The trilinear interpolation assumes that a data
set’s scalar values vary linearly between lattice points along
the x, y, and z directions inside each cell. The topology of
the part of the isosurface that intersects each cube can be
determined by comparing the given isovalue with the value
of the trilinear interpolant at its saddle points. A piecewise
trilinear interpolant yields a piecewise cubic surface [18].
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One example of a simple metric trilinear interpolation
approach is the previously mentioned triangular Bezier
patch MC extension [141]. Another approach, proposed by
Matveyev [178,179], disambiguates through organizing the
intersections of the isosurface with ambiguous faces and
with rectangular patches inside cubes. The approach uses
graph theoretic means to form the facetization on the
intersection points. It can correct both face and internal
ambiguity. Matveyev [180] has also described an extended
look-up table approach that uses trilinear interpolation to
resolve only internal ambiguity. For internally ambiguous
cubes, the technique determines whether to form a disjoint
or a linking facetization using the number of intersections
of the isosurface with each cube diagonal.

The trilinear interpolation strategy of Natarajan [159]
has been a basis for several simple metric techniques. The
strategy determines the connection pattern in a cube by
comparing the isovalue with the value of the trilinear
interpolant at seven saddle points—six on faces and one
interior to the cube. The face saddles are saddles of the
bilinear interpolant of the face’s lattice values. The interior
(or body) saddle is a saddle point of the trilinear
interpolant. Computing its value is a little time-consuming,
although factorizing the interpolant can reduce the number
of computations [177]. The Natarajan strategy can be
viewed as extending the AD [161] by utilizing an extra
(i.e., body) saddle point, which allows resolution of internal
ambiguity. However, the facetization can be topologically
incorrect since there can be more than one body saddle
point in Case 13 [160], as well as in other cases
[182]. In addition, sometimes the produced mesh is not
C0 [160].

Two techniques have used the Natarajan strategy in
look-up table-based disambiguation (i.e., [173,174]). The
techniques select among multiple intersection patterns for
each ambiguous scenario using the Natarajan strategy. One
of the approaches [174] uses an interior point that may not
fall on the interpolant, however [160].

Recently, Lopes and Brodlie [160] have presented a
partial correction of the incomplete universe of facetiza-
tions in [159] and one of its derivatives [174]. In
disambiguating the Case 13 topology, the Lopes and
Brodlie approach uses two body saddles to allow correct-
ness. The approach is able to determine the triangulation
based on 14 generic patterns of intersection, although these
patterns are organized by type of boundary polygon rather
than by vertex marking pattern. The boundary polygon
type of each cube is found by referencing a look-up table
indexed through a scheme that considers the cube’s
standard MC topological case number in conjunction with
evaluation of the trilinear interpolant. The approach uses
points internal to the cube to ensure that the facetization
closely approximates the interpolant. It also produces an
isosurface that smoothly changes as the isovalue changes
(e.g., if a gradual change of the isovalue causes a ‘‘tunnel’’
to occur, there will be a gradual change from a non-
tunneled to a tunneled topology). Compared to standard
MC, the Lopes and Brodlie approach executes a little more
slowly and produces several times more facets.
The recent method of Nielson [29] also considers within-

cube trilinear interpolant behavior. The method resolves
facial and internal ambiguity using a three-stage strategy.
In its first stage, it uses a 23-case look-up table (i.e., that
exploits only rotational symmetry) to determine basic
topology. In the second stage, bilinear variation over cube
faces is used to resolve facial ambiguity. Lastly, internal
ambiguities are resolved by considering the interpolant
within each cube. The paper includes a complete catalog of
the facetizations that are topologically consistent and
correct.
The topologies identified by Nielson [29] are identical to

those identified by Lopes and Brodlie [160]. Use of either
method can thus produce a mesh that is free of ambiguities.
One advantage to the Nielson approach is that its
straightforward first phase can be used by itself to produce
a triangulated mesh that is topologically consistent
(although not necessarily correct; application of the second
and third phases produces correctness). Furthermore, the
Nielson approach’s data structures and case-by-case
facetization patterns are presented in detail in the paper.
An advantage of the Lopes and Brodlie method is that its
facetization more closely follows the interpolant’s shape
within the cubes. The cost of this higher level of accuracy is
a larger number of facets, however. Also, the method does
not consider all cases with two body saddles [182].

5.4.5. Extended metric disambiguations

Three types of extended metric approaches have been
presented: interpolation, gradient consistency heuristics, and
type merging. These approaches can also be classified as
topology inference methods.
The interpolation approaches have exploited tricubic or

trilinear interpolation functions. The tricubic approach
[24], which achieves topological consistency, determines the
connection polarity for each ambiguous face through
fitting a tricubic polynomial to lattice point scalar values
in the vicinity of the face. The fittings require moderate
computation, which may limit the approach’s applicability.
The trilinear approach [3] first corrects face ambiguities
using the AD [161]. Then, each face saddle point is
examined to determine if it is a true saddle point of a
trilinear interpolant. This examination considers the lattice
point values of the two cells that share the face containing
the candidate saddle point. Finally, internal ambiguity is
resolved by evaluating a trilinear interpolating function to
find body saddle points. These saddle points are used by a
process that generates facet vertices interior to cells. The
approach well-facetizes ‘‘tunnels’’ (i.e., ‘‘tubes’’) in linking
facetizations, at least when trilinear interpolation well-
models the variation in the data. However, the trilinear
approach can only be applied to data sets in which no
adjacent grid vertices have identical values.
Gradient consistency heuristic methods use lattice point

gradients (which are usually not known and hence
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estimated) to generate topologically consistent isosurfaces.
Two gradient consistency heuristic methods have been
described: the center-pointing gradient and quadratic fit

approaches [24]. In both, a bivariate quadratic function is
fit on each ambiguous face. The function exactly fits lattice
point scalar values and interpolates lattice point gradients.
The methods compare the value of the bivariate quadratic
at a specified position to the isovalue to determine the
connection polarity. The specified position is the face
center for the center-pointing method and the function
saddle point for the quadratic fit method. The quadratic fit
method is actually a generalization of the AD [161] since
the bilinear interpolant used by the AD is a special case of
the bivariate quadratic function. The gradient consistency
heuristics have also been used to disambiguate interval
volumes [175].

The type merging [181] extends the AD [161] to use
information from neighboring cubes. The approach first
simplifies the triangulation produced by the standard MC
by merging adjacent active cells to form rectangular
parallelepipeds. Then, inconsistencies are prevented by
applying the AD to the ambiguous faces of the parallele-
pipeds.
5.5. Ambiguity and speed

When fast isosurfacing is needed, saving time by
avoiding disambiguation may be reasonable, especially
when there are few ambiguities [175]. One aid to
determining ambiguity frequency is the metric of Fujishiro
and Takeshima [175]. The metric measures grid point value
cooccurrences which appear to be correlated with ambi-
guity frequency for both MC-based isosurfaces and
interval volumes. The metric might also be useful in
hierarchical geometric approaches as a means to detect the
regions in which disambiguation overhead can be avoided.
6. The mesh’s facet count

For large data sets, the MC can generate an isosurface
with very many facets. In addition, the triangulation can
include undesirable details (e.g., from sampling noise) and
many small triangles [183]. As the number of facets
increases, frame rendering rates are reduced and memory
consumption increases. Approaches to limit this problem’s
impact, which is especially germane in address of inter-
CPU communication latency for multi-CPU computation
of MC, include use of more efficient, compressed isosurface
representations (e.g., [184]) and simplification of the MC
mesh. Discussion of compression and simplification is
beyond the scope of this paper.

Approaches that adapt the MC (or its extensions) basic
processing in order to support multi-resolution viewing
have also been developed. Such approaches can produce a
compact, simplified description of the isosurface mesh for
low-resolution viewing or a fully detailed description of the
mesh when high-resolution viewing is needed. In this
section, such strategies are discussed.

6.1. Multi-resolution based approaches

A number of multi-resolution representations have been
presented for use with MC, such as the octree and
pyramidal approaches that were discussed earlier. Hier-
archical approaches to MT have also been demonstrated,
some of which are also multi-resolution (e.g., [100,106]).
The use of hierarchy can allow faster isosurfacing. Multi-
resolution representations can enable rendering less facets
than in conventional MT. In the work of Gerstner et al.
[103,106,185], a multi-resolution isosurface representation
is constructed based on tetrahedral bisection. The techni-
que first decomposes a volume into six tetrahedra and
builds a binary tetrahedra hierarchy tree through recursive
bisection of each tetrahedron. The MT is then applied on
the tree to extract isosurfaces at a desired (or at multiple)
resolution(s). Gerstner [99,100] has also utilized this tree
for a hierarchical back-to-front sorting of the tetrahedra
and isosurface triangles and for a hierarchical computation
of data gradients to enable fast extraction and rendering of
multiple transparent isosurfaces.
Other hierarchical data structures have also been used to

support efficient level-of-detail (LOD) renderings for
extensions of the MC. For example, an efficient method
for view-dependent MT has been reported by Gregorski et
al. [164]. The method employs a hierarchical data structure
that well-supports adaptive refinement based on longest-
edge bisection. These features are coupled with careful
layout of data, which altogether enable efficient processing,
especially for LOD operations. Recently, Gregorski et al.
[186] have described a way to hasten the method by
exploiting desktop graphics hardware.

7. Computing quantities from an isosurface

Methods for determining quantitative information about
the isosurface mesh produced by the MC has also been a
topic that some have investigated. For example, methods
to incorporate computation of isosurface area, volume,
etc., have been described (e.g., [187,188]). In addition, a
DMC isosurface’s volume can be easily found via table
look-up [189]. These approaches enable simultaneous
isosurface extraction and quantitative information compu-
tation.
Histogram-based approaches for determining an iso-

surface’s volume, area, mean gradient, and surface
curvature prior to an isosurface extraction have also been
described [96]. Nielson [190] has described a quite different
approach to determining surface measures, such as
curvature. His approach requires use of several variant
facetizations for MC which ensure that each portion of the
isosurface is a function with a single value. The isosurface
can then be locally represented by approximating func-
tions, such as radial basis functions of thin plate splines, for
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which surface measures, such as surface curvature, are
well-defined. The universe of facetization patterns, when
applied with the 23-case rotational symmetry-exploitive
MC, forms what Nielson has termed the MC* isosurfacing.
Use of MC* involves variant faceting topologies for only
four of the 23 configurations shown in Fig. 6.

Quantitative information about isosurfaces is useful to
determine properties related to data as well as to evaluate
implementations of the MC. For example, isosurface area
has been used to determine isovalues of interest [102] and
to evaluate MC versus MT [191]. Joseph et al. [192] have
described a set of tools that include mechanisms for display
of qualitative information (e.g., the relative divergence of
two isosurfaces) and of quantitative information (e.g., an
isosurface’s surface area). The tool set can aid isosurface
evaluations, such as analysis of the topological consistency
of the isosurface generated by any implementation of the
MC.

8. Conclusions and future directions

The MC is probably the most popular method at present
for isosurface extraction and rendering. Since the MC was
proposed, many researchers have focused on extending the
basic approach, resolving its ambiguities, and improving its
performance. In this paper, an exhaustive survey of the
development and extensions of MC has been presented.
The enhancements, applications, and spin-offs reported in
the graphics and visualization literature have also been
described.

Although some applications, such as those involving
‘‘quick-and-dirty’’ data set investigation, do use the
standard MC and simply ignore the possibility of it
producing a representation with defects, a variety of
resolutions to its ambiguity-induced defects are available.
Applications concerned primarily with eliminating face
ambiguity should either (1) avoid exploiting reflective
symmetry, for example, by using the rotationally sym-
metric topological base cases explained in detail by Nielson
et al. [28] or (2) couple standard MC with any one of the
suitable corrective measures, such as the historically
popular AD [161], described in Section 5. An application
that is interested in the highest fidelity should (1) utilize one
of the ambiguity corrections that resolves both internal and
face ambiguity or (2) couple an internal ambiguity
correction with a basic topology determination that does
not exploit reflective symmetry.

Many researchers continue to study MC’s behavior,
methods to perform it efficiently, and ways to improve the
quality of its renderings. For example, study of ambiguity,
methods for disambiguation, and methods to achieve a
more high-quality facetization—such as how to display
interior structures [193] and how noisy edges/corners can
be eliminated—is ongoing. Work toward performance
improvements, such as (1) to take advantage of the power
of multiple processors housed locally or distributed over a
wide-area network and (2) to allow efficient out-of-core
computation for very large data sets, such as time-varying
data, is continuing as well. Expansion of the MC to broader
application areas (e.g., to high-dimensional ð4þDÞ data,
especially irregular, unusual, or time-varying 4þD data) is
also a research interest.
Hybrid approaches that combine direct volume render-

ing (such as ray casting) with IVR (such as MC) also
continue to be subjects of ongoing investigation. For
example, Kreeger and Kaufman [194] have mixed render-
ing of polygonal surfaces (extracted by MC or other
means) with rendering of solid volume structures. Also,
Hauser et al.’s [195] two-level volume rendering approach
allows a separate rendering technique to be applied for
each object of a volume data set. Development of
additional mechanisms and study of those mechanisms’
properties are likely in the future.
Many users of MC desire localization of structures or

features of interest from a volumetric data set. However, in
many data sets, inhomogeneities in the items of interest
make isosurfacing of limited utility, especially for tasks
requiring analysis of shape. Development of new methods
that extend the MC or which postprocess its output to
achieve more accurate localization is likely in the future.
The MC is continually being applied to new problems,

and such application is likely to produce many more spin-
off findings in coming years.
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[170] Andújar C, Brunet P, Chica A, Navazo I, Rossignac J, Vinacua À.

Optimizing the topological and combinatorial complexity of

isosurfaces. Computer-Aided Design 2005;37(8):847–57.

[171] Kenmochi Y, Kotani K, Imiya A. Marching cubes method with

connectivity. In: Proceedings of international conference on image

processing ’99. vol. 4, Kobe, Japan, 1999. p. 361–5.
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