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Course Description

Computer generated volumetric elements such as clouds, fire, and whitewater, are becoming 
commonplace in movie production. The goal of this course is to familiarize attendees with the 
technology behind these effects. In addition to learning the basics of the technology, attendees will also 
be exposed to the rationales behind the sometimes drastically different development choices taken and 
solutions employed by the presenters, who have experience with and have authored proprietary and 
commercial volumetrics tools.

The course begins with a quick introduction to generating and rendering volumes. We then present a 
production usable volumetrics toolkit, focusing on the feature set and why those features are desirable. 
Finally we present the specific tools developed at Double Negative, DreamWorks, Sony Imageworks, 
Rhythm & Hues, and Side Effects Software. The production system presentations will delve into 
development history, how the tools are used by artists, and the strengths and weaknesses of the software. 
Specific focus will be given to the approaches taken in tackling efficient data structures, shading 
architecture, multithreading/parallelization, holdouts, and motion blurring.

Level of difficulty: Intermediate

Intended Audience
This course is intended for artists looking for a deeper understanding of the technology, developers 
interested in creating volumetrics systems, and researchers looking to understand how volume 
rendering is used in the visual effects industry.

Prerequisites
Some background in computer graphics, and undergraduate linear algebra.

On the web
http://groups.google.com/group/volumetricmethods
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1. Introduction

If you google “volume rendering” or search for it at your favorite book store web site, you will find that 
most available literature and research regards volume rendering in medical and data visualization 
contexts. A smaller portion deals with photorealistic rendering of light scattering in participating media, 
but precious few texts are available that describe how volume rendering is used in practice to create 
visual effects. 

The aim of this course is to give an introduction to volume rendering in visual effects production. 
Production volume rendering is a fairly isolated subset of volume rendering, and there is little overlap 
between it and the other volume rendering contexts. We aim to cover only techniques actively used in 
visual effects production, and while this excludes much of current research into rendering of 
participating media, we want to highlight the techniques with the most practical applications. We 
further limit the scope of this course to rendering of true 3D volumes, excluding topics such as sprite-
and slice-based methods. 

Our goal is to provide enough details about how high-end production volume rendering is 
accomplished that participants could set about writing their own basic rendering software. Part of the 
course’s purpose is also to discuss the limitations of the techniques used. 
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1.1. An informal history of volumetric effects
One of the most memorable volumetric effects in cinema history is the “cloud tank” effect from Close 
Encounters of the Third Kind. Developed by Scott Squires, this technique called for filling a tank partially 
with salt water, then carefully layering on lower density fresh water on top. The clouds were created by 
injecting paint into the top layer, where it would settle against the barrier between the salt water and the 
fresh water [Squires, 2009]. Beyond just art direction, this particular cloud effect was a character in it’s 
own way. The goals the special effects crew had during Encounters are the same goals we have today. We 
want to control how the volumetrics look, and how they move.

Cloudtank effect used in Independence Day. 
© 1996 Twentieth Century Fox and Centropolis Entertainment. All rights reserved.

Computer graphics got into the mix shortly thereafter with William Reeves’ invention of particle 
systems. He used particle systems to create the Genesis sequence in Star Trek II: The Wrath of Khan. The 
title of the associated SIGGRAPH publication provides an excellent preview into what we are trying to 
do: Particle Systems – A Technique for Modeling a Class of Fuzzy Objects [Reeves, 1983]. This basic 
methodology is still prevalent today, and very relevant to this course.

With the advent of digital rotoscoping and compositing it became common practice in live action visual 
effects to film elements in staged shoots and composite them onto the plate. This allowed the creation of 
very complex photoreal effects, since the elements were real.

For purely digital effects, particle systems remained the popular choice. Their use in production 
indicated a certain look barrier to particle based volumetrics. Particles work great when they are used to 
model media which is well approximated by particles. The problem occurs when one tries to model a 
media which is meant to be continuous. The use of particles in these cases leads to a very discontinuous 
sampling. Particles could be combined with some low frequency tricks such as sprites to look good in 
special cases, but not so in the general case. One could simply choose to use more particles, but that 
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looses the advantage of the sparse sampling, and comes at an exponential increase in computational 
cost.

In the late 90’s, an alternative approach started taking root in the visual effects industry [Kisacikoglu, 
1998; Lokovic and Veach, 2000; Kapler, 2002]. This technique treated space as a discretized volume, 
where the contents of a given small volume of space is stored in a sample. The kinds of data stored are 
properties such as density, temperature, and velocity. Each volumetric sample is called a voxel, and the 
entire collection is referred to as a voxel buffer or voxel grid. Modeling operations are performed on the 
grid by rasterizing shapes, particles, or noise. Most morphological operations common in the image 
processing paradigm are also applicable to volumes. This familiarity in workflow also helped artists 
adapt to this voxel based pipeline.

The Nightcrawler’s “Bamf” effect from X2. 
© 2003 Twentieth Century Fox and Centropolis Entertainment. All rights reserved.

One of the first systems successfully used in multiple movies and commercials was the Storm software 
developed by Alan Kapler at Digital Domain. The goal behind Storm was to provide a modeling and 
rendering solution which could be operated efficiently by artists at the resolutions required for feature 
films. It featured a language where artists could create buffers, model volumetric shapes, perform 
arithmetic and compositing operations, and control rendering. The modeling commands allowed artists 
to use different geometric shapes and a rich set of noise algorithms to create high quality effects very 
quickly. The system was implemented as a plugin to the Houdini animation software which also aided 
in quick adoption by the artists.

The memory requirements of scenes Storm needed to render exceeded 25 gigabytes. A stringent 
requirement even by today’s standards, it was impossible when Digital Domain started working on a CG 
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avalanche effect for Columbia Pictures’ 2002 film xXx. Storm utilized in-core data compression 
techniques, and innovated to use of buffers transformed to fit the camera frustum. These buffers, called 
“frustum buffers”, provided high resolution close to the camera, and low resolution but complete spatial 
coverage far away from the view point [Kapler, 2003]. For his pioneering efforts in the design and 
development of Storm, Alan Kapler received a Technical Achievement Award from the Academy of 
Motion Picture Arts and Sciences in 2005.

Digital avalanche in xXx. © 2002 Columbia Pictures. All rights reserved.

The need for high quality volumetric effects led to the development of similar systems across the 
industry. Some of these systems will be presented in this course. These are the FELT system from 
Rhythm and Hues, the Mantra renderer from SideFX Software, MF and d2r from DreamWorks 
Animation, DNB from Double Negative, and Svea from Sony Imageworks. These systems share many 
common themes, as well as many unique features born out of the specific requirements of the effects for 
which they were used.
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1.2. A simple volumetrics system
A minimal volumetrics system contains three major components. First a data structure for voxel buffers. 
This means defining a file, and in-core representations. A naive implementation is an object which 
contains a contiguous array, and provides accessor methods to access values with 3D grid indices or 
positions.

The second component consists of a set of operations which fill the buffer with data. One such operation 
may simply evaluate noise at each voxel, and store the value. Another operation may take a list of points 
with radii, and fill the spherical region around the particle with a given value. These modeling 
commands can involve filtering, distorting, and combining multiple voxel buffers with arithmetic 
operations. Each operation could be implemented as a separate command line tool, or one tool which 
processes a sequence of commands and arguments to these operations.

The final component is a renderer to produce an image of the voxel buffer. In addition to the buffer to 
render, this component also requires specifications for a camera, and lights.

A typical workflow is to model and animate some primitives such as a set of particles, or meshes. Then 
one creates a voxel buffer around the location of these primitives. The primitives are then rasterized into 
the voxel buffer. Further volumetric processing operations are performed. Finally the buffer is rendered 
by the volume rendering component. The next three chapters will expand further upon these 
components.

Voxel filling tool 

Voxel buffer

Voxel renderer

Camera Lights

Final image

Geometric 
primitives

A very simple volume modeling and rendering system
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2. Volume modeling

In other forms of volume rendering, such as medical visualization, the data to be rendered is directly 
available to the system, as in the case of a CT or MRI dataset. When it comes to volume rendering in 
visual effects, we need to create this data ourselves. The process is called volume modeling, and involves 
turning geometric data into volumetric data, most often in the form of voxel buffers. 

A classic example of volume modeling is the use of pyroclastic noise primitives to model billowing 
smoke, where each primitive is a sphere that can be represented as a position, a radius and various noise 
parameters. The use of simple geometric primitives combined with noise functions is one of the most 
fundamental methods of volume modeling.

Volume modeling is an almost endless topic, as there is an infinite number of ways and methods that 
one can fill a voxel buffer. This chapter will try to describe the basics, from the voxel data structures 
needed and elementary modeling primitives, to techniques for scaling to high resolution data sets.

Simple sphere Windowed noise function

Displacement based on noise Pyroclastic noise
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2.1. Voxel buffers
An ordinary computer image is a two-dimensional orthogonal array that stores either single values (for a 
grayscale image), or multiple values (for a spectral image, such as RGB). The concept translates directly 
to three dimensions, where we can imagine a 3D orthogonal array, which stores single or multiple values 
in each of its cells.

This 3D array goes by many names, such as voxel grid, voxel volume, voxel buffer, etc., and depending on 
whether it stores scalar- or vector-valued data it is sometimes also be referred to as a scalar field/buffer/grid 
or vector field/buffer/grid. Throughout these course notes we will refer to the case of discrete voxel arrays 
used in a program as voxel buffers. In the general case of non-voxelized, arbitrary functions in 3-space, we 
will refer to those as fields. 

8x8x8 resolution orthogonal (uniform) voxel grid

2.1.1. Implementations
There are countless ways to implement voxel buffers. The simplest ones fold the 3D space into a 
contiguous 1D array, and store the data using float* and malloc(), or in a std::vector<float>. More 
complex implementations may allocate voxels as-needed, allowing the size and memory use to scale 
dynamically. Such techniques become important as the resolution of a voxel buffer increases. Densely 
allocated buffers are manageable up to resolutions of roughly 10003. (On very high-memory machines 
this may stretch to 20003 or so.) To reach higher resolutions we need to use different data structures, 
such as sparsely allocated buffers. We will return to this topic and ways of dealing with it in the section 
titled High resolution voxel buffers.

Though implementing a simple voxel buffer class is straightforward, there are also free, open source 
libraries. Field3D3 is one alternative, which has the benefit of being developed and tested in production 
for volume rendering and fluid simulation. We will use Field3D’s data structures in our examples and 
pseudo-code. 
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2.1.2. Voxel indices
Just as with a 2D image, we can access the contents of a voxel by its coordinate. The bottom left corner of 
the buffer has coordinate [0,0,0] (unless a custom data window is used, see below), and its neighbor in the 
positive direction along the x axis is [1,0,0]. When referring to the index along a given axis, it is common 
to label the variable i, j and k for the x, y and z axes respectively. In mathematic notation this is often 
written using subscripts, such that a voxel buffer called S has voxels located at Si,j,k. 

In code, this translates directly to the integer indices given to a voxel buffer class’ accessor method, such 
as:

class DenseField
{
 const float& value(int i, int j, int k) 
 {
  // ...
 }
 // ...
};

float a = buffer.value(0, 0, 0);

2.1.3. Implementation awareness
Although it is easy to write code that is agnostic about how voxels are represented in memory, writing 
efficient code usually means being aware of and taking advantage of the implementation’s underlying 
data structure. For example, a trivial voxel buffer may store its data as a contiguous one-dimensional 
array, such as

float *data = new float[xSize * ySize * zSize];

Where the mapping of a 3D coordinate to its 1D array index is calculated as

int arrayIndexFromCoordinate(int i, int j, int k) 
{
 return i + j * xSize + k * xSize * ySize;
}

The memory for such a buffer has the following structure:

...
0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1 0,0,2i,j,k
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If we were to loop over all the voxels in the buffer, for example to clear all the values, we might write it as 
follows:

// Naive loop, with x dimension outermost
for (int i = 0; i < xSize; ++i) {
 for (int j = 0; j < ySize; ++j) {
  for (int k = 0; k < zSize; ++k) {
   buffer.lvalue(i, j, k) = 0.0f;
  }
 }
}

The problem with the code above is that the inner loop steps along the z axis, which means the memory 
access pattern has a stride of xSize * ySize. For a buffer of realistic resolution, this will most likely 
cause a cache miss at each voxel increment and force an entire cache line to be loaded, which cripples 
performance.

Access pattern for the naive loop

If we instead reorder the loop so that the x axis is the innermost, performance is improved since the 
access pattern is sequential in memory.

// Better loop, with x axis innermost
for (int k = 0; k < zSize; ++k) {
 for (int j = 0; j < ySize; ++j) {
  for (int i = 0; i < xSize; ++i) {
   buffer.lvalue(i, j, k) = 0.0f;
  }
 }
}

Access pattern for the improved loop

0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1 0,0,2i,j,k

0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1 0,0,2i,j,k
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Of course, we are still doing the multiplication to find the 1D array index once per voxel access, 
something that could be avoided through the use of iterators. Iterators allow code to be written without 
explicit bounds checks in all dimensions:

for (DenseField<float>::iterator i = buffer.begin(); i != buffer.end(); ++i) {
 *i = 0.0f;
}

Iterators have the benefit of both being more efficient and producing cleaner code. We refer the 
interested reader to the Field3D programmer’s guide4 for a more in-depth look at iterators.

2.1.4. Extents and data windows
As mentioned earlier, voxel indices do not need to start at [0, 0, 0]. As a parallel, images in the OpenEXR 
file format have a display window and data window that specify the intended size and the allocated pixels 
of an image. The same concept translates well to voxel buffers, where we will refer to the intended size of 
the buffer as extents and the region of legal indices as data window. 

2D example of extents and data window

In the illustration above, the extents (which defines the [0, 1] local coordinate space) is greater than the 
data window. It would be the result of the following code:

Box3i extents(V3i(1, 1, 0), V3i(15,7,10));
Box3i dataWindow(V3i(2, 2, 0), V3i(11, 6, 10));
buffer.setSize(extents, dataWindow);

Using separate extents and data window can be helpful for image processing (a blur filter can run on a 
padded version of the field so that no boundary conditions need to be handled), interpolation 
(guarantees that a voxel has neighbors to interpolate to, even at the edge of the extents) or for optimizing 
memory use (only allocates memory for the voxels needed).

voxel space origin

extents

data window
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2.1.5. Coordinate spaces and mappings
The only coordinate space we’ve discussed so far is the voxel buffer’s native coordinate system. In the 
future, we will refer to this coordinate space as voxel space. In order to place a voxel buffer in space we 
also need to define how to transform a position from voxel space into world space (which is the global 
reference frame of the renderer). Besides voxel and world space, a third space is useful, similar to 
RenderMan’s NDC space but local to the buffer. This local space defines a [0, 1] range over all voxels and 
is used as a resolution independent way of specifying locations within the voxel buffer. This definition is 
the same as Field3D uses. 

Illustration of coordinate spaces

When constructing a voxel buffer we define a localToWorld transform in order to place the buffer in 
space. This transform is also called mapping, and defines the transformation between local space and world 
space. Note that the transformation from local space to voxel space is the same regardless of the buffer’s 
location in space. To sum things up:

• World space is the global coordinate system and exists outside of any voxel buffer. 
• Local space is a resolution-independent coordinate system that maps the full extents of the voxel buffer 

to a [0, 1] space. 
• Voxel space is used for indexing into the underlying voxels of a field. A field with 100 voxels along the x 

axis maps [100.0, 0.0, 0.0] in voxel space to [1.0, 0.0, 0.0] in local space.

As a matter of convenience and clarity, we will prefix variables in code and pseudocode with an 
abbreviated form of the coordinate space. A point P in world space will be called wsP, in voxel space vsP, 
and in local space lsP. 

local origin

world origin

voxel space  [0,8]

vo
xe

l s
pa

ce
 [0

,4
]

lo
ca

l s
pa

ce
 [0

,1]

local space  [0,1]
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2.1.6. Integer versus floating-point coordinates
Voxel space is different from local and world space in that it can be accessed in two ways – using integer or 
floating-point coordinates. Integer access is used for direct access to an individual voxel, and floating-
point coordinates are used when interpolating values. It is important to take care when converting 
between the two. The center of voxel [0, 0, 0] has floating-point coordinates [0.5, 0.5, 0.5]. Thus, the edges 
of a field with resolution 100 are at 0.0 and 100.0 when using floating-point coordinates but when 
indexing using integers, only 0 through 99 are valid indices. An excellent overview of this can be found 
in an article by Paul S. Heckbert – What Are The Coordinates Of A Pixel? [Heckbert, 1990]

In practice, it is convenient to define a set of conversion functions to go from float to int, and 
Vec3<float> to Vec3<int>, etc. In this course we will refer to these conversion functions as 
discreteToContinuous() and continuousToDiscrete().

int continuousToDiscrete(float contCoord)
{
  return static_cast<int>(std::floor(contCoord));
}

float discreteToContinuous(int discCoord)
{
  return static_cast<float>(discCoord) + 0.5f;
}
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2.2. Writing to voxel buffers
The fundamental purpose of a voxel buffer is obviously to read and write to it. In this section we will 
consider a few different ways of writing voxel data, and the methods will serve as the foundation for all 
subsequent modeling techniques. 

For purposes of illustration, let’s consider a simple C++ function for writing a floating-point value to a 
given voxel:

void Rasterizer::writeVoxel(const int i, const int j, const int k, float value)
{
 buffer.lvalue(i, j, k) += value;
}

Writing a value directly at a voxel location doesn’t get us very far in terms of modeling complex voxel 
buffer however. As it turns out, the most common modeling operation is the writing of a value in-
between voxels. In these notes we will refer to this as splatting, though it is sometimes also called 
stamping and baking a sample. 

2.2.1. Nearest neighbor splat
The simplest way to splat a value that lies in-between voxels is to simply round the coordinates to the 
nearest integers. While this has some obvious aliasing problems, it can sometimes be a reasonable 
solution, especially when writing large quantities of low-density values which will blend when taken 
together.

Splatting a sample using the nearest-neighbor strategy

sample location

i,j,k
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This method can be implemented trivially as:

void Rasterizer::nearestNeighborSplat(const V3f &vsP, float value)
{
 // We can use continuousToDiscrete, since it does the same thing
 // that we need - finding which voxel the sample point is
 // located in.
 V3i dVsP = continuousToDiscrete(vsP);
 // Once the voxel is known we use writeToVoxel for access
 writeToVoxel(dVsP.x, dVsP.y, dVsP.z, value);
}

2.2.2. Trilinear splat
If antialiasing is important we can use a filter kernel when writing the value. The simplest, and most 
commonly used form is a triangle filter with a radius of one voxel. This filter will at most have non-zero 
contribution at eight voxels surrounding the sample location. The value to be written is simply 
distributed between its neighboring voxels, each weighted by the triangle filter.

Splatting a sample using the trilinear strategy

A simple implementation would be:

void Rasterizer::trilinearSplat(const V3f &vsP, float value)
{
 // Offset the voxel-space position relative to voxel centers
 // The rest of the calculations will be done in this space
 V3f p(vsP.x - 0.5, vsP.y - 0.5, vsP.z - 0.5);
 // Find the lower-left corner of the cube of 8 voxels that
 // we need to access
 V3i lowerLeft(static_cast<int>(floor(p.x)), 
               static_cast<int>(floor(p.y)), 
               static_cast<int>(floor(p.z)));
 // Calculate P’s fractional distance between voxels
 // We start out with (1.0 - fraction) since each step of the loop

sample location

i,j,ki-1,j,k

i-1,j+1,k i,j+1,k
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 // will invert the value
 V3f fraction(V3f(1.0f) - (static_cast<V3f>(c + V3i(1)) - p));
 // Loop over the 8 voxels and distribute the value
 for (int k = 0; k < 2; k++) {
  fraction[2] = 1.0 - fraction[2];
  for (int j = 0; j < 2; j++) {
   fraction[1] = 1.0 - fraction[1];
   for (int i = 0; i < 2; i++) {
    fraction[0] = 1.0 - fraction[0];
    double weight = fraction[0] * fraction[1] * fraction[2];
    m_buffer.lvalue(c.x + i, c.y + j, c.z + k) += value * weight;
   }
  }
 }
}
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2.3. Interpolation
In order to sample an arbitrary location within a voxel buffer we have to use interpolation. The most 
common scheme is trilinear interpolation which computes a linear combination of the 8 data points 
around the sampling location. The concept and implementation are very similar to the trilinear 
splatting described above.

2D illustration of linear interpolation

Depending on the look required, it may be desirable to use higher order interpolation schemes. Such 
schemes will come at an increased computational cost. Profiling reveals that a significant portion of the 
runtime of a volume renderer is spent interpolating voxel data. The primary reason is that a naive voxel 
buffer data structure offers very poor cache coherence. A tiled data storage scheme combined with 
structured accesses will improve overall performance, but will require a more complicated 
implementation.

The following is an implementation of trilinear interpolation:

float Sampler::trilinearInterpolation(const V3f& vsP)
{
  // Offset the voxel-space position relative to voxel centers
  // The rest of the calculations will be done in this space
  V3f p(vsP.x - 0.5, vsP.y - 0.5, vsP.z - 0.5);
  // Find the lower-left corner of the cube of 8 voxels 
  // that we need to access
  V3i lowerLeft(static_cast<int>(floor(p.x)),
                static_cast<int>(floor(p.y)),
                static_cast<int>(floor(p.z)));
  float weight[3];
  float value = 0.0;
  for (int i = 0; i < 2; ++i)
  {
    int cur_x = lowerLeft[0] + i;
    weight[0] = 1.0 - std::abs(p[0] - cur_x);

sample location

i,j,ki-1,j,k

i-1,j+1,k i,j+1,k
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    for (int j = 0; j < 2; ++j)
    {
      int cur_y = lowerLeft[1] + j;
      weight[1] = 1.0 - std::abs(p[1] - cur_y);
      for (int k = 0; k <= 1; ++k)
      {
        int cur_z = lowerLeft[2] + k;
        weight[2] = 1.0 - std::abs(p[2] - cur_z);  
        value += weight[0] * weight[1] * weight[2] * buffer.value(cur_x, cur_y, cur_z);
      }
    }
  }
  return value;
}
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2.4. Geometry-based volume modeling
There is an almost infinite number of ways that the voxels around a primitive can be filled with data. In 
these notes we will cover the most fundamental approaches and also discuss their benefits and 
drawbacks, and in what circumstances they are used.

In the previous sections we discussed direct (integer) voxel access, and how to splat filtered samples into 
a voxel buffer. These can be thought of as the first two layers in the voxel modeling pipeline. 

Integer voxel access

Splatting

Rasterization 
primitives

Instantiation-based primitives

Co
m

pl
ex

ity

Outline of the volume modeling abstraction hierarchy

The third layer is the rasterization layer. Rasterization primitives include types such as pyroclastic points, 
splines and surfaces, but can be any primitive that is converted voxel-by-voxel into a volumetric 
representation. These rasterization process normally accesses voxels directly (i.e. using the integer voxel 
access layer), although when considering motion blur they may also use the splatting layer.

The fourth layer is instantiation-based primitives. They are referred to by different names at different 
facilities, sometimes also called wisps or generators. These primitives are composed of instances of the 
lower-level primitives, and either create rasterization primitives, or directly create sample points to be 
splatted. Instantiation-based primitives may also generate other instances of their own or other 
instantiation primitive types. Because of this potentially recursive nature, they can be very powerful.

The third and fourth layers can be thought of as two quite different approaches to volume modeling, 
even though they are often used in conjunction. A useful comparison is that of the difference between a 
raytracing-based renderer and a micropolygon-based one. Rasterization is similar to raytracing in that it 
considers each voxel in turn and decides how primitives contribute to it. Instantiation-based primitives 
(and micropolygon renderers) see primitives as the first-class citizen, and considers which voxels are 
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affected by a given primitive. Rasterization-based modeling pulls values into a voxel, and instantiation-
based modeling pushes values into voxels. 

2.4.1. Defining voxel buffer domains
The first step in volume modeling is to determine the domain of the voxel buffer that is being created, so 
that the buffer encloses the space of the primitives that are being rasterized. A very basic implementation 
might simply compute an axis-aligned or oriented bounding box for the incoming primitives, but a 
robust solution needs to consider other factors. For example, almost all volumetric primitives extend out 
past their geometric representation. If the system allows users to create new primitives as plug-ins, it is 
important to communicate the bounds of a primitive back to the renderer during the domain 
calculation. This is especially true for primitives that include displacements driven by user input. 
Although it is possible to let the user dial displacement bounds manually, usability is improved if they 
can be handled automatically.

The motion of a primitive also needs to be considered in order to provide enough room to store the 
entire length of the sample. Motion blur techniques are discussed further in subsequent sections.

Geometric primitives

Empty voxel buffer

Create domain

Rasterize primitives

Filled voxel buffer

2.4.2. Noise coordinate systems
Volume modeling often, if not always, uses noise functions to add detail to the primitives. Noise 
functions need to be tied to a coordinate system, but almost any geometric primitive that has a 
reasonable parameterization method for a 3D coordinate system may be used.

For some primitives, such as a sphere, the coordinate system is trivial. Others, such as splines, require a 
little bit more work. The important thing to consider is that the parameterization should be smooth and 
reasonably quick to transform in and out of. Therefor we prefer transformations with closed-form 
solutions, rather than ones that require numerical iteration to find a solution, but as we will see, not all 
primitives used in production satisfy this preference.
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For a sphere, defining a coordinate system is simple. We simply use the object space as the noise 
coordinate space. Transformations in and out of this coordinate system can be calculated as a simple 
matrix multiplication. 

Coordinate system for a sphere (x, y, z) Primitive with cartesian coordinate system

For a curve or spline it is most common to use a coordinate system that deforms along with the spline. 
The tangent of the curve itself is used as one basis, and the normal direction of the curve (orthogonal to 
the tangent) is used as the second. The third basis can be computed as the cross product of the first two. 
The curve may be a polygonal line or a parametric curve, but regardless of how the vertices are 
interpolated the transform in and out of this space is much more costly than for a sphere.  

Coordinate system for a curve (N × T, N, T) Primitive with curve-based coordinate system
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A polygon mesh or surface patch can conveniently be parameterized using the dP/du and dP/dv partial 
derivatives as the first two bases, and the normal direction as the third basis. Just like curves, the 
transformation into this space is costly as the surface primitive may be composed of an arbitrary number 
of parametric primitives, which need to be searched.

Coordinate system for a surface (dP/du, dP/dv, N) Primitive with surface-based coordinate system
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2.5. Rasterization primitives
Rasterization is the process of building volume data voxel-by-voxel. Fundamentally, there are two 
approaches to rasterizing. The first is to visit each voxel in the buffer once, the second is to visit each 
primitive once. Depending on the way the voxel data is stored, one may be more appropriate than the 
other. For example, some renderers store voxel data as a set of 2D images on disk, each compressed 
using some form of non-lossy scheme. The overhead of pulling a slice from disk and decompressing it 
into memory is quite expensive, in which case the better approach is to visit each voxel only once. For 
these notes, we will assume that the buffer used for rasterization is fully loaded in memory and that 
there is no penalty for accessing neighboring voxels in any direction (other than potential cache misses) 
and use the second approach of visiting each primitive once.

2.5.1. Rasterization algorithm
In its most generic form, rasterization involves instancing the primitive representation, bounding it, 
looping over the voxels that it overlaps, and sampling its density function at each voxel.

void Rasterizer::rasterizePrims(const Geometry &geometry, VoxelBuffer &buffer)
{
 int numPrims = numPrimitives(geometry);
 for (int iPrim = 0; iPrim < numPrims; ++iPrim)
 {
  // Set up the primitive object, which contains the logic for sampling its density
  // This call picks up per-prim noise settings and other parameters from the geometry
  RasterizationPrim prim = setupSomePrimitive(geometry, iSphere);
  // Calculate the voxel-space bounding box of the primitive
  BBox vsBBox = voxelSpacePrimBounds(prim, buffer.mapping());
  // Loop over voxels
  for (int k = vsBBox.z.min; k < vsBBox.z.max; ++k) {
   for (int j = vsBBox.y.min; j < vsBBox.y.max; ++j) {
    for (int i = vsBBox.x.min; i < vsBBox.x.max; ++i) {
     // Voxel-space and world-space position of the voxel’s center
     V3f vsP, wsP;
     vsP = discreteToContinuous(i, j, k);
     buffer.mapping().voxelToWorld(vsP, wsP);
     // Evaluate the density of the sphere primitive
     float density = prim.evaluate(wsP);
     // Store result in voxel buffer
     writeVoxel(i, j, k, density);
    }
   }
  }
 }
}

The setupSomePrimitive call is responsible for creating the object that determines the primitive’s 
density function. It finds the current primitive’s geometry and attributes.

The second step, voxelSpacePrimBounds, normally just returns the voxel-space bounding box of the 
primitive’s vertices, with added padding to account for displacement. 
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Once the primitive is prepared and the region of voxels to traverse is known, the primitive is evaluated at 
each voxel location and the density is recorded in the voxel buffer. 

2.5.2. Rasterizing primitives
Sphere-based primitives always carry two fundamental attributes: their position (center), and their 
radius. On top of these an arbitrary number of attributes are used to define the various noise parameters 
than control its look.

For a sphere-shaped primitive the bounding box is a fairly tight fit, but for curves and surfaces many 
voxels will be calculated that lie far away from the primitive’s region of influence. This has the downside 
of causing lots of unnecessary voxels to be computed. The rasterization loop can be improved in those 
cases, for example by determining the distance to a primitive before calculating the density function. 
However, even with that optimization, the world-to-local space transform is quite expensive for curves 
and surfaces, and in practice point-instantiation techniques are used for those types of primitives. The 
next chapter will describe that approach in more detail. 

2.5.3. Solid noise primitives
One of the most straight-forward sphere-based primitives is the solid noise primitive. It uses the 
location of the sphere and its radius to “window” a noise function, so the density function is simply the 
sum of the windowing function and a fractal function.

Solid noise point

The function can be written as:

noiseDensity(P) = m(P) + (1 - |P/radius|)

where P is in the local space of the primitive. We notice that because of the fractal function, the density 
function may be positive outside the radius of the sphere. If the maximal amplitude of the fractal 
function fbm is A, it follows that the function has non-negative values at most A units away from the 
radius, as A + (1 - |1+A|) = 0.
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Illustration of density function and the required bounds padding

Because of this added distance, solid noise points are an example of a primitive that requires padding of 
its bounds calculations (as mentioned in Defining voxel buffer domains).

2.5.4. Pyroclastic sphere primitives
Pyroclastic primitives have been mentioned several times so far, so let’s see how one can be 
implemented. A pyroclastic noise function uses a distance function to determine its location in the 
scene, and adds a procedural noise value (usually a fractal function, for example fractal brownian motion5) 
to the distance function. By thresholding the final value we create the pyroclastic look, although for 
antialiasing purposes it’s better to use a smoothstep function, so that the transition in density is gradual.

pyroclasticDensity(P) = max(radius - |P/radius| + abs(m(P)), 0)
density = smoothStep(pyroclasticDensity, 0, 0.05)

A single pyroclastic noise primitive
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The pyroclastic look comes from using the noise function as a displacement, rather than by directly 
rendering it, and because the displacement is done per-voxel on the distance function itself, it is 
possible to produce overhangs, where parts of the density disconnects from the main body. If this is 
undesirable, the noise function lookup point can be projected onto the sphere primitive, effectively 
making the displacement amount constant for all points along the same normal vector. 

In its simplest form, the code would be:

// Assume that the primitive has already picked up all of its parameters,
// i.e. data members, from the geometry during the setup() call.
float PyroclasticSpherePrim::evaluate(Vector wsP)
{
 // Position in local space (i.e. relative to primitive)
 V3f lsP = wsP - m_position;
 // This projection lets us switch between 2D and true 3D displacement
 if (restrictDisplacementTo2D) {
  lsP = projectToSphereSurface(lsP);
 }
 // Position in noise space
 V3f nsP = lsP / m_scale + m_noiseOffset;
 // Compute distance function
 float distanceToCenter = lsP.length();
 // Compute noise function
 float noiseValue = fbm(lsP, m_octaves, m_gain, m_lacunarity) * m_amplitude;
 // Modulate distance function by noise
 float modulatedDistance = distanceToCenter + noiseValue;
 // Return full density if modulated point is within radius of implicit sphere
 // This can be replaced with a gradual change as density increases, if preferred
 float density = 0.0f;
 if (modulatedDistance < m_radius) {
  density = m_density;
 }
 return density;
}

By varying the noise parameters (amplitude, scale, gain), and animating the noise offset, it is possible to 
create a wide range of looks even from such a simple primitive. And yet more variations can be had by 
using a vector-valued noise function to displace the sample point used by the pyroclastic noise function.

Varying noise amplitude
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3D displacement vs. 2D displacement

2.5.5. Sampling and antialiasing
Rasterization is prone to aliasing artifacts and sampling problems in the same way that surface 
rendering is. Where the projected pixel size, or the spot size, is used in surface rendering to antialias 
shader functions, we can use the voxel size to do the same in volume rasterization. The sampling 
frequency is simply the inverse of the voxel size. Once the sampling frequency is knows, we can apply the 
same frequency clamping and other antialiasing techniques as used in surface shading. Larry Gritz’ 
section in the 1998 Advanced RenderMan SIGGRAPH course notes [Gritz, 1998] is a good starter.

Similarly to how the sample positions in surface rendering may be randomized, we can add a small 
offset to each voxel’s sample position using some function with a nice poisson distribution that prevents 
sample locations from bunching up. 
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2.6. Instantiation-based primitives
Rasterization primitives work well when modeling clouds, fog and other phenomena that are inherently 
continuous in nature and where the primitives fill in a major portion of the voxels in the buffer. In cases 
where primitives contain a lot of negative space the overhead of traversing and calculating the density 
function for all voxels can be quite substantial, and the more sparse the primitives become, the worse the 
performance. The problem is inherent to the pull-nature of the rasterization algorithm, and it is 
difficult to optimize away the wasteful sampling without incurring too much overhead in bookkeeping. 
Instantiation-based primitives avoid this problem as their push-nature means that calculations only take 
place for parts of the primitive that actually contribute density. This means that calculation costs are 
proportional to the amount of voxel data that is actually visible, instead of proportional to the coverage 
of the base primitive, as in the case of rasterization primitives.

Although instantiation-based primitives theoretically can instantiate any other primitive, the most 
common case is the class which instantiates points (usually in very large numbers) to fill in a volume. We 
will refer to those as point instantiation primitives. 

Point instantiation primitives have many advantages beside their inherent efficiency. They also support 
the full range from smooth-looking to granular primitives, simply by varying the number of instances 
used to fill the primitive.

Examples of primitives using point instantiation
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2.6.1. Point instantiation
The simplest point instantiation primitive uses a sphere as its base primitive. The first step in its 
generation is the scattering of points. Depending on the desired look, the scattering may be done only 
on the surface of the sphere, or inside the entire volume of the sphere. The images below show the 
different results of the two techniques.

left) Points scattered at sphere radius
middle) Points displaced by noise function

right) Point color modulated by noise function

left) Points scattered to fill inside of sphere
middle) Points displaced by noise function

right) Point color modulated by noise function

Once the points are scattered, any number of noise- or texture-based modulations and displacements 
may occur. In our simple example the points are displaced by a vector-valued fractal noise function, and 
then a scalar-valued noise function is used to modulate their color. From this simple foundation, point 
instantiation primitives used in production typically add large numbers of control parameters and noise 
functions, each responsible for manipulating the final appearance in a different way.
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The following code implements a simple sphere-based instancing algorithm 

void instanceSphere(const SpherePrim &prim, PointCloud &output)
{
 Rand32 rng(prim.id);
 for (int i = 0; i < prim.numInstances; i++) {
  // Instantiate a point
  V3f lsP, wsP;
  if (prim.doShellOnly) {
   lsP = hollowSphereRand(rng);
  } else {
   lsP = solidSphereRand(rng);
  }
  // Displace the instanced point by some noise function
  lsP += fbm(lsP, prim.dispNoisePeriod, prim.dispNoiseOctaves) * prim.dispNoiseAmplitude;
  // Transform point to world space
  prim.localToWorld(lsP, wsP);
  // Modulate density by second noise function
  float density = fbm(lsP, prim.noisePeriod, prim.noiseOctaves) * prim.noiseAmplitude;
  // Add point to output collection
  output.addPoint(wsP, density);
 }
}

Note that in this example we accumulate all points in a collection which gets sent to the rasterizer once 
instantiation is complete. It is also possible to directly rasterize each point as it is instanced.
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2.6.2. Curve-based point instantiation
Sphere-based primitives are particularly convenient because of their simple parameterization, and 
because of how easy it is to define a coordinate space that travels with the primitive. As we will see, 
curves and surfaces can also be used, but their coordinate spaces are a little more involved to define.

The following images show various noise techniques applied to a curve primitive. Each primitive uses 
roughly 40 million points. (Images are of reduced size but at around 350 dpi, zoom in for a better view.)

Constant-radius curve primitive Perlin noise modulating density

Absolute-valued perlin noise modulating 
density

Displacing points along normal using absolute 
perlin noise (pyroclastic)
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Points displaced by vector-valued perlin noise Density first modulated by scalar-valued perlin 
noise, then displaced using vector-valued perlin 

noise

In the example above the point distribution is completely random, which can lead to bunching up of 
point locations and lead to a grainy look in the final result. Depending on the desired look, this may or 
may not be a good thing. If a smooth look is the goal, it may be better to use a blue noise/poisson 
distribution of points.

The following code shows a simple curve-based instancing algorithm. 

void instanceCurve(const CurvePrim &prim, PointCloud &output)
{
 Rand32 rng(prim.id);
 for (int iSeg = 0; iSeg < prim.numSegments; iSeg++) {
  for (int i = 0; i < prim.numInstances; i++) {
   // Pick a random position in the current line segment.
   // This will be our coordinate along the T basis
   float u = rng.nextf();
   // Pick a random 2d position on a [-1,1][-1.1] disc. 
   // This will be the coordinate in the (N, NxT) plane.
   V2f st = sampleDisc(rng);
   // Find T and N basis vectors at current location and calculate third basis
   V3f T = prim.interpolateT(iSeg, u);
   V3f N = prim.interpolateN(iSeg, u);
   V3f NxT = cross(N, T);
   // Transform point on curve to world space
   V3f wsP = prim.interpolateP(iSeg, u);
   // Displace along N and NxT by st vector, scaled by radius
   float radius = prim.interpolateRadius(iSeg, u);
   wsP += NxT * st[0] * radius;
   wsP += N * st[1] * radius;
   // Pyroclastic noise is created by displacing the point further
   // along the radial direction
   V3f nsP(st[0], st[1], u);
   V3f wsRadial = normalize(NxT * st[0] + N * st[1]);
   float displ = fbm(nsP, prim.dispNoisePeriod, prim.dispNoiseOctaves) * 
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                 prim.dispNoiseAmplitude;
   wsP += wsRadial * displ;
   // Modulate density by second noise function
   float density = fbm(nsP, prim.noisePeriod, prim.noiseOctaves) * prim.noiseAmplitude;
   // Add point to output collection
   if (density > 0.0f) {
    output.addPoint(wsP, density);
   }
 }
}

The CurvePrim::interpolate*() functions are used to calculate the values in-between the control 
vertices of the curve, and they may use any method for this. If curves are finely tessellated then a 
piecewise linear function may be enough, although it is more common to use a spline function. 
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2.6.3. Surface-based point instantiation
The following images show various noise techniques applied to a surface primitive. Each primitive uses 
roughly 400 million instanced points in order to achieve a smooth result at 1024x1024 pixels. A frustum-
shaped voxel buffer of resolution ~1200x1200x250 was used. It should be noted that primitives that 
modulate their density using noise are slightly “wasteful”, because we need to instantiate a point, 
calculate its noise space position and evaluate the full fractal noise function before knowing whether to 
cull it due to zero density.

Constant-thickness surface primitive Perlin noise modulating density

Absolute-valued perlin noise modulating 
density

Displacing points along normal using absolute 
perlin noise (pyroclastic)
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Points displaced by vector-valued perlin noise Density first modulated by scalar-valued 
absolute perlin noise, then displaced using 

vector-valued perlin noise

The following code shows a simple surface-based instancing algorithm. 

void instanceSurface(const SurfacePrim &prim, PointCloud &output)
{
 Rand32 rng(prim.id);
 for (int iSeg = 0; iSeg < prim.numSegments; iSeg++) {
  for (int i = 0; i < prim.numInstances; i++) {
   // Pick a random position on the current surface patch.
   // These will be our coordinates along the dP/du, dP/dv bases
   V2f st;
   st[0] = rng.nextf();
   st[1] = rng.nextf();
   // Pick a random 1d position to determine offset along N basis
   float u = rng.nextf();
   // Find T and N basis vectors at current location and calculate third basis
   V3f N = prim.interpolateN(iSeg, st);
   // Transform point on surface to world space
   V3f wsP = prim.interpolateP(iSeg, st);
   // Displace along N vector, scaled by radius
   float radius = prim.interpolateRadius(iSeg, st);
   wsP += N * u * radius;
   // Pyroclastic noise is created by displacing the point further
   // along the radial direction
   V3f nsP(st[0], st[1], u);
   float displ = fbm(nsP, prim.dispNoisePeriod, prim.dispNoiseOctaves) * 
                 prim.dispNoiseAmplitude;
   wsP += N * displ;
   // Modulate density by second noise function
   float density = fbm(nsP, prim.noisePeriod, prim.noiseOctaves) * prim.noiseAmplitude;
   // Add point to output collection
   if (density > 0.0f) { 
    output.addPoint(wsP, density);
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   }
 }
}

Just as curves can be any number of segments, each surface primitive can be made up of an arbitrary 
number of pieces. Traditionally, each piece is a quad-connected set of vertices, which can be used to 
create either a regular polygon mesh or a parametric surface. Either way, the SurfacePrim::interpolate*() 
functions need to evaluate quickly for any coordinate in the patch based on its st coordinate.
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2.7. Modeling with level sets
Level sets are a technique for tracking interfaces. From its introduction to the computer graphics 
community in the late 1990s the level set method has quickly become one of the workhorses of the 
industry. Level sets are useful for collision detection, fluid simulation, and rendering. They are also 
featured in popular third party applications, such as Houdini and Real Flow.

Typically interfaces in graphics, such as the model of a character, are represented explicitly with polygon 
meshes or NURBS, for example. There is a rich history of tools and techniques for dealing with such 
explicit representations. However it is very difficult to implement operations like unions or differences 
with explicit representations. Additionally, topological changes due to animation need to be handled in 
special ways which are not robust. The level set method works by representing an orientable manifold 
surface as a function which tracks the signed distance to the nearest point on the interface from any 
point in space. In the general case the level set method defines the evolution of the level curve in the 
normal direction at a certain speed. Most of the time we are interested in the Euclidean distance, which 
leads to a special case of level sets called signed distance fields (SDF).

Level sets are typically stored in the same volumetric data structures we have been discussing. Each voxel 
stores the level set value, ϕ, at that location. This is the distance to the nearest point on the interface. As 
the name signed distance field suggests these values are oriented based on whether the location is inside 
or outside of an object. For our discussion we assume that level set values outside the object are positive, 
ϕ > 0 , and negative, ϕ < 0, inside the object. The zero level, ϕ = 0, represents the exact interface.

2.7.1. Constructive Solid Geometry Operations
We can extend our voxel buffer machinery with level set specific methods to obtain some really powerful 
features. The most trivial ones to implement are CSG operations. This pseudocode for a union operation 
demonstrates one of the reasons behind the viral popularity of level sets, they are extremely trivial to 
implement.

/∗! Performs a CSG union between level sets A and B, and
stores the results in A. Assumes A and B have the same transform .∗/
void union(VoxelBuffer& A, const VoxelBuffer& B) {
 BBox dims = lightBuffer .dims();
 for (int k = dims.min.z; k <= dims.max.z; ++k) { 
  for (int j = dims.min.y; j <= dims.max.y; ++j) {
   for (int i = dims.min.x; i <= dims.max.x; ++i) { 
    A = std::min(A.value(i,j,k), B.value(i,j,k));
   }
  }
 }
}
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The difference between two buffers A and B can be calculated by computing the maximum value at each 
voxel between value in A and the negated value in B. Intersections between two buffers are computed by 
taking the maximum value at each voxel. In user interface terms the intersection corresponds to a copy 
operation, the union is a paste operation, and the difference is a cut operation.

Operation Implementation

Union min(A, B)

Intersection max(A, B)

Difference max(A, -B)

2.7.2. Rendering Level sets
Level sets can be rendered as a solid object, or as a volumetric element. The simplest volumetric 
treatment assigns a constant density value to each inside voxel, ϕ ≤ 0. In order to avoid aliasing artifacts 
a roll-off can be applied to the voxels in a band near the surface.

phi = levelSet.value( i,j,k ); 
if ((phi <= 0) && (phi >= −bandwidth)) 
 density = defaultDensity ∗ smoothstep(−phi, 0, bandwidth);

Surface rendering of level sets can be performed directly, or it can be converted back to an explicit mesh. 
Ray tracing level sets is very efficient because the level set values can be used to accelerate the ray 
intersection tests. We evaluate the level set value at the start position of the ray. This value tells us how 
far along the ray we have to advance before we are at the surface. We then evaluate the level set at this 
new location, and iterate a fixed number of times to find an accurate intersection point if one exists. We 
can convert level sets to polygon meshes using the popular marching cubes algorithm.

In order to be representable as a level set, an object must have a clearly defined inside and outside. 
Museth et al. provide discussion of conversion techniques in their paper Algorithms for Interactive Editing 
of Level Set Models. We recommend the excellent text Level Set Methods and Dynamic Implicit Surfaces by 
Stanley Osher and Ronald Fedkiw for more details on level sets and the useful things you can do with 
them.
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2.8. Motion blur
So far we have only considered primitives that are stationary. Of course, to create a production-quality 
volume renderer we need to consider primitives in motion as well. When it comes to surface rendering, 
micropolygon-based renderers record the motion per-fragment and assigns a time to each pixel sample. 
A raytracing-based renderer also assigns a time to each ray, and displaces the contents of the scene so 
that the ray sees the appropriate state.

In volume rendering, true motion blur is often too expensive to calculate. In some cases, such as 
eulerian motion blur of procedural fields and simulation data, the motion blur calculation can be done 
correctly. However, when considering thousands or millions of volumetric primitives we simply cannot 
produce correct motion blur – in fact, the use of rasterization into voxel buffers prevents it.

The most common solution to producing almost correct motion blur in voxel buffers is to smear each 
sample along its motion vector. Smearing has the following properties: It distributes the value evenly 
across all the voxels it touches, and the sum of all values written to those voxels is equal to the original 
value. 

2.8.1. Line drawing
The first approach we can use to smearing the sample is to employ standard line-drawing in 3D. In 
order for the motion blur to look smooth we need to antialias the line. Fortunately, algorithms for 
drawing an antialiased line are commonplace in computer graphics, and we refer the reader to the 
standard literature for implementation details.

2.8.2. Splat-based smearing
The second approach is to draw multiple trilinear splats to make up the line. This has the benefit of 
being easier to implement, and as we’ll see below it also introduces the opportunity to control the 
quality of the smear.

void Rasterizer::trilinearSmear(const V3f &vsStartP, const V3f &vsEndP, 
                                float value)
{
 V3f vsMotion = vsEndP - vsStartP;
 int numSplats = ceil(vsMotion.length()) + 1;
 float valuePerSplat = value / static_cast<float>(numSplats);
 for (int i = 0; i < numSplats; ++i) {
  float fractionTraveled = 
   static_cast<float>(i) / static_cast<float>(numSplats - 1);
  trilinearSplat(vsStartP + fractionTraveled * vsMotion, valuePerSplat);
 } 
}

By calculating the fraction of the distance travelled instead of incrementing the position at each step of 
the loop we avoid accumulation of errors in the splat positions.
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Using splats has another interesting possibility – undersampling. Though we know how many samples 
we should use, we could potentially use fewer to speed up the rasterization. Just as with nearest-neighbor 
splatting, when a lot of primitives are involved, their random distribution tends to hide undersampling 
and noise artifacts. Thus, we may add a scaling factor to the function, which lets the user control how 
many samples should be used to draw each line.

void Rasterizer:: trilinearSmear(const V3f &vsStartP, const V3f &vsEndP, 
                                 float value, float samplingFactor)
{
 V3f vsMotion = vsEndP - vsStartP;
 int numSplats = ceil(vsMotion.length() * samplingFactor) + 1;
 // ...
}

2.8.3. Smearing problems
Of course, smearing the samples is technically incorrect. In an abstract sense, we are folding the 
temporal domain into the spatial domain, and in doing so we lose all information about when a given 
primitives occupies a given position in space. This problem becomes apparent in the loss of lighting 
detail during subsequent rendering. A sharp feature that is smeared will no longer shade the same as 
when stationary, and the result tends to look artificially soft. However, this downside is usually 
acceptable when considering the alternative of calculating full deformation blur during rendering.

Stationary primitive Smeared primitive produces 
incorrect lighting

Average of multiple frames shows a 
more correct result

We find another problem if the camera is moving at the same speed as the primitives being rasterized, 
any motion should be cancelled out and the result look sharp. But because the motion blur is baked into 
the voxel buffer this is not possible.
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2.8.4. Post-rasterization smearing
An alternative to smearing each individual sample is to use a separate buffer to accumulate a velocity 
vector for each voxel. Once all rasterization and/or splatting is done, the velocity is used to smear the 
entire buffer in a single step. This is often faster than smearing each sample as it is written to the buffer, 
but it suffers from a potentially large problem, depending on the input geometry. The problem occurs 
when the input primitives overlap and have drastically different motion vectors. In this case it becomes 
impossible to calculate a valid direction to smear in. It is possible to resort to keeping track of the 
average motion vector in each voxel that has overlapping primitives, but this can cause visual artifacts in 
the final render.

A variant of this method is to simply retain both the density buffer and the velocity buffer and calculate 
the motion blur during rendering. This still suffers from the problem with overlapping primitives but 
does avoid the problem of reduced shading detail in motion blurred areas. Microvoxel-based volume 
renderers lend themselves well to this approach.
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2.9. High resolution voxel buffers 
Up until now we’ve expected that voxels exist everywhere within the domain of the voxel buffer. And in 
this domain each voxel is the same size. This is fine when the volumetric element that is being modeled 
is small in screen-space, but if we need to get close to the element, or if the element extends across the 
entire visible frame, the resolution required in order to provide sharp details will likely range in the 
thousands along each axis. 

Two approaches are most common in visual effects production when trying to solve this problem. The 
first addresses the problem of unused voxels occupying memory, and the second amounts to adapting 
the voxel size so that voxels close to camera are small and those far away are large.

2.9.1. Sparse data structures
Any time a dense voxel buffer stores a zero density it is effectively wasting memory. This happens 
because dense buffers blindly allocate storage for every voxel in its domain without considering what 
areas will be populated. Since most volumetric elements tend to have some sort of connectedness and 
generally don’t occupy the entire domain of the voxel buffer, finding a data structure that allocates 
memory more intelligently would help improve memory use.

One of the simplest such structures is the block-based sparse buffer. (What is referred to here as blocks is 
sometimes also called tiles.) It can be thought of as a two-level-deep hierarchical data structure where the 
domain of the buffer is subdivided into coarse blocks, and where a block can contain either a single value 
(usually zero, though for storage of level sets it can be useful to assign a different value), or an N3 array of 
voxels, representing the actual voxel data in the block.

A sparsely allocated voxel buffer (with unallocated blocks hidden)

The illustration above shows a sparsely allocated voxel buffer with blocks of size 23 (for purposes of 
clarity). A more common block size would be between 83 and 323. 
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A block remains unallocated (storing just a single value) until the first write-access to one of its voxels. 
Once the first write happens, all of the block’s voxels are allocated. Each block is thus effectively its own, 
small, dense buffer once allocated.

Using a fixed-depth hierarchy means that voxel read and write access is O(k), or constant time, though 
with a larger k than an ordinary dense buffer. The allocation that happens on the first write access is 
amortized over all subsequent accesses.

Field3D provides an implementation of this type of data structure in its SparseField class.

2.9.2. Frustum-shaped voxel buffers
The second approach is to adapt the voxel size to account for the fact that objects far away from camera 
require less detail than those close up. The most common way of accomplishing this is to use frustum-
shaped voxel buffers, usually referred to simply as frustum buffers. Frustum buffers are tied to a camera 
(usually the main shot camera), and follow any animation applied to the camera. When seen from the 
side (below), each voxel looks stretched and sheared, but when viewed from the camera, each row of 
voxels lines up perfectly with the projection of a pixel into the scene.

A frustum-shaped voxel buffer

The resolution of the above buffer is 8x8 in the XY plane, with 8 slices along the Z axis. The XY resolution 
is normally locked to the resolution of the camera, times some multiplier, and the number of Z slices is 
left as a user parameter. The Z resolution is normally much lower than either of the XY axes, usually on 
the order of a few hundred.
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The transform from from world space to voxel space can be implemented as:

void FrustumMapping::worldToVoxel(const V3f &wsP, V3f &vsP)
{
 // The camera’s 0..1 NDC space matches the local space of the voxels
 V3f nsP;
 m_camera->worldToNdc(wsP, nsP);
 localToVoxel(nsP, vsP);
}

To further optimize memory use we can combine sparse buffers and frustum buffers. Since the 
coordinate transform is independent of the data structure used for voxel storage, this is straightforward. 
This approach combines the benefit of finer detail close to camera with the empty space optimization of 
the sparse buffer.

A sparsely allocated frustum-shaped voxel buffer
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2.9.3. Problems with frustum buffers
Frustum buffers are not without drawbacks. Light leaks may be visible along the edges of the frame 
during rendering, since no density is available outside the view of the camera to stop light from 
penetrating into the buffer. This can usually be addressed by padding the bounds of the frustum buffer, 
so that it extends outside the view of the camera, though in extreme cases the amount of padding needed 
negates the performance gains and reduced memory usage offered by the frustum buffer. 

Light leaks along right edge of frustum

Another problem occurs when primitives in the scene are widely distributed along the camera’s depth 
axis. This forces each Z slice to become excessively deep, which manifests itself as aliasing artifacts, 
called slicing artifacts. These are visible as a posterization-like look, with poor lighting detail. The artifacts 
can be reduced by careful antialiasing of the volumetric primitives during the rasterization phase, but to 
completely avoid them an increase in Z resolution is required.
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Sufficient detail along z axis (150 
slices)

Slicing artifacts due to low z 
resolution (25 slices)

Frustum buffers are also more prone to aliasing due to the noise functions used and if an insufficient 
number of z slices is used the effect can be very visible. The example below shows a render using the 
same 25 slices as above, but with noise antialiasing disabled:

Aliasing artifacts due to excessive high-frequency detail in noise function

It can also be difficult to correctly capture moving primitives at the edge of the frustum. Primitives that 
motion blur into the buffer need to be considered even if only a few samples of their smeared 
contribution fall into the buffer, otherwise leaks will occur, similar to the light leaks discussed earlier. In 
certain cases it may also be difficult and/or expensive to determine if a primitive should be included, for 
example if a primitives both enters and exits the frustum buffer in a single time frame.
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3. Volume rendering

Now that we have the foundations in place for creating the data for volumetric effects we move on to 
looking at how to render the data. Volume rendering is about the mathematics of how light behaves in a 
participating medium, where the medium may be anything from smoke or water vapor to clouds and 
atmospheric haze. The equations that govern volume rendering are applicable across a large range of 
media, and we can use the same approach to render almost any kind of volumetric effect.

Volume rendering for visual effects production also extends past the physical in order to achieve certain 
desired looks, and to better integrate with the rest of the production pipeline. It often becomes necessary 
to bend the rules for what should happen, and the constant challenge is to find methods for doing so that 
are controllable yet plausible. 

This chapter will describe the fundamental components required for creating a production-grade 
volume renderer, and will cover basic scattering theory and the raymarching approach to solving the 
scattering problem. It will also cover efficiency and optimization, integration issues and the challenges 
associated with motion blur. Most topics will be familiar to those familiar with volume rendering in 
general, but in this course we aim to describe which specific techniques are used in day-to-day 
production environments, and how those techniques are integrated to create a practical and functioning 
system. There are of course other approaches to volume rendering than those described here, and 
several different ones are actively used in the visual effects community as well, but in these course notes 
we will focus on the raymarching-based approach. 
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3.1. Lighting theory
When designing a volumetric effects we want to describe both its shape and motion (the modeling part of 
volume rendering), as well as its appearance (the real rendering part of volume rendering). When 
describing the appearance it is useful to break it down into some fundamental characteristics, which can 
then be combined in various relationships to achieve a wide variety of looks. 

As it turns out, there are only three fundamental characteristics needed to describe any given volumetric 
element. Each describes a different physical process.

• Absorption (sometimes also called extinction) is the loss of radiant energy along a ray of light due to 
energy being converted into some other form, such as heat. Black smoke is a good example of an 
absorbing medium. 

• Emission adds radiant energy and happens where the medium itself is luminous. Flames and fire are 
examples of highly emissive media. 

• Scattering describes how likely a medium is to cause a ray of light to collide with a particle and change 
its direction. As an example, water vapor is an almost completely scattering medium. There are two 
types of scattering to consider. First, light traveling from a distant object towards the camera has a 
probability of being reflected off to another direction, which is called out-scattering. Another possible 
outcome is that a ray of light traveling in some random direction gets reflected into the view ray of the 
camera, which is called in-scattering. Each of these probabilities is equally likely to occur, since the light 
being reflected has no idea of the position and orientation of any observers.

Each of these characteristics can be isolated and discussed in terms of how they affect a ray of light 
traveling through space. When deriving the mathematical model for how light is affected by 
participating media it is useful to consider a differential cylinder: a cylinder, infinitely thin, of unit 
length, through which a ray of light passes. 

A differential cylinder filled with a participating medium
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We will use the following notation in the equations that follow:

• p – the position of the cylinder, and the interaction location
• ω – the direction of the ray
• L – the radiance quantity
• Li – the incoming radiance, before any interaction with the medium
• Lo – the outgoing radiance, after the interaction with the medium

3.1.1. Modeling absorption
In discussing the light scattering properties of volumes we will draw some parallels to surfaces and their 
BRDFs. A dark surface is dark because of its low reflectivity. The laws of physics dictate that whatever 
incident radiant energy that is not reflected away from the surface must be absorbed – energy does not 
disappear, it only changes form, in this case into heat. Volumes share this property, but instead of 
describing the fraction of light absorbed after interaction with a surface the absorption coefficient 
determines how likely it is that a ray of light is absorbed as it travels through a volume. 

The unit of the absorption coefficient σa is a reciprocal distance (i.e. m-1), which essentially describes the 
probability that a ray of light is absorbed as it travels through one length unit of the medium. Being a 
reciprocal means that it can assume any positive value – it can be infinitely large. 

Mathematically formulated, the absorption interaction can be described as:

Lo = Li + dL
dL = -σa Li dt

3.1.2. Modeling emission
When the medium emits light, for example as the result of some chemical reaction, or due to the 
thermal properties of the medium, it adds to the radiance of a ray passing through it.

The emissive term Le(p, ω) is a measurement of radiance, which describes the amount emitted in 
direction ω along a one unit long section of a ray. 

The mathematic formulation for emission is:

Lo = Li + Le

Le = σe dt

3.1.3. Modeling scattering
The scattering property describes the likelihood that a ray of light traveling through the medium will 
bounce and reflect to another direction. As mentioned before, this interaction accounts for both in-
scattering and out-scattering, although when calculating lighting effects in a volume, the effect of out-
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scattering is usually folded into the absorption calculation, since the net result is identical. We refer to 
the extinction term when considering absorption and out-scattering together.

The unit of the scattering coefficient σs is (just as absorption) a reciprocal distance, which describes the 
probability that a ray of light is scattered as it travels through one length unit of the medium. This 
means that a ray traveling through a medium with σs = 0.1 will travel on average a distance of 0.1-1 = 10 
units before a scattering event occurs. This distance can also be referred to as the scattering length. 

Given a light source S, whose function S(p, ω') describes the quantity of light arriving at point p from 
direction ω', we can formulate the scattering interaction as:

Lo = Li + dLin + dLout

dLin = σs p(ω, ω') S(p, ω')
dLout = -σs Li dt

The function p(ω, ω') is called the phase function, and the next section will detail what it is and how it 
affects the scattering interaction.

3.1.4. Phase functions
The property of a volume that relates closest to a surface BRDF function is the phase function. A BRDF 
defines how much of light hitting a surface while traveling in direction ω will scatter to direction ω', and 
similarly the phase function determines how much light traveling through a medium in direction ω will, 
upon scattering, reflect to direction ω', i.e. probability = p(ω, ω'). Phase functions (at least the ones relevant 
to our purposes) have a few important properties. First, they are isotropic, meaning that the function is 
rotationally invariant, and only the relative angles between ω and ω' need to be considered, thus we can 
write p(ω, ω') = p(θ). Second, they are reciprocal, so p(ω, ω') = p(ω ', ω). Third, they are normalized such that 
integrating across all angles for ω while holding ω' constant gives exactly 1. 

direction of
light travel

The length of each vector illustrates the probability of scattering in that direction
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forward scatteringbackward scattering

isotropic scattering

direction of
light travel

Isotropic and anisotropic phase functions

Phase functions come in two flavors, isotropic and anisotropic. An isotropic (not to be confused with 
isotropic in the rotationally invariant sense, as in the previous paragraph) phase function scatters lights 
equally in all directions. Anisotropic phase functions are biased either forward or backward, as seen from 
the direction of light travel before the scattering event. 

Isotropic phase functions are perfectly sufficient when rendering low-albedo media, such as ash clouds, 
dust etc., but for media such as clouds and atmospheres, anisotropy is an important element to include 
in lighting calculations. Anisotropic behavior in participating media can be thought of as the parallel to 
specular BRDFs, and isotropic to diffuse/lambertian BRDFs. In everyday life, anisotropy is responsible 
for the silver lining in clouds, where the edge of a cloud becomes increasingly bright as the sun reaches a 
grazing angle.

Phase functions are well researched, and the two most common ones are the Rayleigh model (which 
describes atmospheric scattering, the interaction of light with particles the size of molecules), and the 
Mie model (which is more general and can handle much larger particle sizes, for example water vapor 
and droplets suspended in the atmosphere). In production rendering we often use a few other, simpler 
models, since Rayleigh and particularly Mie are expensive to evaluate. Henyey-Greenstein is a simple 
model that can handle both isotropic and anisotropic media, and a similar, but cheaper one is the Schlick 
phase function. These functions can all be found in the standard literature, but one especially good 
overview of phase functions in the context of volume rendering can be found in the book Physically Based 
Rendering6 . 
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3.2. Raymarching
Transmittance is the fraction of light which passes through a volumetric sample after being impeded by 
the material in the sample. It is the ratio of the outgoing light to the incoming light. Beer-Lambert’s Law 
relates the absorption capacity of a material to the transmittance. We write this equation as: T = e−σρl.

• T is transmittance
• σ is the coefficient of absorption
• ρ is amount of absorbing material in the sample
• l is the length of the path through the sample.

Opacity is the fraction of light which is absorbed by the sample. α = 1 − T . With respect to rendering, 
opacity is accumulated to compute the alpha channel. 

As in any other kind of rendering we want to figure out the light that gets to the camera. Real 
participating media attenuates the light, modulates the frequency, and alters the path of light. In other 
words a lot of complicated physical processes which we are going to simplify. This simplification was 
introduced by Kajiya and Von Herzen in 1984 in their seminal SIGGRAPH paper Ray Tracing Volume 
Densities. The process is to trace a ray from the cam- era through the volume, and compute the 
illumination in small segments along the ray. The illumination at each segment must be attenuated by 
the density between the camera and the segment. The ray is traced until the ray exits the volume, or it 
can see no further into the volume. The illumination calculation at each segment requires determining 
how much light is reaching that segment. This implies that we must perform another raymarch from 
each light to the segment. We must also account for material properties such as albedo, and the light 
absorption capacity of the material. This is a very simplified process, and does not account for some 
common effects such as volumes that emit light, such as fire, or scattering effects. But this is a good 
starting point.

Voxel buffer
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In order to compute the pixel value for a ray, x, we initialize color, C and opacity, α, to zero. 
Transmittance, T, is initialized to 1. We then intersect the ray against the voxel buffer to determine 
where we need to perform the integration. Finally we integrate this interval by sampling along x in steps 
of length △x. The contribution of a sample i is:

Ti  = e−σρ△x

Ttotal  = Told ∗ Ti

Ci = Ttotal L(xi)c(xi)ρ(xi)△x
Ctotal  = Cold + Ci

αtotal  = αold + (1 − Ti) ∗ (1 − αold)

where

Ti : Transmittance at xi

Ttotal : Total transmittance from the start of the ray to xi

L(xi) : Incident lighting at sample location
c(xi) : Color of the material at sample location
ρ(xi) : Density at sample location
△x : Ray step length
α  : Opacity

In order to compute the incident lighting we need to compute the transmittance from the light to the 
sample position. This requires us to perform another ray march between the sample position and the 
light. Employing the same mechanism used above:

Ti  = e−σρ△x

Ttotal  = Told ∗ Ti

L = Ttotal ∗ Clight ∗ P(θ)

where

Clight : Light color
P(θ) : Phase function
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The following method is a simple integration module. Note that no lighting calculations are performed.

float Raymarcher::integrate(const V3f& pos, const V3f& dir, const float absorption) const
{
    // Determine intersection with the buffer
    float t0, t1;
    if (false ==  m_buffer->intersect(pos, dir, t0, t1))
        return 1.0f;

    // Calculate number of integration steps
    const int numsteps = int(ceil(t1 - t0) / m_stepsize);

    // Calculate step size
    const float ds = (t1 - t0) / numsteps;
    V3d stepdir(dir);
    stepdir *= ds;
    
    V3d raypos(pos);
    raypos += stepdir;

    const float rhomult = -absorption * ds;

    // Transmittance
    float T = 1.f; 
    
    for (int step = 0; step < numsteps; ++step) {
        float rho = m_buffer.trilinearInterpolation(raypos);
        T *= std::exp(rhomult * rho);
        if (T < 1e-8)
            break;
        raypos += stepdir;
    }

    return T;
}

In order to accelerate the lighting calculation we precompute the transmittance values from each light 
through the volume. During rendering we interpolate this data set to determine lighting at the sample 
point. This is discussed in further detail in the section on pre-computed lighting.

It is often necessary to model volumetric materials which are emitting light, such as fire. Such materials 
are like diffuse densities, except that we can consider them to have intrinsic lighting. The rendering 
procedure involves augmenting the lighting function, L(xi), with an additional source for the emissive 
light.

3.2.1. Artistic controls
This simple illumination model offers a lot of room for art direction. The constants which appear in the 
expressions above are the simplest of these controls. While these parameters are rooted in physical 
accuracy we need not keep to this constraint. The absorption coefficient, σ, can be different between the 
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lighting and rendering calculations. It can also be varied for each color channel for a complex lighting 
effect.

We have found it useful to provide a multiplier for the density, ρ, parameter. This provides the user a 
simple way to manipulate the source data at render time. The step length, △x, parameter is the simplest 
way to trade off between quality and rendering speed. Large step sizes means the ray integration has to 
consider a lot fewer samples, and is quicker to compute. Consequently it also fails capture all of the 
detail available in the voxel buffer. The concept of frustum buffers is based on the observation that we 
may not require high quality integration far away from the source of the ray. Step length is typically 
expressed in world space units.

3.2.2. Implementation
The modular nature of the ray marching algorithm hints at how we can implement a generic volumetric 
shading architecture. In a simple scheme we can have a main renderer, material shader plugins, and 
light shader plugins. The main renderer is responsible for rendering a given voxel buffer. The user 
specifies which material shader to apply to that buffer, as well as the lights. The renderer invokes the ray 
marching, and performs the integration. At each sample along the ray the material shader is called with 
the shading position, voxel buffer, and information about the lights. The material shader is then 
responsible for returning a shaded color and transmittance for a single sample. This requires that the 
shader loop over all the lights and invoke the light shaders. In the case of using precomputed lighting 
the method to obtain lighting from the light shaders can simply return the appropriate value for the 
given sample position.
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3.3. Pre-computed lighting
Lighting calculations are one of the computationally heaviest steps of the raymarching algorithm. Since 
at each step we need to sample incoming light, the number of samples needed quickly approaches the 
billions. A completely unbiased approach to lighting would, for each raymarch step (of which there are at 
least 100 per pixel) along a primary ray, perform another raymarch toward each light in the scene to 
determine the amount of occlusion (multiplying the number of samples by another 100 or so). A brute 
force implementation of this scheme is incredibly slow, and as such it is mostly useful as a way of 
verifying the result of other techniques. Production renderers usually use other approaches to speed up 
the calculation, most of which rely on pre-computation.

3.3.1. Voxelized lighting
One method that is easy to implement and allows for very fast lookup times is to simply sample and 
voxelize the incoming light across the full domain of the scene. Since this is decoupled from the sample 
density of the camera rays, it is possible to sample less frequently than the final raymarch, and then 
interpolate values from the voxel representation. While this approach allows for fast lookups during 
final rendering, the pre-computation can be expensive, as for each voxel a full raymarch toward each 
light is performed. 

void voxelizeLights(const Scene &scene, const std::vector<Light> &lights, 
                    VoxelBuffer &lightBuffer)
{
 BBox dims = lightBuffer.dims();
 for (int k = dims.min.z; k <= dims.max.z; ++k) {
  for (int j = dims.min.y; j <= dims.max.y; ++j) {
   for (int i = dims.min.x; i <= dims.max.x; ++i) {
    V3f vsP = discreteToContinuous(i, j, k);
    V3f wsP;
    lightBuffer.mapping().voxelToWorld(vsP, wsP);
    Color incomingLight = 0.0f;
    for (int light = 0; light < lights.size(); ++light) {
     float intensity = lights[light].intensity(wsP);
     // Raymarch toward light to compute occlusion. This is a costly operation.
     float occlusion = computeOcclusion(lights[light].wsPosition(), wsP);
     incomingLight += intensity * (1.0 - occlusion);
    }
    lightBuffer.lvalue(i, j, k) = incomingLight;
   }
  }
 }
}

The biggest downsides to voxelized lighting is the cost of pre-computation. Because each voxel is 
calculated separately, we suffer similar performance problems as brute-force calculations, although we 
gain control over the sampling density (i.e. the resolution of the voxelized lighting buffer), which can be 
used to tune the quality/speed trade-off.
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3.3.2. Deep shadows
One important aspect of the lighting calculation that isn’t taken advantage of in the voxelized lighting 
approach is that light travels linearly from each light source. If the incoming light at voxel V1 in the 
illustration below has been computed, then the incoming light calculation at voxel V2, V3, etc. could 
potentially use the occlusion value at V1 to speed up their calculations. In practice however, figuring out 
which values can be re-used quickly becomes difficult and incurs its own performance overhead from 
storing book keeping data. 

V1

light source

V2

V3

Illustration of light propagation

A better approach is to simply calculate occlusion as seen from the light. This is equivalent to how 
shadow maps work, and it requires us to choose a resolution controlling how finely the scene is to be 
sampled. For each pixel in this map, we then need to calculate the transmittance function.
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Visualization of a deep shadow map, with spectral transmittance function for a pixel displayed below

This turns out to be trivial, as it is the exact same calculation that we perform when raymarching a 
volume from the camera and only accumulating transmittance/opacity. The only difference is that we 
need to record what the accumulated transmittance is at each raymarch step, so that this can later be 
queried for any point in space that is visible from the light source. The simplest way of storing the data 
is as a sequence of depth/transmittance pairs, ordered away from the light.

Technically, we could voxelize this data set and use it in beauty renders the same way as in the previous 
section, but a more efficient way to store this data is to leave it in its native form, i.e. a monotonically 
decreasing function per pixel seen from the light source. When storing it in this way, it is equivalent to 
the deep shadow maps technique described by Tom Lokovic and Eric Veach in their paper Deep Shadow 
Maps [Lokovic, 2000]. 

Deep shadow-style maps have several advantages. The transmittance function is mostly smooth and can 
be compressed efficiently to reduce the storage required both in memory and on disk. Also, since the 
number of samples in the transmittance function can vary from pixel to pixel, there is little cost 
associated with storing empty pixels. The downside is that the cost of lookups into the transmittance 
function are higher than for a voxelized representation, because each lookup requires a search in the 
transmittance function vector in order to find the appropriate depth sample.
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3.4. Holdouts
Volumetric elements rarely exist in isolation, and in almost any shot there are other elements which the 
volumetric must integrate with in the final composite. Holdouts are a common way of dealing with 
integration of multiple elements, both in surface and volume rendering. A holdout is an object in the 
scene that occludes and shadows other objects but does not itself show up in the final frame. Matte 
objects, phantom objects and holdout objects are all different names for the same thing.

Ground and object A visible, object B as 
holdout

Object B visible, ground and object A as 
holdouts

Composited image (additive) Color correction applied to object B’s image

Holdouts allow a render to be broken into multiple images that can be manipulated individually, and 
that composite easily into a final frame. They also allow the breaking down of complex scenes, as object 
occlusion is handled per-pixel, without the need to know the correct depth sort order. In the example 
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above, separating objects A and B without the use of holdouts would be tedious, as they both occlude 
each other in different parts of the image.

Holdouts are fairly trivial to implement in a surface shader, but in volume rendering, they can be 
implemented in a number of different ways, depending on the rendering approach and the type of 
holdout types that are supported.

3.4.1. Holdouts in volume rendering
In the microvoxel-based renders that handles both surfaces and volumes (such as PRMan or Mantra), 
geometry-based holdouts are a convenient way of defining holdout objects. For a raymarch-based 
volume renderer however, geometric holdouts are somewhat cumbersome to deal with. In raymarching, 
holdout objects need to be able to answer a visibility query for any point in space along a ray, as seen 
from the camera’s position, which means a ray must be traced against the geometry each time the 
information is required. To make things even more expensive, the holdout value should represent the 
pixel coverage or transparency at a given depth, so the holdout value usually needs to be supersampled 
and jittered across the pixel, because a simple binary visible/hidden answer will cause aliasing artifacts at 
geometry edges. 

We can take advantage of the fact that this holdout query is the same form of query discussed in the 
precomputed lighting section, where a transmittance function determined how much light could travel 
between a light source and a given point in space. Holdout functions answer the inverse question: how 
much light could travel from a given point in space all the way to the camera?

Volumetric element with surfaces 
held out

Rendered image of surfaces Composite using over operator
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3.4.2. Implementing holdouts
If we consider the calculation of transmittance in the raymarch loop

T *= exp(-tau * stepLength);

We can rearrange this expression in the following way

T = T * exp(-tau * stepLength)
T = 0 * (1 - exp(-tau * stepLength)) + T * exp(-tau * stepLength)
T = lerp(0, T, exp(-tau * stepLength))

Which is to say that our incremental multiplication of T may be seen as a linear interpolation (or lerp) 
between zero and T by the factor exp(-τ * stepLength). While this is rather useless in itself, it becomes a 
much more convenient formulation once we introduce holdouts. 

A holdout object in volume rendering only needs to answer one question: at a given point in the scene, 
how visible is that point to the camera? That is to say

Color Tholdout = holdout.transmittance(wsP);

Logically, this function should start at 1.0 and be monotonically decreasing for any line pointing away 
from the camera, since once an obstacle is found its reduction of transmittance cannot be undone. If we 
consider the zero value in our lerp() expression above, that corresponds to the expected result of a 
holdout object that occludes nothing, i.e. 

Tholdout = 1;
opacity = 1 - Tholdout;
opacity = 0. 

As it turns out, accounting for the holdout object is as easy as replacing the zero in the lerp expression 
with 1 - Tholdout. So the complete formulation of the raymarcher’s transmittance calculation 
becomes:

Tholdout = holdout.transmittance(wsP);
T = lerp(1.0 - Tholdout, T, exp(-tau * stepLength));

If we were to create a procedural holdout function that emulated a semi-transparent glass pane right in 
front of the camera lens, we might expect it to always return 0.5, for example. Logically, this would be 
reflected in our final alpha and color values by making them half as large. 

3.4.3. Holdout maps
In the previous chapter we saw that deep shadow maps are a convenient way of storing transmittance 
functions, in fact the information that is required of the holdout function is exactly the same 
information used in lighting calculation. One solution to supporting geometric holdouts is therefor to 
create a transmittance function for each pixel in the final output by raytracing any holdout geometry as a 
pre-process to the volume integration step. Also, users of some common surface renderers (for example 
Pixar’s PRMan and SideFX’s Mantra) can output a deep shadow or deep shadow-like representation of 
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depth-varying pixel coverage or transmittance, which can then be used directly in a stand-alone volume 
renderer. 

3.4.4. Problems with holdouts
In our first holdout example we saw how two interlocking rings could be held out against each other and 
then composited correctly using an additive operation. This type of render is a two-sided holdout, where 
each element is held out in all other images being rendered. When using a dedicated volume renderer to 
produce elements that need to composite against images from a surface renderer this becomes a 
catch-22, because the surface renderer would need to be aware of how to render the volume data as a 
holdout object, though of course the whole point of writing a standalone volume renderer was that we 
couldn’t (or didn’t want to) do it inside the surface renderer. 

Because of this we often have to resort to one-sided holdouts, where the surfaces are rendered in their 
entirety and only the volume rendered image has objects held out. One-sided holdouts are technically 
inaccurate, but can be composited with reasonable results using an over operation instead of an add. The 
composite is correct for all pixels that have either no holdout or full holdout effect, but breaks down 
where partial occlusion happens. 

To illustrate this we look closer at the previous example:

Light pixels bleeding through holdout edge

As we can see, the high intensity pixel values of the ground are creeping into pixels that should really 
only contain values form the dark box and the smoky volume. This is often referred to as a matte line, and 
shows the breakdown of one-sided holdouts. They occur because the high intensity values are already 
mixed with the foreground elements into the antialiased edge pixels, and there is no way to tell what 
portion of the pixel’s value was contributed by values at any given depth; that information has been lost. 

One way to work around one-sided holdouts is to output a deep image from both the volume renderer 
and the surface renderer, and do a deep composite of the two in a 2D application. 
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3.5. Motion blur
In the modeling section we discussed techniques for motion blur of volumetric primitives and how that 
is commonly treated at the rasterization step rather than at render time. Here we will introduce motion 
blur in a few new contexts, all of which need to be handled by a production grade volume renderer.

Calculating perfectly accurate motion blur is expensive (this is why we voxelized our volumetric 
primitives and smeared them to begin with), and implementation techniques tend to vary from facility 
to facility. The techniques range from brute-force solutions to clever tricks that fake the effect, though in 
production rendering each one can be a perfectly valid solution. Because the solutions vary from facility 
to facility, we will introduce the topic in this section, but the solutions will be discussed in the advanced 
sections later on in these notes.

There are three main types of motion blur that need to be handled:

• Object motion blur is caused by motion of a volume or voxel buffer as a whole which often occurs 
when attaching a fluid simulation to a moving object in the scene. To account for the motion of the 
volume we need two or more motion samples. Each motion sample describes the local transform of the 
volume at a given time, usually the shutter open and shutter close times. 

• Deformation motion blur occurs when the velocity throughout a particular volume varies. For 
example, a fluid simulation can be motion blurred at render time by looking not only at the density 
field but also at the velocity field. 

• Camera motion blur occurs whenever the render camera itself is moving. 
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4. Putting it all together

The material covered so far should provide the basis needed to implement a simple volume modeling 
and rendering application. With those basics in mind, the next few chapters will dive into detail about 
how some actual battle-proven implementations work, and will show that the same problem often gets 
solved quite differently from facility to facility. Our hope is that, taken together, they will give a good 
overview of the state-of-the-art in production volume rendering.

The following diagram attempts to illustrate how each of the pieces described so far are connected to 
one another, and will serve the reader as an guide to how the advanced topics that follow fit into the 
volume rendering pipeline.
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Forward

These course notes make use of a volumetric scripting language called Felt,
developed at Rhythm and Hues Studios over many years and continuing to be
developed. In 2003 the earliest working version of the Rhythm and Hues Studios

uid solver, Ahab, had been built by Joe Mancewicz, Jonathan Cohen, Jeroen
Molemaker, Junyong Noh, and Taeyong Kim, and successfully used on the �lm
The Cat in the Hat. At that point our group of simulation and volume rendering
developers were thinking about what sort of tools we would need to be able to
manipulate all of the volumetric data coming from simulations, and for that
matter tools to create new volumetric data without simulations. We were very
inspired by what TDs were telling us about Digital Domain's Storm, and its
expression language in particular. But we could also see that if we were not
careful about how we built a language, there might be real memory issues from
creating and manipulating lots of grid-based volumes. At the same time, we
could see that procedural operations like those in the area of implicit functions
had a lot of nice strengths. We wanted the language to cleanly separate the
application of mathematical operations on volumetric data from the discrete
nature of the data. The same math { and the same code { should apply whether
a volume is grid-based, particle-based, or procedural-based, and we should be
able to freely mix volumes with di�erent underlying data formats. We also
wanted a language that TD's with programming knowledge could write code
with, so we patterned it after shading languages, a bit of perl, and C.

By the fall of 2003, Michael Kowalski built an early version of the parser for
the language, and Jonathan Cohen built the early version of the computational
engine. To their great credit, years later Felt is still based on that early code
with bug �xes and new features. We want to rewrite it for many reasons, not
the least of which is that code under development for 7 years can get a little
furry. But its quality is high enough that lots of other topics have always had
higher priorities.

When the �rst version of Felt came out in the fall of 2003, Jerry Tessendorf
inserted it into an experimental volume renderer called hog, and started pro-
ducing images of volumes generated using methods that we now refer to as
gridless advection and SELMA. The imagery lead to applications for �re on
The Chronicles of Narnia: The Lion, The Witch, And The Wardrobe. Figure 1
shows a very early test of converting hand-animated particles into a �eld of �re.
The method worked because of its ability to create high resolution structure
while simultaneously storing some of the data on grids. The design decisions
allowing the mixture of data formats and resolutions was a critical success early
in Felt's development.

This work
ow using Felt inserted directly into volume rendering continues
in production today.
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Figure 1: Early imagery showing the conversion of a particle system into a
volumetric �re. The Felt algorithms used for this included early versions of
gridless advection and SELMA.
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Chapter 1

Introduction

These notes are motivated from the volumetric production work that takes
place at Rhythm and Hues Studios. Over the past decade a set of tools, al-
gorithms, and work
ows have emerged for a successful process for generating
elements such as clouds, �re, smoke, splashes, snow, auroras, and dust. This
work
ow has evolved through the production of many feature �lms, for example:

The Cat in the Hat � Around the World in 80 Days � The Chronicles
of Narnia: The Lion, the Witch, and the Wardrobe � Fast and Furious:
Tokyo Drift � Fast and Furious 4 � Alvin and the Chipmunks � Alvin
and the Chipmunks, The Squeakquel � Night at the Museum � Night
at the Museum: Battle of the Smithsonian � The Golden Compass �
The Incredible Hulk � The Mummy: Tomb of the Dragon Emperor �
The Vampire's Assistant � Cabin in the Woods � Gar�eld � Gar�eld: A
Tale of Two Kitties � The Chronicles of Riddick � Elektra � The Ring 2
� Happy Feet � Superman Returns � The Kingdom � Aliens in the Attic
� Land of the Lost � Percy Jackson and the Olympians: The Lightning
Thief � The Wolfman � Knight and Day � Marmaduke � The A-Team �
The Death and Life of Charlie St. Cloud � Yogi Bear

At the heart of this system is a multiprocessor-aware volumetric scripting
language called Felt, or \Field Expression Language Toolkit". Felt has c-like
syntax, and is intended to behave somewhat like a shading language for volume
data. An important aspect of Felt is that it separates the notion of volumetric
data from the need to store it as discrete sampled values. Felt allows purely
procedural mathematical operations, and easily mixes procedural and sampled
data. In this capacity, Felt scripts construct implicit functions and manipulate
them, much like the methods described in [1].

In addition to modeling volume data, Felt also modi�es geometry, particles,
and volume data generated with other tools, including animations and simula-
tions. This gives �ne-tuning control over data in a post-process, similar to the
way a compositor can �ne-tune images after they are generated. Conversely,

1



2 CHAPTER 1. INTRODUCTION

simulations can use Felt during their runtime to modify data and processing

ow to suit special needs.

These tools also provide an excellent framework for prototyping new algo-
rithms for volumetric manipulation, such as texture mapping, fracturing models,
and control of simulation and modeling, which will be discussed in chapters 3,
4, 5.

1.1 A Brief on Volume Rendering

One of the primary uses of volumetric data is volume rendering of a variety
of elements, such as clouds, smoke, �re, splashes, etc. We give a very brief
summary of the volume rendering process as used in production in order to
exemplify the kinds of volumetric data and the qualities we want it to possess.
There are other uses of volumetric data, but the bulk of the applications of
volumetric data is as a rendering element. A rendering algorithm commonly
used for this type of data is accumulation of opacity and opacity-weighted color
in ray marches along the line of sight of each pixel of an image. The color is also
a�ected by light sources that are partially shadowed by the volumetric data.

The two fundamental volumetric quantities needed for volume rendering are
the density and the color of the material of interest. The density is a description
of the amount of material present at any location in space, and has units of mass
per unit volume, e.g. g=m3. The mathematical symbol given for density is �(x),
and it is assumed that 0 � � < 1 at any point of space. The color, Cd(x), is
the amount of light emittable at any point in space by the material.

The raymarch begins at a point in space called the near point, xnear, and
terminates at a far point xfar that is along the line connecting the camera and
the near point. The unit direction vector of that line is n, so the raymarch
traverses points along the line

x(s) = xnear + s n

with some �xed step size �s, for 0 � s � jxfar � xnearj. In some cases,
the raymarch can terminate before reaching the far point because the opacity
of the material along the line of sight may saturate before reaching the far
point. Raymarchers normally track the value of opacity and terminate when it
is su�ciently close to 1.

The accumulation is an iterative update as the march progresses. The accu-
mulated color, Ca and the transmissivity T are updated at each step as follows:

x + = �s n (1.1)

�T = exp (�� �s �(x)) (1.2)

Ca + = Cd(x) T
(1��T )

�
TL(x) L (1.3)

T � = �T (1.4)
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The �eld TL(x) is the transmissivity between the position of the light and the
position x (usually pre-computed before the raymarch), � is the extinction co-
e�cient, L is the intensity of the light, and the opacity of the raymarch is
O = 1� T .

This simple raymarch update algorithm illustrates how volumetric data
comes into play, in the form of the density �(x) and color Cd(x) at every point
in the volume within the raymarch sampling. There is no presumption that
the volume data is discrete samples on a grid or in a cloud of particles, and
no assumption that the density is optically thin (although there is an implicit
assumption that single scattering is a su�cient model of the light propagation).
All that is needed of the volumetric data is that it can be queried for values at
any point of interest in space, and the volumetric data will return reasonable
values. So the data is free to be gridded, on particles, related to geometry, or
purely procedural. This freedom in how the data is described is something we
exploit in our resolution independent methods. The work
ow consists of build-
ing the volume data for density and color in Felt, then letting the raymarcher
query Felt for values of those �elds.

There is an assumption in this raymarching model that the step size �s
has been chosen su�ciently small to capture the spatial detail contained in the
density and color �elds. If the �elds are gridded data, then an obvious choice is
to make the step size �s equal to or a little smaller than the grid spacing. But we
will see below several examples of �ne detail produced by various manipulations
of gridded data, for which the step size must be much smaller than might be
expected from the grid resolution. This is a good outcome, because it means
that grids can be much coarser than the �nal rendered resolution, and that
reduces the burden on simulations and some grid-based volumetric modeling
methods.

1.2 Some Conventions

There are several concepts worth de�ning here. A domain is a rectangular
region, not necessarily axis-aligned, described by an origin, a length along each
of its primary axes, and a rotation vector describing its orientation with respect
to the world space axes. The domain may optionally have cell size information
for a rectangular grid. A �eld is an object that can be queried for a value at
every point in space. That does not mean that the value at all points has to
be meaningful. A particular �eld might have useful values in some domain,
but outside of that domain the value is meaningless, so it could be set to zero
or some other convenient value. A scalar�eld is a �eld for which the queried
values are scalars. A vector�eld returns vectors from queries, and a matrix�eld

returns matrices. In the Felt scripting language, scalar�elds, vector�elds, and
matrix�elds are \primitive" datatypes. You can de�ne them and do calculations
with them, but it is not necessary to explicitly program what happens at every
point in space.

In these notes, scripts written in Felt will have a font and color like this:
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scalar�eld r = sqrt( identity()*identity() );
// Comments are in this color and use C++ comment symbols \//"
vector�eld normal = grad(r);

This simple script is equivalent to the mathematical notation:

r =
p
x � x

n = rr
because the function identity() returns a vector�eld whose value is equal to the
position in space, and the * product of two vector�elds is the inner product.

For the times that it is useful to have data that consists of values sampled
onto a grid, the companion objects to �elds are caches, in the form of scalarcache
and vectorcache.

scalar�eld r = sqrt( identity()*identity() );
vector�eld normal = grad(r);

// Create a domain: axis-aligned 2x2x2 box centered at the (0,0,0)
vector origin = (-1,-1,-1);
vector lengths = (2,2,2); // 2x2x2 box
vector orientation = (0,0,0); // Axis-aligned

oat cellSize = 0.1;
domain d( origin, lengths, orientation, cellSize, cellSize, cellSize );

// Allocate two caches based on the domain
scalarcache rCache( d );
vectorcache normalCache( d );

// Sample �elds r and normal into caches
cachewrite( rCache, r );
cachewrite( normalCache, normal );

// Treat caches like �elds, using interpolation
scalar�eld rSampled = cacheread( rCache );
vector�eld normalSampled = cacheread( normalCache );

In the last lines of this script the gridded data is wrapped in a �eld descrip-
tion, because interpolation schemes can be applied to calculate values in between
grid points. But once this is done, they are essentially �elds, and the gridded
nature of the underlying data is completely hidden, and possibly irrelevant to
any other processing afterward.

Note that the construction of the sampled normal �eld, normalSampled, could
have been accomplished in a di�erent, more compact approach:

scalar�eld r = sqrt( identity()*identity() );
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// Create a domain: axis-aligned 2x2x2 box centered at the (0,0,0)
vector origin = (-1,-1,-1);
vector lengths = (2,2,2); // 2x2x2 box
vector orientation = (0,0,0); // Axis-aligned

oat cellSize = 0.1;
domain d( origin, lengths, orientation, cellSize, cellSize, cellSize );

// Allocate one cache based on the domain
scalarcache rCache( d );

// Sample �eld r into the cache
cachewrite( rCache, r );

// Treat the cache like a �eld, using interpolation
scalar�eld rSampled = cacheread( rCache );

// Take the gradient of the sampled �eld rSampled
vector�eld normalSampled = grad( rSampled );

Here, only one cache is used and the gradient is applied to the sampled ver-
sion of the distance rSampled. The two approaches are conceptually very similar,
and numerically very similar, but not identical. In the previous method, the
term grad(r) actually computes the mathematically exact formula for the gradi-
ent, and in that case normalCache contains exact values sampled at gridpoints,
and normalSampled interpolates between exact values. In the latter method,
grad(rSampled) contains a �nite-di�erence version of the gradient, so is a rea-
sonable approximation, but not exactly the same. For any particular application
though, either method may be preferrable.
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Chapter 2

The Value Proposition for
Resolution Independence

In volume modeling, animation, simulation, and computation, resolution
independence is a handy property for many reasons that we want to review here.
But �rst, we need to be clear about what the term \resolution independent"
means.

First the negative de�nition. Resolution independence does not mean the
volume data is purely procedural. Procedurally de�ned and manipulated data
is very useful, but not always the best way of handling volume problems. There
are many times when gridded data is preferrable.

A system that manipulates volumes in a resolution independent way has two
properties:

1. While the creation of volume data may sometimes require that a discrete
representation be involved (e.g. a rectangular grid or a collection of par-
ticles), there are many manipulations that do not explicitly invoke the
discrete nature that the data may or may not have. For example, given
two scalar�elds sf1 and sf2, a third scalar�eld sf3 can be constructed as
their sum:

scalar�eld sf3 = sf1 + sf2;

But this manipulation does not require that we explicitly tell the code
how to handle the discrete nature of the underlying data. Each scalar�eld
handles its own discrete nature and hides that completely from all other
�elds. In fact, there isn't even a reason why the scalar�elds have to have
the same discrete properties. This operation makes sense even if sf1 and
sf2 have di�erent numbers of gridpoints, di�erent resolutions, or even if
one or both are purely procedural. Which leads to the second property:

2. Resolution independence means that �elds with di�erent discrete prop-
erties can be combined and manipulated together on equal terms. This

7
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is analogous to the behavior of modern 2D image manipulation software,
such as Photoshop or Nuke. In those 2D systems, images can be combined
without having equal numbers of pixels or even common format. Vector
graphics can also be invoked for spline curves and text. All of this hap-
pens with the user only peripherally aware that these di�erences exist in
the various image data sets. The same applies to volumes. We should
be able to manipulate, combine, and create volume data regardless of the
procedural or discrete character of each volumetric object.

Resolution independent volume manipulation is a good thing for several
reasons:

Performance Trade-O�s
Some volumetric algorithms have many computational steps. If we have
access only to discrete volumetric data, then each of these steps requires
allocating memory for the results. In some cases the algorithm lets you op-
timize this so that memory can be reused, but in other cases the algorithm
may require that multiple sets of discrete data be available in memory.
This can be a severe constraint on the size of volumetric problem that can
be tackled. The alternative o�ered by resolution independence is that the
computational aspects are divorced from the data storage. Consequently,
an arbitrary collection of computational steps can be implemented pro-
cedurally and evaluated numerically without storing the results of each
individual step in discrete samples. Only the outcome of the collection
need be sampled into discrete data, and only if the task at hand required
it. This is e�ectively a trade-o� of memory versus computational time,
and there can be situations in which caching the computation at one or
more steps has better overall performance. Resolution independence al-
lows for all options, mixing procedural steps with discretely sampled steps
to achieve the best overall performance, balancing memory and compu-
tational time freely. This performance trade-o� is discussed in detail for
the particular case of gridless advection and Semi-Lagrangian Mapping
(SELMA) in chapters 7 and 8.

Targeted grid usage
Manipulation of �elds that are gridded does not automatically generate
gridded results. The user has to explicitly call for sampling and caching
of the the �eld into a grid. While this means extra e�ort when gridding is
desired, it is a bene�t because the user has full control over when grids are
invoked, and even what type of gridding is used. This targeting of when
data is sampled is illustrated by Semi-Lagrangian Mapping (SELMA),
which solves performance problems encountered in gridless advection by
a judicious choice of when and how to sample a mapping function onto
a grid. This same reasoning applies to other forms of discretized data
sampling as well.

Procedural high resolution
There are many procedural algorithms that enhance the visual detail of
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volumetric data. One example of this is gridless advection, discussed in
chapter 7. This increased detail is produced whether the original data
is discrete or procedural. So much detail can be generated that it can
become di�cult to properly render it in a raymarch.

Cleaner coding of algorithms
When data is gridded or discretized, there are parameters involved that
describe the discrete environment (cell size, number of points, location
of grid, etc.). Manipulation of volume data just in terms of �elds does
not require invoking those parameters, and so allows for simpli�ed code
structure. Algorithms are developed and implemented without worrying
about the concepts related to what format the data is in. For example, the
Felt codes for warping �elds and fracturing geometry in chapters 4 and
5 are completely ignorant of any notion that the input data is discretized,
and make no accamodations for such.

Calculations only where/when needed
Suppose you have a shot with the camera moving past a large volumetric
element (or the element moving past the camera), and the element itself
is animating. There may also be hard objects inside the volume that hide
regions from view. You might handle this by generating all of the data on a
grid for each frame. Or you might have a procedure for �guring out ahead
of time which grid points will not be visible to the camera and avoid
doing calculations on them. In the resolution independent procedures
discussed here neither of those approaches is needed, because calculations
are executed only at locations in space (on grid points or not) and at times
in the processing at which actual values for the �eld are needed. In this
case, a raymarch render queries density and color, �eld calculations are
executed only at the locations of those queries at the time of each query.

In the remaining chapters, resolution independence is used as an integral
part of each of the scripting examples discussed.
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Chapter 3

Cloud Modeling

Natural looking clouds are really hard to model in computer graphics. Some
of the reasons for it are physics-based: there is a broad collection of physical
phenomena that are simultaneously important in the process of cloud formation
and evolution - thermodynamics, radiative transfer, 
uid dynamics, boundary
layer conditions, global weather patterns, surface tension on water droplets, the
wet chemistry of water droplets nucleating on atmospheric particulates, conden-
sation and rain, ice formation, the bulk optics of microscopic water droplets and
ice crystals, and more. There are also reasons related to the application: if you
need to model the volumetric density and optics of clouds in 3D for production
purposes, it usually means you need to model an entire cloud over distances
of hundreds of meters to kilometers, but resolve centimeter-sized detail within
it. Putting together a coherent 3D spatial structure than covers eight orders of
magnitude in scale is not a straightforward proposition. Real clouds exhibit a
variety of spatial patterns across those scales, some of them statistical in char-
acter and some more (
uid) dynamical. For production, we need tools that can
mix all of that together while being controllable from point-to-point in space.

Volume modeling methods have developed su�ciently to take on this task.
Levelsets and implicit surfaces provide a powerful and 
exible description of
complex shapes. The pyroclastic displacement method of Kaplan[2] captures
some of the basic cauli
ower-like structure in cumulous cloud systems. Gridless
advection (chapter 7) generates 
uid and wispy �laments around cloud bound-
aries. Procedural modeling with systems like Felt let us combine these with
additional algorithms to produce enormous and complex cloud systems with
arbitrary spatial resolution.

The algorithms presented in this chapter were used for the production of
visual e�ects in the �lm The A-Team at Rhythm and Hues Studios. We begin
with a look at some photos of cumulous clouds and a description of interesting
features that we want the algorithms to incorporate.

11



12 CHAPTER 3. CLOUD MODELING

3.1 Cumulous cloud structure of interest

Figure 3.1 shows two photographs of strong cumulous cloud systems viewed from
the air. The top photo shows a much larger cloud system than the bottom one.
There are several features of interest in the photos that we want to highlight:

Clustering
Cumulous clouds look something like cauli
ower in that they are bumpy,
with a seemingly noisy distribution of the bumpiness across the cloud.
This sort of appearance is achievable by a pyroclastic displacement of the
cloud surface using Perlin or some other spatially smooth noise function.

Layering
The bumpiness is mutlilayered, with small bumps on top of large bumps.
Pyroclastic displacement does not quite achieve this look by itself, but
iterating displacements creates this layering, i.e., applying smaller scale
displacements on top of larger ones.

Smooth valleys The deeper creases, or valleys, in a cumulous cloud appear
to be smooth, without the layering of displacements that appears higher
up on the bumps. The iterated displacements must be controllable so
that displacements can be suppressed in the valleys, with controls on the
magnitude of this behavior.

Advected material Despite the hard-edge appearance of many cumulous clouds,
as they evolve the hardness gives way to a more feathered look because of
advection of cloud material by turbulent wind. This advection occurs at
di�erent times and with di�erent strengths within the cloud.

Spatial mixing All of the above features occur to variable degree throughout
the cloud system, so that some parts of the cloud may have many layers
of bumps while others are relatively smooth, and yet others are di�used
from advection. The cloud modeling system needs to be able to mix all of
these features at any position within a cloud to suit the requirements of
the production.

Each of these features is discussed below. The algorithm is based on represent-
ing the overall shape of the cloud as a levelset, pyroclastically displacing that
levelset multiple times, converting the levelset values into cloud density, then
gridlessly advecting the density. Along with those major steps, all of the con-
trol parameters are spatially adjustable in the Felt implementation because the
controls are scalar�elds and vector�elds that are generated from point attributes
on the undisplaced cloud geometry.

3.2 Levelset description of a cloud

Cloud modeling begins with a base shape for the smooth shape of the cloud.
This can be in the form of simple polygonal geometry, but with su�cient quality
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Figure 3.1: Aerial photos of cumulous clouds. Structures of interest: the
pyroclastic-like buildup of clusters; the relatively smooth \valleys" between the
clusters; dark fringes along the edges of clusters; bright bands of light in the
\valleys"; softened regions due to advection of material.
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that it can be turned into a scalar�eld known as a levelset. The levelset of the
base cloud, `base(x) is a signed distance function, with positive values inside the
geometry and negative values outside. The spatial contour `base(x) = 0 is a
surface corresponding to the model geometry for the cloud.

The volumetric density of the cloud can be obtained at any time by using a
mask function to generate uniform density inside the cloud:

�base(x) = mask (`base(x)) =

�
1 `base(x) > 0
0 `base(x) � 0

(3.1)

Of course, clouds are not uniformly dense in their interiors. For our purposes
here, we will ignore that and generate clouds with uniform density in their
interior. This limitation is readily removed by adding spatially coherent noise
to the interior if desired.

3.3 Layers of pyroclastic displacement

The clustering feature has been successfully modeled in the past by Kaplan[2]
using a Perlin noise �eld to displace the surface of a sphere. This e�ect is
also refered to as a pyroclastic appearance. Figure 3.2 shows two examples of
a spherical volume with the surface displaced by sampling Perlin noise on its
surface. By adjusting the number of octaves, frequency, roughness, etc, a variety
of very e�ective structures can be produced. But for cloud modeling, we need
to extend this approach in two ways. First, we need to be able to apply these
displacements to arbitrary closed shapes, not just spheres, so that we can model
base shapes that have complex structure initially and apply the displacements
directly to those shapes. Second, to accamodate the layering feature in clouds,
we need to be able to apply multiple layers of displacement noise in an iterative
way. Both of these requirements can be satis�ed by one process, in which the
surface is represented by a levelset description. Applying displacements amounts
to generating a new levelset �eld, and that can be iterated as many times as
desired.

We describe the levelset approach based on the spherical example, then
launch into more complex base shapes.

3.3.1 Displacement of a sphere

The algorithm for calculating the density of a pyroclastic sphere at any point
in space is as follows:

1. Calculate the distance from the point of interest x to the center of the
sphere xsphere:

d = jx� xspherej (3.2)

2. Compare d to the displacement bound dbound of the Perlin noise and the
radius R of the sphere. If d < R, x is de�nitely inside the pyroclastic
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Figure 3.2: Examples of classic pyroclastically displaced spheres of density.

sphere, and the density is 1. If d > R + dbound, then the point x is
de�nitely outside of the pyroclastic sphere, density is 0.

3. If d�R < dbound, then compute the displacement: The point on the unit
sphere surface is n = (x�xsphere)=d. The displacement is r = jPerlin(n)j.
If d � R < r, the point x is inside the pyroclastic sphere and the density
it 1. Otherwise, the density is 0. The absolute value of the noise is used
because it produces sharply cut "canyons" and smoothly rounded "peaks".

This algorithm is particularly clean because the base shape is a sphere,
for which the mathematics is particularly simple. More general base shapes
would require some method of moving from a point in space x to a suitable
corresponding point on the base shape, xbase in order to sample the displacement
noise on the surface of the shape.

Layering provides an additional complication. For a sphere, you might imag-
ine applying multiple layers of displacements by simply adding multiple displace-
ments by ri = Perlini(n) for multiple choices of Perlin noise. But that would
not really be su�cient, because successive layers should be applied by sampling
the noise on the surface of the previously generated displaced surface, using the
displaced normal to the base shape. For layering, the noise sampling of each
layer should be on the surface displaced by previous layer(s), and the displace-
ment direction should be the normal to the previously displaced surface. This
leads to the same issue that the base shape for a displacement may be very
complex.

Both of these issues are solved by expressing the algorithm in terms of lev-
elsets.
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3.3.2 Displacement of a levelset

Suppose you want to displace a shape that is represented by the levelset `(x).
The displacement will be based on the noise function N(x) which is some ar-
bitrary scalar �eld. Note that the �eld `+N is also a levelset for some shape,
but that shape need not resemble the original one in any way because the sum
�eld can introduce new surface regions that are unrelated to the `. For the
pyroclastic style of displacement, we need to displace only by the value of the
noise function on the surface of `. The procedure is:

1. At position x, �nd the corresponding point x`(x) on the surface of `. This
is generally accomplished by an iterative march toward the surface:

xn+1` = xn` � `(xn` )
r`(xn` )
jr`(xn` )j

(3.3)

for which typically 3-5 iterations are needed.

2. Evaluate the noise at the surface: N(x`). Note that many locations x in
general map to the same location x` on the surface, and so have the same
surface noise.

3. Create a new levelset �eld based on displacement by the noise at the
surface:

`N (x) = `(x) + jN(x`(x))j (3.4)

This levelset-based approach produces e�ectively the same algorithm as the one
for the sphere when the levelset is de�ned as `(x) = R� jx� xspherej, although
it is not as computationally e�cient for that special case.

This is a very powerful general algorithm that works for problems with huge
ranges of spatial scales. It also provides the solution for layering. Suppose you
want to apply M layers of displacement, with Ni(x); i = 1; : : : ;M being the
displacement �elds. Then we can apply the iteration

`Ni+1
(x) = `Ni

(x) +
��Ni+1

�
x`Ni (x)

��� (3.5)

to arrive at the �nal displaced levelset `NM
(x).

In terms of Felt code, this multilayer displacement algorithm is imple-
mented in a function called cumulo, with inputs consisting of the base levelset,
and an array of displacement scalar�elds, and implements a loop

func scalar�eld cumulo( scalar�eld base, scalar�eld[] displacementArray,
int iterations )
f

scalar�eld out = base;
for( int i=0; i<size(displacementArray);i++ )
f

vector�eld surfaceX = levelsetsurface( out, iterations );
out += compose(abs(displacementArray[i]), surfaceX );
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g
return out;

g

The Felt function levelsetsurface( scalar�eld levelset, int iterations ) generates
a vector�eld that performs the iterations in equation 3.3 for the input levelset
scalar�eld, and compose(A,B) evaluates the �eld A at the locations in the vec-
tor�eld B.

Figure 3.3 illustrates the e�ect of layering pyroclastic displacements. This
�gure displays the geometry generated from the levelset data after layering has
been applied. In this example, successive layers contain higher frequency noise.

3.3.3 Layering strategy

Just as important as the functionality to add layers of displacement, is the strat-
egy for generating and applying those layers to achieve maximum e�ciency and
control the look of the layers. While equation 3.5 is implemented procedurally
in the cumulo Felt code, a purely procedural implementation is not always the
most e�cient strategy for using cumulo. Judicious choices for when to sam-
ple and what data to sample onto a grid improve the speed without sacri�cing
quality.

In this subsection we look at the process of creating the displacement noise
for each layer, and schemes for sampling intermediate levelset data onto grids
to improve e�ciency.

Fractal layering

One way to set up the layers of displacement is by analogy with fractal summed
perlin noise. For Noctaves, a base frequency f , frequency jump fjump, and
amplitude roughness r, the fractal sum of a noise �eld PN(x) is

FS(x) =

Noctaves�1X
i=0

ri PN
�
x f f ijump

�
(3.6)

This kind of fractal scaling is a natural-looking type of operation for generating
spatial detail. It is also very 
exible and easy to apply. Applying this to layering,
each layer can be a scaled version of a noise function, i.e. each layer corresponds
to one of the terms in the fractal sum:

Ni(x) = ri FS
�
x f f ijump

�
(3.7)

In terms of Felt code, we have:

// Function to generate and array of displacement layers
func scalar�eld[] NoiseLayers( int nbGenerations, scalar�eld scale, scalar�eld
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Figure 3.3: Illustration of layering of pyroclastic displacements. From top to
bottom: No displacements; one layer of displacements; two layers; three layers.
The displacements are applied to the levelset representation of the bunny, and
the displaced bunny was converted into geometry for display.
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fjump, scalar�eld freq, scalar�eld rough )
f

scalar�eld[] layerArray;
// Choose a noise function as a �eld, e.g. Perlin, Worley, etc.
scalar�eld noise = favoriteNoiseField();
scalar�eld freqScale = freq;
scalar�eld ampScale = scalar�eld(1.0);
for( int i=0;i<nbGenerations;i++ )
f
layerArray[i] = compose( noise, identity()*freqScale ) * ampScale;
// Fractal scaling of frequency and amplitude
freqScale *= fjump;
ampScale *= rough;

g
return layerArray;

g

This Felt code is more general than equation 3.7 because the fractal parameters
fjump, freq, rough in the code are scalar�elds. By setting these parameters
up as scalar�elds, we have spatially varying control of the character of the
displacement layers.

Selectively sampling the levelset into grids

The purely procedural layering process embodied in equation 3.5 is compact,

exible, and powerful, but can also be relatively slow. We can exploit the fractal
layer approach to speed up the levelset evaluation. The crucial property here
is that the each fractal layer represents a range of spatial scales that is higher
frequency that the previous layers. Conversely, an early layer has relatively
large scale features. This implies that sampling the levelset into a grid that has
su�cient resolution to capture the spatial features of one layer still allows sub-
sequent layers to apply higher spatial detail displacements. Suppose we know
that layer m has smallest scale �xm. We could build a grid with �xm as the
spacing of grid points, sample the levelset `m into that grid, and replace `m
with the gridded version. This replacement would be relatively harmless, but
evaluating `m in subsequent processing would be much faster because the eval-
uation amount to interpolated sampling of the gridded data. This process can
be applied at each level, so that the layered levelset equation 3.5 is augmented
with grid sampling, and the Felt code is augmented to

func scalar�eld cumulo( scalar�eld base, scalar�eld[] displacementArray,
int iterations, domain[] doms )
f

scalar�eld out = base;
for( int i=0; i<size(displacementArray);i++ )
f
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vector�eld surfaceX = levelsetsurface( out, iterations );
out += compose(abs(displacementArray[i]), surfaceX );
// Sample the levelset to a cache.
// Each cache has a di�erent resolution in its domain.
scalarcache outCache( doms[i] );
cachewrite(outCache, out);
out = cacheread(outCache);

g
return out;

g

This change can increase the speed of evaluating the levelset dramatically,
and if the domains are chosen reasonably there need be no signi�cant loss of
detail. It also provides a way to save the levelset to disk so that it can be
generated once and reused.

3.4 Clearing Noise from Canyons

Within the "canyons" in the reference clouds in �gure 3.1 the amount of �nescale
noisy displacement is much less than around the "peaks" of the cloud pyroclas-
tic displacements. We need a method of suppressing displacements within those
valleys. It would be very tedious if we had to analyze the structure of the mul-
tiply displaced levelset to identify the canyons for subsequent noise suppression.
Fortunately there is a much simpler way of do it that can be applied e�ciently.

If we look at the noise function in equation 3.5, the clearing can happen if we
modulate that expression by a factor that goes to zero in the regions where all
of the previous layers of noise also go to zero. At the same time, away from the
zero-points of the previous layers, we want this layer to have its own behavior
driven by its noise function. Both of these goals are accomplished modifying Ni

to a cleared version N c
i as

N c
i (x) = Ni(x)

�
clamp

�
N c
i�1(x)

Q
; 0; 1

� �billow

(3.8)

In this form, the factor Q is a scaling function that is dependent on the noise
type. The exponent billow controls the amount of clearing that happens. This
additional factor modulates the current layer of noise by a clamped value of the
previous layer, reduces the current layer to zero in regions where the previous
layer is zero. Once the previous layer of noise reaches the value Q, the clamp
saturates at 1 and the current layer is just the noise prescribed for it. Figure
3.4 shows a wedge of billow settings, visualized after converting the levelset into
geometry. These same results are shown as volume renders in �gure 3.5. Note
that for large billow values the displacements are almost completely cleared
over most of the volume, with the exception of narrow regions at the peak of
displacement.
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Figure 3.4: Illustration of clearing of displacements in the valleys using the
billow parameter. The bottom of �gure 3.3 illustrates the three layers of dis-
placement with no billow applied. The noise is FFT-based, and Q = 1. From
top to bottom: billow=0.33, 0.5, 0.67, 1, 2.
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Figure 3.5: Volume renders with various values of billow. Left to right, top to
bottom: billow=0.33, 0.5, 0.67, 1, 2.
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3.5 Advection

Another tool for cloud modeling is gridless advection, which is described in de-
tail in chapter 7. Even the hardest-edged cumulous cloud evolves over time to
have ragged boundaries and softened edges due to advection of the cloud mate-
rial in the turbulent velocity �eld in the cloud's environment. We can emulate
that e�ect by generating a noisy velocity �eld and applying gridless advection at
render time. The gridless advection also produces very �nely detailed structure
in the cloud, as seen in the foreground clouds in �gure 3.6 from the produc-
tion work on the �lm The A-Team. In fact, the detail is su�cient that the
hard-edged cumulo structure could be modeled using layered pyroclastic dis-
placements down to scales of 1 meter, then gridless advection carried the detail
down to the �nest resolved structure ( about 1 cm ) rendered in the production.

A suitable noisy velocity �eld can be built from Perlin noise by evaluating
the noise at three slightly o�set positions, i.e.

unoise(x) = (Perlin(x); Perlin(x+�x1); Perlin(x+�x2)) (3.9)

where �xi are two o�sets chosen for e�ect. This velocity �eld is not incom-
pressible and so might not be adequate for some applications. But for gridlessly
advecting cumulous cloud models, it seems to be su�cient. Figure 3.7 shows
gridlessly advected cloud for several magnitudes of the noisy velocity �eld. In
the strongest one you can clearly see portions of cloud separated from the main
body. A wide variety of looks can be created by adjusting the setting of each
octave of the noisy velocity �eld.

3.6 Spatial control of parameters

Clouds have extreme variations in their structure, even within a single cloud
system or cumulous cluster. Even if the basic structural elements were limited
to just the ones we have built in this chapter, the parametric dependence varies
dramatically from region to region in the cloud. To accamodate this variability,
we implemented the Felt script for the noise layers using scalar�elds for the
parameters. This �eld-based parameterization can also be extended to gener-
ating the advection velocity and canyon clearing billow parameter. Figure 3.8
shows a bunny-shaped cloud with uniform density inside, and spatially varying
amounts of pyroclastic displacement of the volume. The control for this was
several procedural �elds for ramps and local on-switches to precisely isolate the
regions and apply di�erent parameter settings.

But given this extension, we also need a mechanism for creating these �elds
for the basic parameters. An approach that has been successful uses point
attributes attached to the base geometry of the cloud shape. The values of each
of the parameters are encoded in the point attributes. Simple �elds of these
attribute values are created by adding a spherical volume of the attribute value
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Figure 3.6: Clouds rendered for the �lm The A-Team using gridless advection
to make their edges more realistic. Top: foreground clouds without advection;
bottom: foreground clouds after gridless advection.
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Figure 3.7: Volume renders with various setting of advection, for billow=1.
Top to bottom: No advection, medium advection, strong advection.
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Figure 3.8: Volumetric bunny with spatial control over the pyroclastic displace-
ment.
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to a gridded cache enclosing the cloud. This allows simple control based on
surface properties.
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Chapter 4

Warping Fields

Here we explore a procedure for transfering attributes from one shape to
another. This problem is not volumetric per se, but a very nice solution involving
levelsets is presented here.

Suppose you have a complex geometric object with vertices xOi ; i = 1; : : : NO

on its surface. For rendering or other purposes you would like to have a vari-
ety of attribute values attached to each vertex, but because of its complexity,
building a smooth distribution of values by hand is a tedious process. A con-
trollable method to generate values would be handy. As an input, suppose that
there is a reference shape with vertices xri ; i = 1; : : : Nr and attribute values
already mapped across its surface. The goal then is to �nd a way to transfer
the attributes from the reference surface to the object surface, even if the two
surfaces have wildly di�erent topology. The approach we illustrate here gener-
ates a smooth function X(x) which warps the reference shape into the object
shape. However, this is not a map from the vertices of the reference to the
vertices of the object, but a mapping between the levelset representations of
the two surfaces. This Nacelle algorithm (it generates warp �elds) works well
even when the topology of the two shapes is very di�erent. In the next section
the mathematical formulation of the algorithm is shown, and after that a short
Felt script for it.

4.1 Nacelle Algorithm

The algorithm assumes that the two shapes involved can be converted into
levelset representations. This means that there are two levelsets, one for the
reference shape Lr(x) and one for the object shape LO(x). These two levelsets
are signed distance functions that are smooth (i.e. C2). The nacelle algorithm
postulates that there is a warping function X(x) which maps between the two
levelsets:

LO(x) = Lr(X(x)) (4.1)

29
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The goal of the algorithm is an iterative procedure for approximating the �eld
X. Each iteration generates the approximate warping �eld Xn(x). The natural
choice for the initial �eld is X0(x) = x.

Given the warp �eld Xn from the n-th iteration, we compute the (n+1)-th
approximation by looking at an error term u(x) with X = Xn+u. Putting this
into the equation 4.1 gives

LO(x) = Lr(Xn(x) + u(x)) (4.2)

Expanding this to quadratic order in Taylor series gives

LO(x)�Lr (Xn(x)) = u(x) �rLr(Xn(x))+
1

2

X
ij

ui(x)uj(x)
@2

@xi@xj
Lr(Xn(x))

(4.3)
De�ne matrix M as

Mij(x) =
@2

@xi@xj
Lr(x) (4.4)

so the Taylor expansion up to quadratic is

LO(x)� Lr(Xn(x)) = u(x) � rLr(Xn(x)) +
1

2
u(x) �M(Xn(x)) � u(x) (4.5)

Setting u(x) = A(x) rLr(Xn), we get the quadratic equation for the scalar
�eld A(x)

LO(x)� Lr(Xn(x))

jrLr(Xn(x))j2
= A(x) +

1

2
A2(x)

rLr(Xn(x)) �M(Xn(x)) � rLr(Xn(x))

jrLr(Xn(x))j2
(4.6)

which has the solution

A(x) =
1

�

n
�1 + [1 + 2��]

1=2
o

(4.7)

with the abbreviations

� =
LO(x)� Lr(Xn(x))

jrLr(Xn(x))j2
(4.8)

� =
rLr(Xn(x)) �M(Xn(x)) � rLr(Xn(x))

jrLr(Xn(x))j2
(4.9)

Then the next approximation is

Xn+1(x) = Xn(x) + A(x) rLr(Xn) (4.10)

In practice, this scheme converges in 1-3 iterations even for complex warps
and topology di�erences.
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4.2 Numerical implementation

Numerical implementation of the nacelle algorithm requires code for equations
4.7 { 4.10. These four equations are implemented in the following six lines (plus
comments) of Felt script:

// De�nitions
vector�eld B = compose(grad(Lr), Xn);
matrix�eld M = compose(grad(grad(L1)), Xn);
// Equation 4.8
scalar�eld del = (Lo - compose(Lr, Xn))/(B*B);
// Equation 4.9
scalar�eld Gamma = (B*M*B)/(B*B);
// Equation 4.7
scalar�eld A = (scalar�eld(-1) + (scalar�eld(1) + 2.0*del*Gamma)^0.5)/Gamma;
// Equation 4.10
vector�eld Xnplus1 = Xn + A*B;

The compose function evaluates the �eld in the �rst argument at the location
of the vector�eld in the second argument.

There are ways to speed up this implementation, at the cost of some ac-
curacy. For example, the quantities B*B and B*M*B are scalar�elds that are
computationally expensive. Signi�cant speed improvements come from sam-
pling them into grids and using the gridded scalar�elds in their place. The
modi�ed Felt script to accomplish that is

// De�nitions
vector�eld B = compose(grad(Lr), Xn);
matrix�eld M = compose(grad(grad(L1)), Xn);
// ============NEW CODE =====================
// Create scalar caches over some domain \dom"
scalarcache BBc( dom );
scalarcache BMBc( dom );
// Sample B*B and B*M*B onto grids
cachewrite(BBc, B*B);
cachewrite(BMBc, B*M*B);
// Replace �elds with gridded versions
scalar�eld BB = cacheread(BBc);
scalar�eld BMB = cacheread(BMBc);
// ============ END NEW CODE =================
// Equation 4.8
scalar�eld del = (Lo - compose(Lr, Xn))/BB;
// Equation 4.9
scalar�eld Gamma = BMB/BB;
// Equation 4.7
scalar�eld A = (scalar�eld(-1) + (scalar�eld(1) + 2.0*del*Gamma)^0.5)/Gamma;
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// Equation 4.10
vector�eld Xnplus1 = Xn + A*B;

4.3 Attribute transfer

The mapping function X(x) allows us to do a number of things:

Warp Levelsets
The object levelset is now approximated by Lr(X(x)). For example, �gure
4.1(a) shows a complex object shape consisting of two linked torii and a
cone, with the cone intersecting one of the torii. The reference shape in
�gure 4.1(b) is a sphere. Both of these shapes have levelset representa-
tions, so that the mapping function can be generated. After one iteration,
the levelset �eld Lr(X1(x)) was used to generate the geometry shown in
�gure 4.1(c), which is essentially identical to the input object shape. In
testing with other complex shapes, no more than �ve iterations has ever
been needed to get highly accurate convergence of algorithm.

Attribute transfer
The mapping function provides a method to perform attribute transfer
from the reference shape to the object shape. Using the vertices xOi ; i =
1; : : : NO on the surface of the object shape, the corresponding mapped
points

xMi � X(xOi ) (4.11)

are points that lie on the surface of the reference shape. Assuming the
reference shape has attributes attached to its vertices, and a method of
interpolating the attributes to points on the surface between the vertices,
the reference shape attributes can be sampled at the locations xMi ; i =
1; : : : NO and assigned to the corresponding vertices on the object shape.
Figure 4.2 shows the object shape with a texture pattern mapped onto it.
The texture coordinates were transfered from the reference shape.
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(a)

(b)

(c)

Figure 4.1: Warping of a reference sphere into a complex shape (cone and two
torii). (a) Object shape; (b) Reference sphere; (c) Warp shape output from 1
iteration.
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Figure 4.2: Texture mapping of the object shape by transfering texture coordi-
nates from the reference shape.



Chapter 5

Cutting Up Models

Levelsets and implicit functions in general are particularly excellent, pow-
erful tools for cutting up geometry into many pieces. This is very useful for
models of fracture, surgery, and explosions. The technique was shown in �lm
application by Museth[3]. Here we introduce the theory in steps by modeling
knives in terms of implicit functions, then cut geometry with a single knife, two
knives, and arbitrarily many knives.

The essential reason that implicit function based cutting works is that im-
plicit functions separate the world into two (non-contiguous) regions: those for
which the implicit function knife is positive, and those for which the implict
function knife is negative. Cutting takes place by separating the geometry into
the parts that correspond to those two regions. To do this, the geometry must
be represented by a levelset, so we assume that has already been done and it is
called `0(x).

5.1 Levelset knives

A knife for our purposes is simply a levelset or implicit function. It can be
procedural or grid-based. The essential feature is that, within the volume of
the geometry you wish to cut, the knife has both positive and negative regions.
The zero-value surface(s) of the knife are the knife-edge, or boundary between
the cuts in the geometry.

For example, a simple straight edge is the signed distance function of a 
at
plane:

Kstraight edge(x) = (x� xP ) � n (5.1)

for a plane with normal n and xP on the surface of the plane.

35
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5.2 Single cut

A knife K(x) separates the geometry `0(x) into two regions. Because we are
using levelsets, the feature that distinquishes the two regions is their signs:
positive in one region, negative in the other. Note that the product function

F (x) = `0(x) K(x) (5.2)

has positive and negative regions, but does not quite sort the regions the way
we would like. This product actually de�nes four regions:

1. `0 > 0 and K > 0

2. `0 < 0 and K < 0

3. `0 < 0 and K > 0

4. `0 > 0 and K < 0

and lumps together regions 1 and 2, and regions 3 and 4. What we actually
want for a successful cut is to get only regions inside the geometry, separated
into the two sides of the knife.

A useful tool in building this is the mask function, which is essentially a
Heaviside step function for scalar�elds. For a scalar �eld f, the mask is a �eld
with the value of 0 or 1:

mask(f)(x) =

�
1 f(x) � 0
0 f(x) < 0

(5.3)

With the mask function, we can build two �elds that identify the inside and
outside of the levelset geometry l0:

scalar�eld inside = mask( l0 );
scalar�eld outside = scalar�eld(1.0) - mask( l0 );

The next thing to realize is that we only want the knife to cut the levelset inside
the geometry: there is no need to cut when outside the geometry. A good way
to accomplish this is by the product of the scalar�eld for the knife and the inside
function:

scalar�eld insideKnife = inside * knife;

Now we need to generate a levelset function that is una�ected by the knife
outside of the geometry, but is cut by the knife inside. This scalar�eld does
that:

scalar�eld cutInside = ( outside + inside*knife ) * l0;

Outside of the geometry, this �eld has the value of the levelset l0. Inside the
geometry, it has the value of knife*l0. So when interpreted as a levelset, this
�eld identi�es the part of the geometry that is also inside the knife, i.e. the
positive regions of the knife. The complementary �eld
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scalar�eld cutOutside = ( outside - inside*knife ) * l0;

similary generates geometry that is inside the original and outside of the knife.
So cutInside and cutOutside are the two regions of the original geometry that
you get when you cut it with the knife. You can then recover the geometry of
the cut shapes by converting the levelset functions back into geometry:

shape cutInsideShape = ls2shape( cutInside );
shape cutOutsideShape = ls2shape( cutOutside );

You should recognize that the two geometric structures, cutInsideShape and
cutOutsideShape are not necessarily simple, connected shapes. Depending on
the structure of the original geometry, and the shape and positioning of the
knife function, each output shape may have many disconnected portions, or
even be empty.

5.3 Multiple cuts

Suppose we want to cut geometry with more than one knife. The process is an
iteration: the cut with the �rst knife produces the two levelsets cutInsideShape
and cutOutsideShape. Then cut each of those with the second knife, producing
two for each of those, for a total of four levelsets . Each cut doubles the number
of levelsets, so for N knives, you generate 2N levelsets, each for a collection of
pieces. Figure 5.1 shows the result of cutting a sphere with 5 
at blades, with
the orientation and location of each knife randomly chosen. While 5 blades
produce 25 = 32 levelsets, the output actually contains only 22 actual pieces.
Some of levelsets are empty of geometry.

The question might arise as to whether the results depend on the order in
which knives are applied. Mathematically, the results are identical no matter
what order is used.

For computational e�ciency however, it could be useful to examine the out-
put of each cut to see if there are levelsets that are actually empty of pieces
of the geometry. If empty levelsets are found, they can be discarded from fur-
ther cutting, possibly improving speed and memory usage. In this context of
e�ciency, the order in which knives are applied may impact the performance.
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Figure 5.1: A sphere carved into 22 pieces using 5 randomly placed and oriented

at blades. The top shows the sphere with the cuts visible. The bottom is an
expanded view of the pieces.



Chapter 6

Fluid Dynamics

Fluid dynamics is generally associated with high performance computing,
even in graphics applications. Solving the Navier-Stokes equations for incom-
pressible 
ow is no small task, and computationally expensive. There are a
variety of solution methodologies, which produce visually di�erent 
ows. The
stability of the various methodologies also varies widely. The two solution meth-
ods known as Semi-Lagrangian advection and FLIP advection are uncondition-
ally stable, and so are very desireable approaches for some graphics-oriented
simulation problems. QUICK is conditionally stable, but has minimal numeri-
cal viscosity and even for small grids generates remarkably detailed 
ow patterns
that persist and are desireable for some graphics simulation problems as well.

In terms of volumetric scripting, it is possible to create simple scripts that
e�ciently solve the incompressible Navier-Stokes equations. Additionally, the
ability to choose when and where to represent a �eld as gridded data or not can
have a signi�cant impact on the character of the simulation. In this chapter we
look at simple solution methods, based on Semi-Lagrangian advection and gen-
eralizations, and introduce the concept of gridless advection. The next chapter
examines gridless advection in more detail.

6.1 Navier-Stokes solvers

The basic simulation situation we look at in this chapter is the 
ow of a bouyant
gas. The gas has a velocity �eld u(x; t) which initially we set to 0. The density
of the gas �(x; t) is lighter than the surrounding static medium, and so there
is a gravitational force upward proportional to the density. The equations of
motion are

@�

@t
+ u � � = S(x; t) (6.1)

@u

@t
+ u � ru+rp = �g � (6.2)

r � u = 0 (6.3)
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A Semi-Lagrangian style of solver for this problem splits the problem into
multiple steps:

1. Advect the density with the current velocity

�(x; t+�t) = �(x� u(x; t) �t; t) + S(x; t) �t (6.4)

2. Advect the velocity and add external forces

u(x; t+�t) = u(x� u(x; t) �t; t)� g �(x; t+�t) �t (6.5)

3. Project out the divergent part of the velocity, using FFTs, conjugate gra-
dient, or multigrid algorithms

These steps can be reproduced in a Felt script as the following:

// Step 1, equation 6.4
density = advect( density, velocity, dt );
// Write density to cache
cachewrite( density Cache, density );
// Set density to the value in the cache
density = cacheread( density Cache );
// Step 2, equation 6.5
velocity = advect( velocity, velocity, dt ) - dt*gravity*density ;
// Step 3, �tdivfree uses FFTs to remove the divergent part of the �eld
velocity = �tdivfree( velocity, region );

The function advect evaluates the �rst argument at a position displaced by the
velocity �eld (the second argument) and time step dt (the third argument).
There is no need to explicitly write the velocity �eld to a cache after its self-
advection because the function �tdivfree returns a velocity �eld that has been
sampled onto a grid.

6.1.1 Hot and Cold simulation scenario

A variation on the bouyant 
ow scenario is shown in �gure 6.1. There are two
density �elds, one for hot gas with a red color, and one for cold gas with a blue
color. The cold gas falls from the top, and the hot gas rises from the bottom.
Both are continually fed new density at their point of origin. The two gases
collide in the center and displace each other as shown. The Felt script is

hot = advect( hot, velocity, dt ) + inject(hotpoint, dt );
// Write hot density to cache
scalarcache hotCache(region);
cachewrite( hotCache, hot );
// Set hot density to the value in the cache
hot = cacheread( hotCache );
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cold = advect( cold, velocity, dt ) + inject(coldpoint, dt);
// Write cold density to cache
scalarcache coldCache(region);
cachewrite( coldCache, cold );
// Set cold density to the value in the cache
cold = cacheread( coldCache );

velocity = advect( velocity, velocity, dt ) + dt*gravity*(cold-hot);
// �tdivfree uses FFTs to remove the divergent part of the �eld
velocity = �tdivfree( velocity, region );

The two densities force the velocity in opposite directions (hot rises, cold sinks).
We have also added a continuous injection of new density via the user-de�ned
function inject, de�ned to insert a solid sphere of density at a location speci�ed
by the �rst argument:

func scalar�eld inject( vector center, 
oat dt )
f

vector�eld spherecenter = identity() - vector�eld(center);
// Implicit function of a unit sphere centered at the input location
scalar�eld sphere = scalar�eld(1.0) - spherecenter*spherecenter;
// mask() function returns 0 outside implicit function, 1 inside
scalar�eld inject = mask(sphere);
return inject*dt;

g

The advection process used for this simulation example is Semi-Lagrangian
advection, which is highly dissipative because of the linear interpolation process.
As �gure 6.2 shows, the simulation produces a di�usive looking mix of the two
gases. A simulation with higher spatial resolution would produce a di�erent
spatial structure with more of a sense of vortical motion and �ner detail, but
still not avoid the di�usive mixing.

6.2 Removing the grids

The power of resolution independent scripting provides a new option, gridless
advection, which we introduce here and expand on in the next chapter. Because
of the procedural aspects of resolution independence, we can rebuild the script
for the hot/cold simulation, and remove the sampling of the densities onto grids.
Removing those steps, you are left with the code:

hot = advect( hot, velocity, dt ) + inject(hotpoint, dt );
cold = advect( cold, velocity, dt ) + inject(coldpoint, dt);
velocity = advect( velocity, velocity, dt ) + dt*gravity*(cold-hot);
// �tdivfree uses FFTs to remove the divergent part of the �eld
velocity = �tdivfree( velocity, region );
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Figure 6.1: Simulation sequence for hot and cold gases. The blue gas is injected
at the top and is cold, and so sinks. The red gas is injected at the bottom and
is hot, and so rises. The two gases collide and 
ow around each other. The grid
resolution for all quantities is 50� 50� 50.
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Figure 6.2: Frame of simulation of two gases. The blue gas is injected at the top
and is cold, and so sinks. The red gas is injected at the bottom and is hot, and
so rises. The two gases collide and 
ow around each other. The grid resolution
for all quantities is 50� 50� 50.
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What happens here is that the evolution of the densities over multiple time steps
is evaluated in a purely procedural processing chain. The history of velocity
�elds is implicitly retained and applied to advect the density through a series
of points along a path through the volume. This path-track happens every
time the value of the densities at the current frame are requested (e.g. by the
volume renderer or some other processing). The velocity continues to be sampled
onto a grid because the computation to remove the divergent portion of the
�eld requires sampling the velocity onto a grid. All of the existing algorithms
for removing divergence require a gridded sampling of the velocity, so there
is presently no method to avoid grids for the velocity �eld in this situation.
However, the densities in this simulation are never sampled onto a grid.

The hot/cold simulation produced by removing the gridding of the density
is shown in �gure 6.3, with a frame shown larger in �gure 6.4. The spatial
details and motion timing are dramatically di�erent, as seen in a side-by-side
comparison in �gure 6.5. Symmetries in the simulation scenario are better
preserved in the gridless implementation, and the �ngers of the 
ow contain
more vorticity (though not as much as possible, because gridding of the velocity
�eld continues to dissipate vorticity) and �ne �laments and sheets.

The downside of this simulation approach is that the memory grows linearly
with the number of frames, and the time spent evaluating the density grows
linearly with the number of frames. So there is a tradeo� to consider between
achieving �ne detail vs computational resources. This is also a tradeo� that
must be addressed in traditional high performance simulation, but the trends in
the tradeo� are di�erent: computational cost is essentially constant per frame in
traditional simulation, whereas gridless advection cost grows linearly per frame.
But traditional simulation has visual detail limited by the resolution of the
grid(s), and gridless advection generates much �ner detail.

6.3 Boundary Conditions

In addition to free-
owing 
uids, Felt scripting can also handle objects in a
simulation that obstruct the 
ow of the 
uid. This is handled very simply
by re
ecting the velocity about the normal of the object. Any objects can be
represented as a levelset, O(x), which we will take to be negative outside of
the object and positive inside. At the boundary and the interior of the object,
if the velocity of the 
uid points inward it should be re
ected back outward.
The outward pointing normal of the object is �rO, so the velocity should be
unchanged (1) at points outside the object (O(x) is negative), and (2) if the
component of velocity at the object is outward 
owing (i.e. u � rO < 0 ).
The mask() function in Felt provides the switching mechanism for testing and
acting on these conditions. When the 
ow has to be re
ected, the new velocity
is

ureflected = u � 2
(u � rO)
jrOj2 rO (6.6)

The Felt code for this is
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Figure 6.3: Sequence of frames of a simulation of two gases, in which the den-
sities evolve gridlessly. The blue gas is injected at the top and is cold, and
so sinks. The red gas is injected at the bottom and is hot, and so rises. The
two gases collide and 
ow around each other. The density is advected but not
sampled onto a grid, i.e. gridlessly advected in a procedural simulation process.
The grid resolution for velocity is 50� 50� 50.
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Figure 6.4: Frame of simulation of two gases, in which the densities evolve
gridlessly. The blue gas is injected at the top and is cold, and so sinks. The red
gas is injected at the bottom and is hot, and so rises. The two gases collide and

ow around each other. The density is advected but not sampled onto a grid,
i.e. gridlessly advected in a procedural simulation process. The grid resolution
for velocity is 50� 50� 50.
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Gridded Gridless

Figure 6.5: Simulation sequences with density gridded (left) and gridless (right).
The blue gas is injected at the top and is cold, and so sinks. The red gas is
injected at the bottom and is hot, and so rises. The two gases collide and 
ow
around each other. The grid resolution is 50� 50� 50.
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vector�eld normal = -grad(object)/sqrt( grad(object)*grad(object) );
scalar�eld normalU = velocity*normal;
velocity -= mask(normalU)*mask(object)*2.0*normalU*normal;

To illustrate the e�ect, �gure 6.6 shows a sequence of frames from a simulation
in which a bouyant gas is con�ned inside a box, and encounters a rectangular
slab that it must 
ow around. To capture detail, the density was handled with
gridless advection. The slab diverts the 
ow downward, where the density thins
as it spreads, and the bouyancy force weakens because of the thinner density.
The slab also generated vortices in the 
ow that persist for the entire simulation
time.

This volume logic is suitable to impose other boundary conditions as well.
For example, sticky boundaries re
ect only a fraction of the velocity

usticky = u � (1 + �)
(u � rO)
jrOj2 rO (6.7)

with 0 � � � 1 being the fraction of velocity retained.
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Figure 6.6: Time series of a simulation of bouyant 
ow (green) con�ned within
a box (blue boundary) and 
owing around a slab obstacle (red). Frames 11, 29,
74, 124, 200 from a 200 frame simulation.
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Chapter 7

Gridless Advection

In this chapter we examine the bene�ts and costs of gridless advection in
more detail. For some situations there is only a minor cost with very worth-
while improvements in image quality. In the extreme, gridless advection may
be too expensive. This discussion also points the way to the chapter on Semi-
Lagrangian Mapping (SELMA), which provides an e�cient compromise en-
abling detail beyond grid dimensions while returning to a cost that is constant
per frame. SELMA produces nearly the full bene�ts of gridless advection while
su�ering only the cost of gridded calculations.

Note that gridless advection is not a method of simulating 
uid dynamics.
It is a method of applying, at render time, the results of simulations in order to
have more control of the look of the rendered volume. For the discussion in this
chapter, we limit ourselves to just the application of velocity �elds (simulated
or not) to density �elds. Gridless advection is more widely applicable though.

7.1 Algorithm

We begin with a look at the impact of one step of gridless advection. Imagine
you have produced a velocity �eld u(x; t), which may be from a simulation, from
some sort of procedural algorithm, or from data. Imagine also that you have a
�eld of density �(x) that you want to \sweeten" by applying some advection.
A single step of advection generates the new �eld

�1(x) = �(x� u(x; t1) �t) (7.1)

where the time step �t serves to control the magnitude of the advection to suit
your taste. Figure 7.1 shows a simple spherical volume of uniform density after
advection by a noisy velocity �eld. For the velocity �eld in the example, we gen-
erated a noise vector �eld that is gaussian distributed, with spatial correlation
and divergence-free. Extreme advection like this can transform simply shaped
densities into complex organic distributions.
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Figure 7.1: Illustration of the e�ect of a single step of gridless advection. The
unadvected density �eld is a sphere of uniform density.

This can be extended to two steps of advection:

�2(x) = �(x� u(x; t2) �t� u(x� u(x; t2) �t; t1) �t) (7.2)

and to three steps of advection:

�3(x) = �(x�u(x; t3) �t�u(x�u(x; t3) �t; t2) �t�u(x�u(x; t3) �t�u(x�u(x; t3) �t; t2) �t; t1) �t)
(7.3)

The iterative algorithm for n+1 gridless advection steps comes from the results
for n steps as

�n+1(x) = �n(x� u(x; tn+1)�t) (7.4)

but, despite the simplicity of this expression, you can see from equation 7.3 that
the algorithm grows linearly in complexity with the number of steps taken.

7.2 Examples

We can illustrate the impact of advection with some examples. A common use
for gridless advection is to apply it to an existing simulation to sharpen edges.
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Figure 7.2: Unadvected density distribution arranged from a collection of spher-
ical densities.

Figure 7.2 shows a density distribution consisting of a wall of small spheres of
density. Each row has a di�erent color. A 
uid simulation unrelated to this
density �eld has been created, and when we advect the density and sample it to
a grid every time step, then the advected density �eld after 60 frames looks like
�gure 7.3. There has been a substantial loss of density due to numerical dissi-
pation, but also the density distribution looks soft or di�used. Even the density
in the top left and bottom right, which has gone through very little advection,
has blurred substantially. If we used gridded sampling of the advected density
on the �rst 59 frames, then gridless advection on the last frame via equation
7.1, the result is in �gure 7.4. There is a slight sharpening of edges in the gas
structure. This is more noticeable if we advect and sample for 50 frames, then
gridlessly advect for 10 frames, as in �gure 7.5. In fact, the image shows a lot of
aliasing because the raymarch step size is not able to pick up the �ne details in
the density. This is corrected in �gure 7.6 by raymarching with a step size 1/10-
th the grid resolution. Finally, just to carry it to the extreme, �gure 7.7 shows
the density �eld after all 60 frames have been gridlessly advected. The raymarch
is �nely sampled to reduce aliasing of �ne structures in the �eld, although some
are still visible. Also very important is the fact that gridless advection gen-
erates structures in the volume that have more spatial detail than the original
density distribution or velocity �eld. This is a very valuable e�ect, as it provides
a method to simulate at relatively coarse resolution, then re�ne at render time
via gridless advection. Further, this re�nement does not dramatically alter the
gross motion or features of the density distribution, whereas rerunning a simu-
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Figure 7.3: Density distribution after 60 frames of advection and sampling to a
grid each frame.

Figure 7.4: Density distribution after 59 frames of advection and sampling to
a grid each frame, and one frame of gridless advection. The edges of �laments
have been subtley sharpened.
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Figure 7.5: Density distribution after 50 frames of advection and sampling to a
grid each frame, and ten frames of gridless advection. The sharpening of details
has increased to the point that the detail is �ner than the raymarch stepping,
causing signi�cant aliasing in the render.
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Figure 7.6: Density distribution after 50 frames of advection and sampling to
a grid each frame, and ten frames of gridless advection. The �ne detail in the
density �eld is now resolved by using a �ner raymarching step (1/10-th the grid
resolution).

Figure 7.7: Density distribution after 60 frames of gridless advection. The �ne
detail in the density �eld is resolved by using a �ne raymarching step.
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lation at higher resolution generally produces a completely di�erent 
ow from
the lower resolution simulation. A variation on this is to gridlessly advect a
volume density with a random velocity �eld in order to make it more \natural"
looking, as was done in �gure 7.8.

We can evaluate the relative performance of various options, e.g. how many
gridless steps to take, using the graph in �gure 7.9, showing the amount of RAM
and the CPU time cost for the raymarch render for each option. The execu-
tion time for setting up the gridless advection processing is essentially negligible
compared to the time spent evaluating the �elds during the render. The ray-
marcher used for this data is a simple one not optimized for production use, so
the results should be indicative of relative behavior only, not actual production
resource costs. The blue line is the performance for gridless advection as the
number of gridless steps increase, while leaving the raymarch step size equal
to the cell size of the velocity �eld. Note that RAM increases linearly with
the number of gridlessly advected frames, because the velocity �elds of those
frames must be kept available for the evaluation of the advections. With a large
number of advections, the spatial detail generated includes �ne �laments and
curved sheets that are so thin that raymarch steps equal to the grid resolution
are insu�ent to resolve that �ne detail in the render. Using 10 times �ner steps
in order to capture detail, the images look much better and the red line per-
formance is produced. The longest time shown is over 80000 seconds, nearly 1
cpu day. This scale of render time is not practicable. In practice using gridless
advection for more than about 5-10 steps extends the render time, due to the
additional advection evaluations and the �ner raymarch stepping, to the limit
that most productions choose to take.

Fortunately there is a practical compromise, called Semi-Lagrangian Map-
ping (SELMA).
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Figure 7.8: Clouds rendered for the �lm The A-Team using gridless advection
to make their edges more realistic. The velocity �eld was based on Perlin noise.
Top: foreground clouds without advection; bottom: foreground clouds after
gridless advection.
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60 CHAPTER 7. GRIDLESS ADVECTION



Chapter 8

SEmi-LAgrangian MApping
(SELMA)

The key to �nding a practical compromise between gridless advection and
sampling the density to a grid at every frame is to recognize that gridless ad-
vection is a remapping of the density �eld to a warped space. You can see that
by rewriting equation 7.1 as

�1(x) = � (X1(x)) (8.1)

where the warping vector �eld X1 is

X1(x) = x� u(x; t1) �t (8.2)

Similarly, the equations for �2 and �3 also have forms involving warp �elds:

�2(x) = � (X2(x)) (8.3)

where
X2(x) = x� u(x; t2) �t� u(x� u(x; t2) �t; t1) �t (8.4)

and
�3(x) = � (X3(x)) (8.5)

where

X3(x) = x�u(x; t3) �t�u(x�u(x; t3) �t; t2) �t�u(x�u(x; t3) �t�u(x�u(x; t3) �t; t2) �t; t1) �t
(8.6)

Finally, for frame n, the density �n has a warp �eld also:

�n(x) = � (Xn(x)) (8.7)

with an iterative form for the mapping:

Xn(x) = Xn�1 (x� u(x; tn)�t) (8.8)

61



62 CHAPTER 8. SEMI-LAGRANGIAN MAPPING (SELMA)

So the secret to capturing lots of detail in gridless advection is that the mapping
function X(x) carries information about how the space is warped by the 
uid
motion. The gridless advection iterative algorithm is equivalent to executing
the iterative equation 8.8, so the Felt code

density = advect( density, velocity, dt );

is mathematically and numerically equivalent to code that explicitly invokes a
mapping function like:

Xmap = advect(Xmap, velocity, dt);
density = compose(initialdensity, Xmap);

as long as the map Xmap is a vector�eld initialized in an earlier code segment
as

vector�eld Xmap = identity();

The practical advantage of recasting the problem as a map generation is
that it allows us to take one more step. Sampling the density onto a grid at
every frame leads to substantial loss of density and softening of the spatial
structure of the density. But now we have the opportunity to instead sample
the map X(x) onto a grid at each frame. This limits the �ne detail within the
map, because it limits structures within the map to a scale no �ner than grid
resolution. However, what is left still generates highly detailed spatial structures
in the density. For example, returning to the example of �gures 7.2 through 7.7,
applying gridding of the mapping function produces the highly detailed result
in �gure 8.1. The change to the Felt code is relatively small:

Xmap = advect(Xmap, velocity, dt);
// Sample map onto into a grid
vectorcache XmapCache(region);
cachewrite( XmapCache, Xmap );
// Replace Xmap with the gridded version
Xmap = cacheread(XmapCache);
density = compose(initialdensity, Xmap);
velocity = advect( velocity, velocity, dt ) + dt*gravity*density ;
velocity = �tdivfree( velocity, region );

where XmapCache is a vectorcache into which we sample the Semi-Lagrangion
mapping function X. This restructuring of the density advection based on a
mapping function that is grid-sampled is given the name SELMA for SEmi-
LAgrangian MApping.

How does SELMA constitute a good compromise between sampling the
density onto a grid at each time step, with relatively low time and memory
resources but limited spatial detail, and gridlessly advection, with higher time
and memory requirements but very high spatial detail? There are bene�ts
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Figure 8.1: Density distribution after 60 frames of SELMA advection. The
�ne detail in the density �eld is resolved by using a �ne raymarching step.

in both memory and speed. Because the mapping function is sampled to a
grid each time step, the collection of velocity �elds need no longer be kept in
memory, so the memory requirement for SELMA is both lower than gridless
advection and constant over time (whereas it grew linearly with the number of
time steps in gridless advection). For speed, SELMA has to perform a single
interpolated sampling of the gridded mapping function each time the density
value is queried, and the cost for this is �xed and constant for each simulation
step. Comparatively, gridless advection requires evaluating a chain of values of
each velocity �eld along a path through the volume, the cost of which grows
linearly with the number of time steps. These improvements in performance are
clear in �gure 8.2, which compares the performance of gridless advection and
SELMA. The increase in RAM for the case \SelmaFine" is because the grid for
the SELMA map was chosen to be �ner than for the velocity �eld.

Figure 8.3 shows SELMA as used for the production of The A-Team. An
aircraft passing through cloud material leaves behind a wake disturbance in the
cloud. The velocity �eld is from a 
uid simulation that does not include the
presence of the cloud. The cloud was modeled using the methods in chapter 3,
then displaced using SELMA.
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Figure 8.3: Example of SELMA used in the production of The A-Team to
apply a simulated turbulence �eld to a modeled cloud volume as an aircraft
passes through.
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1 History of Mantra Volume Rendering
Mantra is a production renderer originally developed for PRISMS in the early 1990s.  The software has 
evolved over the years and is now provided as the built­in renderer within the Houdini 3D animation 
package.  Mantra was designed to roughly follow the traditional RenderMan pipeline – with 
programmable shaders for surface, displacement, lights, and fog.  The shading language, VEX, is an 
interpreted C­like language and provides a full suite of graphics programming operations.

Volumetric effects have traditionally been achieved in Mantra using either sprite rendering or fog 
shaders.  Sprite rendering produces volume­like renders by rendering polygons with a texture map 
applied ­ usually with an alpha mask to smoothly blend with the background.  Fog shaders can produce 
volumetric effects if the shader is instrumented with a ray marcher to march through user­defined 
volumetric data.  Both techniques suffer from a number of drawbacks which limit their usefulness. 
Sprite rendering, although simple to render, will often generate physically inaccurate images due to the 
underlying 2D nature of the geometry.  A ray marcher embedded in a fog shader can generate correct 
volume renders, but is not tightly integrated with the renderer's sampling techniques making it difficult 
to simulate effects such as motion blur and to generate holdouts.

These notes will attempt to lay out the motivation and technical basis for Mantra's latest volumetric 
rendering capability (originally introduced in Houdini 9 in 2007).  It was designed for production and 
with the intent to overcome the most significant deficiencies in the existing techniques.  We'll discuss 
the technical trade­offs that were made and hopefully provide a good example of how volumetric 
rendering can be successfully integrated into an existing production renderer.

1.1 Motivating Factors
The deficiencies of the existing volume rendering approaches (sprites and fog shaders) were what 
primarily motivated the design of a new volume rendering algorithm in Mantra.  The goals for the new 
design included:

• Support for true 3D volumetric effects
• Direct rendering of volumetric data as a native primitive type
• True motion blur and depth of field
• Full integration with surface rendering
• Support for deep image export (export of transparent sample lists)
• Unified shading for ray tracing and micropolygon rendering

1.2 Limitations
Some capabilities are useful in a volume renderer but were not considered essential for our design, 
partly due to the impact they would have on the rendering architecture.  These include:
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• Multiple scattering – although possible to simulate with appropriately written shaders, an 
explicit multiple scattering algorithm was not developed with the volume renderer.

• Varying IOR ­ the ability to continuously change the direction of a ray as it traverses the volume 
(for example, to render a mirage).

• The ability to query volume data from within a shader at positions other than the current 
shading position.  This is similar to the limitation that when rendering surfaces, the surface 
shader is only initialized with global data at the currently shaded parametric coordinate.

1.3 Volume Renderer Design
Often the most important design criteria when adding any new feature to Mantra is consistency. 
Consistency ensures that the existing architecture is integrated as seamlessly as possible with the new 
functionality.  In the case of volumetric rendering, we attempted to reuse the existing technology (and 
associated controls/parameters) in three main areas:

• Geometry: volumes can be represented as geometric primitives to the renderer like any other 
surface primitive.

• Shading: the same shading pipeline that applies to surfaces also applies to volumes.  The 
surface shading context, with a few very specific extensions, was reused for volume primitives.

• Sampling: the same sampling pipeline, both for raytracing and micropolygon rendering, applies 
to volumes.  This means that the same motion blur algorithm that produces motion blur for 
surfaces also works with volumes.

Treating volume rendering as an extension of the existing rendering architecture provides a significant 
benefit to users, in that understanding volume rendering can be viewed as a simple extension of surface 
rendering.  Much like reuse of code, it also ensures that where the existing surface rendering techniques 
are robust, the volumetric extensions should also show good stability, predictability, and performance.
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Figure 1: Volumes and surfaces

The following sections will discuss how each phase of rendering was extended to natively handle 
volume primitives.

2 Volume Geometry

2.1 Volume Procedural Interface
Volume primitives in Mantra are all defined through a simple, general interface based on point 
sampling and an optionally defined volume structure.  The API comprises:

class Volume {
public:
    virtual void         evaluate(const Vector3 &pos, 
                                  const Filter &filter, 
                                  float radius, float time, 
                                  int idx, float *data) const = 0;

    virtual void         getWeightedBoxes(RefArray<BoundingBox> &boxes, 
                                          FloatArray &weights, 
                                          float radius, 
                                          float dbound) const = 0;

    virtual void         getAttributeBinding(StringArray &names, 
                                             IntArray &sizes) const = 0;
}
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The evaluate() function is provided with a position and channel index and is responsible for providing 
the filtered value of the specified field at that position.  The getWeightedBoxes() operation is an 
optional operation that can be used to provide a list of boxes that describe the structure of the volume. 
Mantra will use these boxes to construct an acceleration data structure for empty space culling.  The 
getAttributeBinding() operation provides a list of the channel names and vector sizes for the attributes 
defined by the volume.  The binding produced by this interface is used by the VEX parameter binding 
algorithm to provide the shader with volumetric data matched by name and vector size.

2.2 Rendering Primitives for Volumes

Figure 2: Voxel grid (left) and metaballs (right)

Default volume geometry types are provided in Mantra for voxel grids, metaballs, and shader­defined 
attributes through built­in volume primitives that implement the volume API.

Voxel grids provide the trivial filtered evaluation operation for evaluation of fields.  The generation of 
boxes for acceleration makes use of a voxel mipmap to hierarchically determine blocks of occupied 
voxels that can be represented by a single bounding box.  This minimization of boxes helps to reduce 
the complexity of the eventual acceleration data structure.  Boxes are also enlarged to account for the 
known filter width that is used for evaluation, and for the displacement and velocity bound.
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Figure 3: Example voxel field, with white empty voxels

Figure 4: Possible clustering of 2D voxels (gray) into 
representative boxes (blue)

2.3 Voxel Grid Storage
Voxel grids are stored as a sequence of 16x16x16 tiles containing floating point data.  Data within a tile 
is stored contiguously, while the entire voxel grid stores an index of the tiles.  Tiles can independently 
apply a number of different compression techniques:

• Constant tile compression: if all values in a tile are the same value, the tile storage is 
compressed to a single value.

• Bit depth compression: if the range of the data in a tile is very small, a lossy compression 
algorithm can reduce storage by reducing the number of bits used to encode the data.  A 
tolerance parameter controls how much compression can occur – so that adjacent tiles do not 
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show discontinuities.  To ensure the compression is unbiased, an ordered dithering algorithm is 
used to eliminate bias and to allow reconstruction (via filtering) that preserves as much of the 
original data as possible.  The images below show the same voxel data compressed to 5 bits per 
voxel and 1 bit per voxel.

Figure 5: 5­bit ordered dither Figure 6: 1­bit ordered dither

Voxel grids are merged into higher­level volume primitives through a naming and vector consolidation 
operation.  For example, a volume primitive may consist of 2 attributes (named “density” and “vel”) ­ 
though there would be 4 voxel grids comprising this primitive:

{
name = “density”
resolution = 128x128x128
transform = ...

}
{

name = “vel.x”
resolution = 65x64x64
transform = ...

}
{

name = “vel.y”
resolution = 64x65x64
transform = ...

}
{

name = “vel.z”
resolution = 64x64x65
transform = ...

}

Using separate fields for individual components of a vector field allows each component to use a 
different resolution and transform, at the expense of less efficient voxel value lookups (some index 
computation must be duplicated when performing a lookup into a vector field).
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3 Rendering Algorithms
Mantra provides both a ray tracing and microvoxel rendering algorithm for volumes.  Both share the 
same shading pipeline and use the same underlying volume data and volume acceleration data structure. 
This section will first discuss the general acceleration data structure used by both algorithms, and then 
discuss the details of the ray tracing and microvoxel engines.

3.1 Acceleration
The volume API provides a list of bounding boxes for the volume to describe the space that is occupied 
by the volume.  These boxes are similar to the boxes that would be provided for surfaces, and are used 
to construct an acceleration data structure that is analogous to the one used for ray tracing acceleration 
for surface intersections.

Mantra uses a KD­Tree data structure to accelerate common operations related to volume rendering. 
These operations include:

• Testing whether a point or box is entirely outside the volume (box­in­tree)
• Calculating a sequence of entry and exit points for a ray that intersects the volume (ray tracing 

interval)

The construction algorithm for the KD­Tree is identical to the KD tree construction used for surfaces, 
and uses the surface area heuristic to optimize the splitting process (For construction algorithms, see 
[1]).  To further improve performance of the interval calculation and occupancy test, partitions in the 
resulting KD­Tree are marked with a flag indicating whether the partition is fully enclosed by the boxes 
defining the volume.  Partitions that are fully enclosed can be used to provide a quick exit test for the 
box­in­tree query, and can be quickly skipped when calculating ray tracing intervals.

Figure 7: KD­Tree partitions (red) constructed on 
representative boxes (blue)
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3.2 Ray Marching
Ray tracing of volume primitives is implemented with ray marching.  When a volume primitive is hit by 
a ray, Mantra first calculates the intervals containing non­zero data using the volume's acceleration data 
structure.  Then sample positions are generated in the interval using a user­defined volume step size and 
a sampling offset – determined from the sub­pixel sample or sampling identifier for secondary rays.

Often a volume primitive is large enough that if the renderer were to march through the entire volume, 
several thousand sample positions would need to be stored in memory.  Mantra prevents this situation 
by limiting the maximum number of unshaded transparent samples (usually 32) before it requires that 
these samples are shaded.  So for volumes that extend to infinity, Mantra will switch between sample 
generation (ray marching) and shading until it detects that the ray has become sufficiently opaque that 
new samples will contribute little to the image.

For volumes that are known to have a uniform density, samples can be distributed ideally based on the 
known density.  Volume extinction follows an exponential falloff curve, meaning that if samples are 
distributed according to the exponential function they will each have equal weight.  Samples can be 
distributed exponentially by inverting the exponential cumulative distribution function c(x):

p x =  e e−xe

c x = 1−e−xe

Solving for distance:

x=
−ln 1−c x 

 e

Now randomly distribute c(x) between 0 and 1 to generate exponentially distributed distances.
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3.3 Microvoxels
Micropolygon rendering of volume primitives is implemented using an extension of REYES 
architecture [3] to handle volumetric data (originally presented in [4]).  Fundamentally, a micropolygon 
renderer is responsible for 2 specific tasks – dicing and shading.  The dicing algorithm splits up 
complex primitives into simpler ones, while the shading algorithm executes a programmable shader on 
a generated set of shading points.  The same shading algorithm is used with ray tracing, but the points 
where the shader acts are defined differently – in the case of micropolygon rendering, shaders are 
normally executed on subdivided meshes.

In the case of volumes, subdivision must generate 3D space­filling primitives rather than flat shading 
meshes.  Mantra uses a 3D binary subdivision scheme followed by generation of blocks of up to 256 
shading points in the format of 3D grids.



12 Mantra Volume Rendering

3.3.1 Splitting and Measuring

Figure 9: View­dependent dicing ­ viewer on left

A micropolygon renderer makes use of one or more metrics to measure the size of primitives in order to 
decide how finely or coarsely the primitive must be subdivided before it is small enough to shade.  This 
subdivision metric is used to make decisions about when a primitive should be split and also to 
determine the number of shading points that are required once it is known that subdivision has reached 
the limit.  The metrics used for measuring the size of a primitive include a screen­space metric along 
with other constraints such as a depth (z­axis) measuring quality, and user­configurable parameter to 
control the overall scale of the subdivision.

For subdivision of volumes, Mantra uses a simple metric that is based on the pixel size and the distance 
of the voxel centroid to the viewer:

float
VRAY_Measure::getDotArea(const Vector3 &pt) const 
{
    // pixel_xsize and pixel_ysize are precomputed based on the camera's view
    return pt.length2() * pixel_xsize * pixel_ysize; 
} 
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3.3.2 Shading Grid Generation

Figure 10: Cube of 216 shading points

Shading cubes are created when the splitting/measuring process determines that the volume is small 
enough (based on the metric used for measuring) that it can be shaded.  Mantra uses a fixed maximum 
number shading points (usually 256) per cube to help take advantage of batch shading (shading many 
points with an individual shader invocation).  The 3D structure used for volumes always uses inclusive 
shading point placement, so 2x2x2 voxel grids shade a total of 8 times.  Inclusive shading point 
positioning allows Mantra to use linear interpolation within a shaded grid without the need to 
synchronize with adjacent shading grids.

Du(P)

Dv(P)

Dw(P)

Shading Points
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Figure 11: Actual cubes of shading points generated by a render.  The viewing frustum originates on 
the left of the image

3.3.3 Sampling
Mantra uses a fixed pool of sampling patterns for sampling of all features in a render.  Sampling 
patterns use a resolution that is determined by the number of pixel samples in the render – specified as 
the product of 2 values (eg. Pixel samples of 3x3 results in 9 pixel samples).  Sampling patterns are 
used to distribute x/y pixel anti­aliasing samples, time, depth of field, and an arbitrary number of 
shader­required sampling parameters between the sub­pixel samples within a pixel.

For volume rendering, Mantra performs an independent ray march for each sub­pixel sample.  One 
additional sampling parameter is used for volumes to control the ray marching offset.

The same random offset is used for the entire ray march.  This means that all volume samples will be 
placed in an identical location in camera space regardless of how the volume is transformed or how the 
camera moves in the scene.  Other approaches to sample distribution include stratified sampling (a 
different random offset is used for each ray march sample) and equidistant sampling (no offset is used). 
Equidistant sampling produces unavoidable aliasing errors and stratified sampling will usually lead to a 
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doubling of the amount of noise in the render while only enhancing accuracy when a single ray march 
is performed per pixel.  See [2] for details on these different approaches to sample placement.

The following images show a motion blurred volume – first with fully filtered pixels (as would 
normally be produced by the renderer) and then expanded to map the individual sub­pixel samples to 
pixels.  The sub­pixel rendering shows the structure of the sampling pattern – the correlated time and 
ray march offsets within individual pixels show up as patterns in the image.

Figure 12: Render of a motion blurred volume
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Figure 13: Sub­pixel sampling patterns for a motion blurred volume,  
16x16 pixel samples

3.3.4 Motion Blur
For both ray tracing and for microvoxels, motion blur works by distributing different random sample 
times to individual pixel samples.  In the case of ray tracing, Mantra will shade each point along each 
sub­pixel ray march.  With microvoxels, sampling and shading are fully decoupled – allowing shaders 
to be applied on the generated shading grids while sampling continues to execute on the sub­pixel ray 
march samples.  For this reason, the sampling patterns used for rendering microvoxels are identical to 
those that would be used for sample placement in ray traced volumes.

Decoupled shading offers one significant advantage.  Shading is often the most expensive part of the 
rendering pipeline ­ involving complex operations such as shadow map lookups, ray tracing, and 
texturing.  Decoupling shading from sampling makes it possible to independently adjust the amount of 
shading, so that volumes that contain very uniform shading but exhibit a large amount of motion can 
focus the rendering algorithm on the component that matters most – antialiasing the motion blur. 
Given shaded microvoxels, Mantra only needs to perform trilinear interpolation to obtain the shaded 
values at each point along a ray march – significantly reducing the complexity of the ray marching 
algorithm.

void Sampler::sampleVoxelScalar(const Ray &ray, Primitive *prim) 
{
    const int            map[6][4] = { 
                            {0, 1, 3, 2}, // zmin 
                            {4, 5, 7, 6}, // zmax 
                            {0, 2, 6, 4}, // xmin 
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                            {1, 3, 7, 5}, // xmax 
                            {0, 1, 5, 4}, // ymin 
                            {2, 3, 7, 6}  // ymax 
                         };
    Vector3     p[8]; 
    float       hit[2]; 
    float       zoff, stepsize; 
    int         hitcount = 0; 
 
    stepsize = prim­>getStepSize(); 
    prim­>getVoxelCorners(p); 
    for (i = 0; i < 6; i++) 
    { 
        p0 = p[map[j][0]; 
        p1 = p[map[j][0]; 
        p2 = p[map[j][0]; 
        p3 = p[map[j][0]; 

        // Find the intersection distance and parameters 
        if (Quad::intersect(t, u, v, ray, p0, p1, p2, p3)) 
        { 
            hit[hitcount] = t; 
            hitcount++; 
        } 
    } 

    if (hitcount == 2) 
    { 
        zoff = getSamplingOffset(ray); 
        zoff += floor((hit[0] / stepsize) ­ zoff) + 1; 
        zoff *= stepsize; 
        if (zoff >= hit[0] && zoff < hit[1]) 
        { 
            // Iterates through the interval and adds ray march samples 
            while (zoff < hit[1]) 
            { 
                processSample(tval, prim); 
                tval += stepsize; 
            } 
        } 
    } 
}

Ray marching against microvoxels uses a ray tracing algorithm.  Given the positions of the voxel 
vertices, each of the 6 voxel faces are interpreted as polygons.  If motion blur is used, the vertex 
positions are moved to the sample time.  Moving voxels may undergo non­rigid transformations (as 
shown in the figure below), so they may not be rectangular in shape.  Then, ray tracing is performed 
against the 6 faces, with a simple bounding optimization to avoid unnecessary intersections.  Finally, 
the entry and exit positions are analyzed to determine the ray march interval and samples are placed 
within the voxel to satisfy the known ray march offset and ray position and direction.  The fundamental 
algorithm is shown above in sampleVoxelScalar().
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Figure 14: Velocity blurred voxel

Mantra will often have a list of rays available that require intersection against the same voxel.  The 
algorithm above is trivially parallelized by intersecting many rays against the voxel using SIMD 
instructions.

4 Shading Algorithm
Shading of volumes in Mantra operates as a simple extension to surface shading.  So to shade volumes, 
the surface context is used with a few simple adjustments to inform the shader that it is rendering a 
volume and to provide information that is only meaningful when shading volumes.

Mantra uses the same shader for volume rendering regardless of whether the volume was rendered 
using microvoxels or with ray tracing.  In general, shaders are designed to be rendering algorithm 
agnostic – meaning that the renderer has some flexibility in how shading can be performed.  Internally, 
the renderer manages different shading contexts (including a ray tracing and a micropolygon shading 
context) which both eventually call the same shader.

Multithreaded shading is supported through a duplicate shading state for each thread.  Different threads 
can execute different shaders in parallel, provided that the shaded data does not involve dependencies. 
Dependencies in microvoxel rendering can occur when independent tiles require the result of shading 
for the same microvoxel grid – which can commonly occur when the tiles are adjacent and a grid spans 
multiple tiles.  The ray tracing renderer exhibits fewer data dependencies but is usually costlier to 
render due to the increased amount of shading.

4.1 Parameter Binding
The following shader shows a simple VEX shader interface with parameters.

surface 
volumecloud(float density = 1; 
        vector diff=1; 

vv
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        vector Cd = 1; 
        float clouddensity = 50; 
        float shadowdensity = 50; 
        float phase = 0; 
        int receiveshadows = 1) 
{
    …
}

Parameters are bound to attributes in a volume primitive by name.  So if the volume contains a field 
named “temperature” and the shader has a parameter called “temperature”, the shader will be initialized 
with values from the volume field when it is executed.  Bindings for vector attributes such as “vel” use 
the same approach, but the vector size for the attribute must match the shader parameter type.  The 
binding of volume attributes to shader parameters involves evaluation of the volume attribute at the 
position of the shading point.  Evaluation uses a user­specified filter (for example, a box or gaussian) 
that is used to reconstruct volume data from sparse representations such as voxel grids.

Shader parameters that are bound to volume primitive attributes are identified when the shader is 
loaded.  If the volume primitive does not contain an attribute for a given shader parameter, the shader 
parameter is eliminated by the optimizer and replaced by a constant – leading to improved shader 
execution performance.

4.2 Shading Context
Volumes execute within the surface context with a few minor extensions:

• A new global variable, dPdz, indicates the distance within the volume that should be 
composited by the shader.

• A new derivative function, Dw(), allows derivative computation along the third volumetric 
direction.  Additionally, the volume around the shading point is available with the volume() 
operation.

• Normals (the N and Ng global variables) are initialized with the volume gradient.  If the volume 
primitive does not support a gradient operation, the gradient is estimated with sampling.

4.3 Shader Writing
An example of a simple, general purpose volume shader (for smoke and clouds) is shown below.

surface 
volumecloud(float density = 1; 
        vector diff=1; 
        vector Cd = 1; 
        float clouddensity = 50; 
        float shadowdensity = 50; 
        float phase = 0; 
        int receiveshadows = 1) 
{ 
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    vector      clr; 
    float       den = density; 

    if (density > 0) 
    { 
        clr = 0; 

        // Accumulate light from all directions. 
        illuminance(P, {0, 1, 0}, PI) 
        { 
            if (receiveshadows) 
                shadow(Cl); 
            clr += Cl; 
        } 

        // Allow for different densities for shadowed and non­shadowed 
        // surfaces. 
        if (isshadowray()) 
            den *= shadowdensity; 
        else 
            den *= clouddensity; 

        // Clamp the density 
        den = max(den, 0); 
        Of = (1 ­ exp(­den*dPdz)); 

        Cf = Of * Cd * diff; 
        Cf *= clr; 
    } 
    else 
    { 
        Of = 0; 
        Cf = 0; 
    } 
    // Physically based rendering phase function
    if (phase == 0) 
        F = diff * Cd * isotropic(); 
    else 
        F = diff * Cd * henyeygreenstein(phase); 
} 

There are a few different components that comprise this shader.  First, there are the parameters to the 
shader.  The “density” parameter is a well­known attribute name, and will usually bind to the “density” 
field in a volume primitive.  The other parameters such as “clouddensity” and “phase” will often be 
constant throughout a volume, and so will evaluate to constant values when the shader is executed.  The 
values for these parameters are mapped to parameters that exist on the shader node.

Within the body of the shader, there is a lighting computation (inside the illuminance loop), which 
loops over the light sources in the scene and evaluates the product of the lighting and the phase function 
– in this case, an isotropic bsdf.  At the end of the shader, Mantra also returns an explicit representation 
of the phase function that is available for use in physically based lighting simulations using this volume.
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Figure 15: Fireball effect generated with “Pyro” shader

Mantra also supplies a more robust and complete volume rendering shader intended for use with  fluid 
simulations.  An example of the kind of effect that can be rendered using this shader is shown above. 
Some of the user interface features available in this shader are shown below.  Parameters in the user 
interface map directly to shader parameters like those shown in the volumecloud shader above.
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Figure 16: Pyro smoke tab ­ choose the fields to 
use for rendering smoke and configure modifiers

Figure 17: Pyro fire tab ­ choose the fields to use 
for rendering fire (emission) and configure 

modifiers
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Figure 18: Pyro scattering tab ­ configures 
multiple scattering calculation using point clouds

Figure 19: Pyro modifiers ­ configures modifiers  
(for example, noise) that can be used to adjust  

fields for rendering
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Introduction  

Prior to 2008, there was significant infrastructure for rendering and processing voxel grids 

at DreamWorks Animation, but these solutions were end result focused, written in the heat 

of production.  This prompted a reworking of all volumetric modeling and rendering tools 

with the hope that a clean interface would enable more people to write useful volumetric 

operators and shaders.  This process involved a redesign and implementation of the voxel 

grid container library, as well as a new standalone volume renderer.  This overhaul has 

resulted in an explosion of the number of volumetric tools, and the number of effects that 

use them.  The results can be seen in recent films such as How to Train Your Dragon and 

Shrek Forever After. 

Volumetrics Library  

Motivation  

We used our prior experiences in voxel grid library design to develop a replacement called 

"Multifield" (MF).  The cornerstone of MF is a clean C++ API that utilizes common design 

paradigms, and provides python bindings to allow for easy pipeline integration.  It can store 

and manipulate a variety of grid types such as MAC grids, and float, half and double 

precision buffers, and frustum-shaped grids, all of which was functionally split among 

several similar libraries before.  Lastly, we required a fast and memory efficient sparse 

representation of the voxel data.  A previous library used an octree representation, which 

suffered from slow random lookups despite a favorable memory footprint.  Thus, we decided 

to implement run length encoded volumes as a faster replacement. 
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Grid Spaces  

 

Figure 1.  A 2D example of grid spaces for a regular cell-centered grid and a 

staggered grid. 

 

Different algorithms necessitate operation in different grid spaces, which are ways of 

referring to the values stored on a grid.  We have four spaces defined on MF grids (also 

called fields): index, grid, unit and world.  Conversions between spaces are defined with 

methods such as indexToWorld and worldToUnit which enable algorithms to work in their 

natural space while maintaining code readability.  In addition, we support interpolation in all 

of the grid spaces in the form of methods such as sampleWorld and sampleUnit. 

index  

Index space is defined as 0 to the number of voxels in each dimension minus 1, like an 

array in C or C++.  This corresponds to the index of a grid cell, similar to the (x,y) 

coordinate of a pixel in an image.  This space is useful when doing image processing-like 

operations on volumes, such as convolution (i.e. blurring). 

unit  

Unit space is parameterized as 0 to 1 in each of the three dimensions, and is often referred 

to as "local" space in a similar fashion to geometry.  This is useful for operations where you 

need to work on the grid in a manner that is resolution independent.  One example is what 

we call "barndooring" for volumes where you attenuate grid values away from the center of 
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a grid on each face.  In this case, you express the extents of the falloff in terms of a 
percentage of the grid, which is exactly unit space coordinates.   

world  

World space defines the location, orientation and size of a volume in space.  When a volume 

is rendered in a shot, interpolation is done using world space coordinates.  This 

transformation is usually controlled by a 4x4 matrix which converts world space positions to 

unit space and vice-versa.  In addition, we support frustum transformations, which replace 

the 4x4 transform by a routine that gives voxels a truncated pyramidal shape.  

API Design  

 

Figure 2.  A simplified UML diagram for the MF library. 

 
 

The core of the MF library is a voxel grid container that we call a field, which is ostensibly a 

wrapper around a 3d array.  Also, there is a File object that represents a collection of grids 

with a mapping between string names and fields.  Below are the key classes involved with 
the MF library.   

AbstractField  

This is the base class that all field classes inherit from.  It defines all of the behaviors of a 

field that are agnostic to the data type stored within the grid.  It contains the 4x4 transform 

used to convert grids from unit (local) space to world space coordinates.  In addition, there 

are many abstract methods common to grids, thus ensuring a common interface for 

different containers to inherit from.  Lastly, it has the functionality necessary for frustum 
grid transformations.  Important methods include: 
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Vector3 indexToUnit(Vector3 input) - converts a point from index to unit space. 

 

Vector3 unitToWorld(Vector3 input) - converts a point from unit to world space. 

 

Matrix getTransform() - returns the 4x4 transform that converts unit space 

coordinates to world space. 

 

abstract void compress() - compress a grid as implemented in subclasses. 

 

unsigned int sizeX() - get the number of voxels in the x dimension.  

ActualField 

ActualField is a subclass of AbstractField, and is templated according to the grid data 

type it is storing (T).  It contains the data for the grid in an array of the template type.  In 

addition to inheriting all the functionality of AbstractField, it defines getters and setters 

for dealing with the grid.  Important methods include: 

T getValue(int x, int y, int z) – get the value at a index space location. 
 

void setValue(int x, int y, int z, T val) - set the value at an index. 
 

T sampleWorld(Vector3 worldPos) - interpolate to derive a value at a world space 

location.  Variants of this method exist for all grid spaces. 
 

T* getPtr() - retrieves the underlying array. 

FieldProxy  

A FieldProxy acts as a proxy object for an instance of an ActualField.  It wraps every 

method available in an ActualField, and allows for a type agnostic way of dealing with grid 

data.  This entails a speed penalty due to the fact that each method must resolve the stored 

data type at run time by using a switch statement to iterate over all supported grid types.  

While this speed penalty causes a noticeable hit in performance, it allows developers to 

write code that supports arbitrary bit depth float fields without any extra work.  

Indexer  

Indexer is a superclass for a group of objects that map (x,y,z) tuples for integer-valued 

index space positions to linear indices pointing to the voxel’s value in an array.  The base 

class does a scan line ordered mapping into a dense 3d grid.  We subclass it to define the 

necessary transformation to support run length encoded volumes.  Additional subclasses 

could be derived to define other compression schemes, or different voxel storage ordering 
mechanisms such as Hilbert curves.  Important methods include: 

int getIndex(int x, int y, int z) - maps an index space position to a linear 

index. 

 

int getNumDefined() - returns the number of defined voxels.  For sparse grids, this 

is significantly less than the total number of voxels (sizeX*sizeY*sizeZ).  
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Interpolator  

Interolator is a base class for a module that can interpolate grid values.  Subclasses 

implement various algorithms such as tricubic, triquadratic, and trilinear interpolation.  An 

ActualField has a member Interpolator instance, which using the strategy pattern can be 

modulated at run time, thus allowing for a dynamically changing interpolation scheme.  We 

found that triquadratic interpolation offers the best tradeoff between speed and quality for 
many uses including rendering.  It has a single abstract method that must be implemented: 

T interp(int x, int y, int z, Vector3 pos) - This method takes an index and  

position within a cell and returns the interpolated value.   

File  

The File object offers a mapping between string identifiers and FieldProxy objects.  This 

is what is stored and loaded from disk, and is the main interface for manipulating a 
collection of grids.  Important methods include: 

FieldProxy getField(string name) - Gets a field given its name. 

void addField(string name, FieldProxy field) - Adds a field with a  given 

name. 
 

Levels of Control  

MF is designed with the notion that it should be possible to write extremely optimized 

volumetric operators for experienced programmers, yet it should also be easy for 

inexperienced artists to write code without worrying about details or optimizations for 

simple production-specific tools.  This "level of control" architecture is a foundation of the 

API design, and manages the balance between code that is fast to execute, and code that is 
fast to write. 

The FieldProxy class is one feature of the "levels of control" architecture.  It allows for a 

grid to be loaded from disk, and manipulated in a manner that is agnostic to the stored data 

type.  All operations are exposed as manipulating grids that contain double precision 

floating point numbers, but values are eventually cast to the stored type when appropriate.  

This is useful since it is often advantageous to keep some data at half precision whereas 

other things are better stored as floats.  Such optimizations can allow for higher resolution 

grids and more detail in volumes.  This class is the preferred interface for production-

specific C++ tools since it is fastest and easiest interface to deal with fields.  To contrast 

this, R&D developers will often use ActualField objects when the overhead of FieldProxy 

seriously impacts performance.   

Python bindings represent the highest level of control available in our system.  We wrap the 

mf::File object as a dictionary that maps string field names to Numpy arrays.  The numpy 

arrays refer to memory allocated by ActualField objects.  This allows for artists to utilize 

the extensive toolset available in Numpy and Scipy to manipulate voxel grids.  While 
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performance concerns often arise when extensive looping is required, this workflow 
significantly decreases the time for new tools to be written.  

Grid accessors are used to query grids for values at voxel indices and to interpolate for 

arbitrary positions inside the volume.  We utilized the "levels of control" principle with such 

methods by allowing users to circumvent bounds checking and other slowdowns in cases 

where it isn’t needed.  In addition, FieldProxy objects are not used when the grid type is 

known (for instance with a simulator), which gives an additional speed boost. 

ActualField::getUncompValueFast(x,y,z) 

ActualField::getPtr() 

Must know the stored 

data type, no bounds 

checking, assumes 

grid is uncompressed  

Highest performance, 

lowest ease of use 

FieldProxy::getValue(x,y,z)  

Bounds checking 

(reflect, wrap, extend 

edge, etc), agnostic to 

data type, works with 

compression  

 

python Numpy arrays  Python interface  
Lowest performance, 

easiest to use 

 

Figure 3.  Comparison of methods for accessing a field value. 

 

RLE Compression  

Run length encoding (RLE) is a compression scheme that tracks sequences of repetitious 

values called "runs".  For volumes, we use RLE to compress values that are sufficiently close 

to zero [Houston et. al. 2004].  For a grid of size (X,Y,Z), we build a table of size X*Y where 

each entry stores a list of the runs in z.  A run is composed of its type, length and data 

index.  A run’s type is categorized as either "defined" (non zero) or "undefined" (close to 

zero).  Defined values are stored in a linear array and undefined values are not stored at 

all.  The linear index in the run is used to determine where the “defined” voxel value is 

stored in the linear array.  The storage is reduced to O(X*Y+D) where D is the number of 

defined voxels as compared to O(X*Y*Z) for a dense grid.  The complexity of a random 

lookup is O(average number of runs in one scan line in Z) due to the necessary binary 
search. 

RLE compression is exposed through two methods on our field class, compress() and 

uncompress().  Methods for accessing and setting grid values utilize a binary search instead 

of the typical 3D array indexing as is common with dense voxel grids.  To build compressed 

grids, we offer a FieldWriter, which applies compression as the grid is being built, and 

doesn’t require building the entire dense 3D grid.  This works by maintaining a list of (voxel 

index, value) pairs, which are then compressed into a grid data structure without ever 
allocating for the dense voxel grid. 

We found that there are several key difficulties when using RLE encoded volumes in a 

production setting.  It is difficult to have an efficient way of building sparse grids, as 

opposed to encoding an already dense grid.  The method our library implements is slow, 
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and requires that set voxels can't be accessed until the entire grid is created.  This 

eliminates the ability to build incrementally updated grids, which incurs a significant 

limitation on the usage.  Also, RLE grids have memory limitations since it needs to store the 

X*Y grid of runs as well as a data structure to store the run information.  In addition, once a 

grid is RLE compressed, there is a very limited set of operations one can perform to modify 

the grid.  If any voxel goes from being defined to undefined or vice versa, it requires 

recompressing, which is an expensive operation proportional to the grid resolution.  Thus, 
RLE compressed grids are essentially read only for most cases.   

Considering these limitations, we found utility in using RLE for rendering large numbers of 

grids simultaneously.  In this case, each grid is RLE compressed as it is read into memory 

utilizing a fast dense grid to RLE conversion process.  This increases the effective number of 

grids and grid resolution we were able to render for shots where it isn't feasible to do many 

separate render passes.  Also, with most well-behaved volumes, the number of runs in a 

single scan line in Z is rather low, which means the runtime for a single random lookup is 

ostensibly constant.  This mitigates the damage to render time interpolation performance, 
which requires a significant amount of random lookups.  

Rendering  

Motivation  

We decided to implement a standalone renderer instead of trying to shoehorn the 

replacement into an existing solution.  This allowed for maximal flexibility and freedom to 

develop an ideal solution.  We designed a flexible shading system that made it easy to write 

new shaders with a minimal amount of code, thus hiding the complex details of ray 

marching.  In addition, we made sure the new rendering solution scaled with complexity 

and was not plagued by problems with memory usage since it was imperative that we could 

render as large of a grid as possible.  Lastly, we directly supported rending multiple volumes 

and 3D and 2D motion blur thus allowing for a feature set unaccomplished by a single prior 
solution.  

API Design  

The foremost goal of the API was to separate ray marching, volume sampling, volume 

shading, and output into separate components.  This design allows for a large level of 
flexibility for shader development as well future low level improvements.   

RenderSettings  

This contains values for all of the initialization variables to the renderer.  Examples are the 

ray marching step size, image size, toggle for motion blur, whether to use light caching or 
not, etc.  It is used to initialize state in the various components of the renderer.  

RenderContext  

This is the primary construct used by objects such as shaders to retrieve values during ray 
marching.  It has methods such as: 
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Vector3 getWorldPt() - returns the current world space location being sampled. 

 

double getFieldValue(FieldId id) - queries a field for the current step position.  

FieldId is a unique identifier for a field in a volume. 

 

Vector3 getVectorFieldValue(FieldId id) - queries a vector field for the current 

step position. 

 

Vector2 getPixelXY() - returns the pixel coordinate for the current ray. 
 

Vector3 getRayDir() - returns the world space direction for the current ray. 

 

double getStepSize() - returns the current step size for ray marching. 

 

This class is populated by the Render object, which is responsible for ray marching.  

RenderComponent  

RenderComponent is the base class for most objects in the renderer.  It has very little 

functionality itself, but imposes a structured interface by which objects can be utilized within 

the context of ray marching.  Most importantly, this class defines several abstract methods 

which are called by the Render class (described below) at specific points during the render. 

void preFrame(const RenderSettings &s) – called before the frame starts being 

rendered, and is used to initialize data used by the component. 
 

void postFrame(const RenderSettings &s) - called after the frame is finished, 

and is used to cleanup member data of the component. 
 

void preRay(const RenderContext &ctx) - called before ray marching is initiated 

for a given ray. 
 

void postRay(const RenderContext &ctx) - called after a ray is finished 

marching. 
 

void preStep(const RenderContext &ctx) - called before a step along a ray is 

taken. 
 

void postStep(const RenderContext &ctx) - called after a step along a ray is 

taken. 

 

The following three classes all derive from RenderComponent  

View  

View is the superclass for anything which rays can be cast from.  Subclasses must define 

transformations from world space to the view's local space as well as local space to raster 

space for the output image.  There are two implemented subclasses, one for a render 

camera and another for lights.  Ray casting through lights is used for depth map 
generation.  The most important methods are: 
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Vector3 getWorldSpaceRayDir(const double pixelX, const double pixelY) - 

gets the ray direction for a pixel. 
 

Vector3 getWorldSpaceRayStart(const double pixelX, const double pixelY) 

– gets the starting position for a ray given a pixel. 

Volume  

Volume subclasses are responsible for taking world space positions and producing field 

values such as density, temperature, or any arbitrary field.  They don't necessarily need to 

be grids, but the most common one is the MfVolume, which contains an MF File object as 

described in the first section.  Their most important methods are: 

void preStep(const RenderContext &ctx) - Given the world position referred to 

for the current step, we cache the index space position to reduce matrix 

multiplication when interpolating multiple fields. 

 

double getStepFieldValue(FieldId id, const RenderContext &ctx) - Using the 

index space position derived in preStep, we interpolate to return a grid value. 

 

bool isOccupied(const RenderContext &ctx) - This is used for empty space 

traversal to determine if the current step has non zero density.  

 

Vector3 worldToUnit(Vector3 worldPos) - converts a position in world space to 

unit space for a volume.  

Shader  

Shader instances are responsible for using the RenderContext to get values obtained from 

the Volume to produce a color and opacity for a given step through a volume.  This is the 

most commonly overridden class, and they are written by effects developers for shot-

specific shading solutions.  It has two methods of note: 

Vector3 calcLighting(const RenderContext &ctx) – The parent class defines a 

light loop here, but it can be overridden.  Abstracting out lighting calculations into 

their own method enables the ability for light caching. 
 

Vector4 shade(const RenderContext &ctx) – This applies the Beer-Lambert law 

based on the step size and calls calcLighting(…) to return a color and opacity for a 

volume segment.   

Output  

Output subclasses accumulate values from the RenderContext at either a per-step or per 

pixel rate, and outputs the results to various files.  Typical output targets include raster 

images, camera depth maps, velocity images, and deep shadow maps.  Their important 
methods are: 

void accumPixelSample(RenderContext &context) - Called once per pixel to 

accumulate values.  This is used to output files such as raster images. 
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void accumStepSample(RenderContext &context) - Called once per step to 

accumulate values.  This is used to output files such as deep shadow maps. 

Render  

The Render object is the glue that puts all of the previous classes together.  It iterates over 

pixels, determines which rays to march, and performs ray marching.  Ray marching has the 

following pseudocode that uses the aforementioned classes to produce an accumulated color 

and opacity. 

 
Vector4 marchRay(Ray theRay) 

    double t0, t1 

    if (!volume.intersects(theRay, &t0, &t1)) 

        call postRay on all components 

        return black 

    accumColor = black 

 

    call preRay on all components 

    for currT in [t0, t1] 

    

        // early ray termination 

        if accumColor is totally opaque 

            postRay on all components 

            return accumColor 

        

        // get the position along the ray 

        worldPosition = view.pointOnRay(theRay, currT) 

        context.setWorldPos(worldPosition) 

        call preStep on all components 

 

        // empty space traversal 

        if !volume.isOccupied(context)) 

            postStep on all components 

            continue 

        

        // shading and volume sampling occurs in shade(...) 

        currStepColor = shader.shade(context) 

        if (currStepColor has no opacity) 

            postStep on all components 

            continue 

 

        // integration 

        accumColor = accumColor OVER currStepColor 

        context.setAccumColor(accumColor) 

 

        // accumulate values in output modules 

        call accumStepSample on all Output objects 

        postStep on all components 

 

    postRay on all components 

    return accumColor  



[13] 

 

Empty Space Traversal  

Empty space traversal is initialized by a preprocess in the Volume object’s preFrame.  We 

take the density field, and generate a boolean grid where each cell is one if it or any 

neighbor has positive density and zero otherwise.  This amounts to dilation on the density 

field, which can become slow for large volumes, thus making caching a prudent idea.  At 

render time, we take the world space position of a sample and convert it to an integer index 

space position.  We query the empty space grid at this location without interpolation to 

determine whether the cell or any neighbor has density.  This allows for quick trivial 
rejection of empty space while ray marching. 

 

Figure 4.  The teal volume has the corresponding empty space traversal grid 

represented by the ones and zeros. 
  

Multiple Volumes  

Rendering of multiple volumes is handled by introducing a new class called the 

VolumeGroup.  It stores a list of all the volumes being rendered for the current frame, and in 

preRay will generate a list of all the volumes intersected.  The Render object queries the 

VolumeGroup at each step for the currently rendered volume.   
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Figure 5.  This example of rendering multiple volumes is discussed below.  
 

Consider ray marching the white ray shown above.  In regions where the two volumes 

overlap, we cut the step size in half, and alternate the volumes by using the VolumeGroup's 

preStep callback.  Even though we are ray marching at twice the sample rate as before, we 

compute Beer-Lambert with the same step size that is used in non overlapping regions.  

This effectively interleaves the samples to give the appearance of the two volumes 

overlapping in space.  Note that in the general case, the spatial step size is divided by the 

number of overlapping volumes for a given region. 

Light Caching  

The time spent during shading is the bottleneck of volume rendering, so much so that it 

often far overshadows optimizations such as faster interpolation and empty space traversal.  

To mediate this, we use a grid-based light caching algorithm to reduce the number of 

shading samples.  It is implemented by introducing the LightingWrapper superclass.  

LightingWrapper contains a pointer to the current shader, and has a single method to 

evaluate lighting for a given step.  By default, LightingWrapper directly calls the Shader's 

calcLighting method.   

We have a subclass for light caching called CacheLightingWrapper.  In preFrame, we 

initialize the a 16 bit vector field for color and an auxiliary grid for neighborhood 

calculations.  The auxiliary grid is 1 when all neighboring cells for a given cell have valid 

lighting values and 0 otherwise.  The bounding box for the grid is the same as the one being 

rendered, but often the resolution will be less.  We expose a dial as a multiplier on the input 

grid resolution for the cache.  Lower lighting grid resolutions result in faster renders at the 
cost of more rendering artifacts. 
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In calcLighting, we either interpolate to determine the current lighting based on 

neighboring cells, or calculate lighting at grid cells and interpolate for the result.  This 
amounts to the following pseudocode: 

Vector3 calcLighting(Vector3 sampleLocation) 

    idx = lightingCacheVolume.worldToIndex(sampleLocation) 

    if (!neighborGrid.getValue(idx)) 

        update colorGrid with lighting at neighbors the cell at “idx” 

        neighborGrid.setValue(idx, true) 

    return colorGrid.sample(sampleLocation) 

 

 

Figure 6.  Ray marching with a light cache.  We are calculating the lighting of the 

volume at the red dot’s location. 
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Figure 7.  The cache is empty, so lighting is calculated at neighboring grid points 

and an interpolated result is returned.  
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Figure 8.  At the next ray step, only three new lighting calculations are needed 

since the bottom left one is in the cache.  
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Figure 9.  Consider ray marching a different ray.  No lighting calculations are made 

at the red dot, and a lighting value is returned by interpolating based on cached 

values.  

 
  

Motion Blur  

Algorithm  

In a simplified model without color, the goal of motion blur is to solve for the accumulated 

opacity across the shutter open interval, [ts,te] for the camera space depth range [zs,zi] 

describing the intersection with the volume. 
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Figure 10.  This integral describes opacity accumulation with motion blur as 

defined above.  f(z,t) is the density function of the volume at depth z and time t.   

 

We use a distributed ray tracing algorithm for motion blur by integrating the results of ray 

marching a predetermined number of rays, each with a time distributed on the shutter 

interval.  This approach avoids the excessive memory consumption associated with other 

techniques such as particle smearing.  However, this method suffers from poor performance 
due to an excess of shading calculations and interpolations. 

First, we define three categories for motion blur contributions.  First is camera motion, 

which is motion blur due to movement of the viewing camera.  Second is container motion, 

which is motion blur from the movement of the transform stored on the volume itself.  Third 

is internal motion blur, which is motion due to the stored per-voxel velocity.  We allow each 

of the components of motion blur to be individually toggled since there are situations when 

container motion blur is baked into the per-voxel velocities, as well as other situations. 

Define the frame being rendered as having time tf, and the shutter on the interval [ts,te] 

where ts ≤ tf ≤ te.  We cast n rays to march, each of which is assigned a time tr where tr is 

distributed between ts and te.  Each ray is marched on the interval [zs,ze] expressed in 

camera space depth units as intersected against the motion blur envelope (described 

below).  Values for accumulated color and opacity are derived and stored for each of the n 

rays for each zi in [zs,ze] depending on the ray marching sample.  Next, for each zi, we 
average the value across all the rays and store the result. 

We must determine the motion blur envelope, which is a bounding box to intersect against 

in order to determining zs and ze, the camera space depth range for ray marching.  This 

bounding box is different from the volume's itself since it is stretched according to the 

motion of the volume container, voxel velocities, and the camera motion.  This is 

accomplished by sampling points within the volume and transforming them from tf to ta for 

ta sampled on the shutter interval.  We take the max and min of all these sample locations 
to determine the axis aligned bounding box. 

For each step along a ray, we derive an offset transformation that allows us to sample 

volumes at tr.  This is done at each step to allow for jittering of the time between tn-1 and 

tn+1 to smooth out results and reduce biasing.  To accomplish this, we must compose the 

transformation contribution from the three aforementioned motion blur types.  Camera and 

container motion blur are handled in a nearly identical fashion by computing a 4x4 

transformation matrix that transforms points at tf to tr.  Internal motion blur uses an 
advection scheme [Kim and Ko 2007] as described in the next section. 
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Internal Motion Blur  

We utilize the methods illustrated in Eulerian Motion Blur to account for internal motion of 

volumes in motion blur calculations.  This is done using the following pseudocode to sample 

density tr given density and velocity at tf. 

double densityAtTimeFToTimeR(Vector3 worldPositionAtTimeF, time r) 

    velocityAtF = densityGrid.sampleWorld(worldPositionAtTimeF) 

 

    // advect backward along velocity at time tf to determine vr 

    velocityAtR = densityGrid.sampleWorld(worldPositionAtTimeF -  

(tr - tf) * velocityAtF); 

 

    // advect backward along velocity at t_r to determine density 

    return densityGrid.sampleWorld(worldPositionAtTimeF - (tr - tf) *  

velocityAtR); 

 

The algorithm can be visualized with the following example. 

 
Figure 11.  The goal is to estimate the density at the yellow star at time tr given 

velocity and density defined at tf. 
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Figure 12.  Sample the velocity vf at the yellow point. 

 

 

 
Figure 13.  Backtrack vf to estimate the value for vr denoted by the the yellow 

vector. 
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Figure 14.  Backtrack vr to estimate the density at time tr. 
 

A inherent limitation of this method is that it requires a dense velocity field since it requires 

sampling it outside of the density region.  This is not always the case if you are rendering 

grids that result from point, curve or surface rasterization.  In those cases, the velocity field 

is only defined where the density is.  For cases like this, one must smear the velocity field to 

encompass the motion of the volume.  Alternatively, the motion blur can be embedded 

directly into the grid by smearing density and color according to velocity. 

2D Motion Blur  

For large volumes that have a high degree of screen-space motion, 2D motion blur can be a 

huge time saver since it is significantly faster than the aforementioned algorithm.  

Unfortunately, 2D motion blur is unrealistic to use when volume layers are being 

composited with geometry that has complex overlapping motion.  In cases where it is 

imperative that volumes and geometry are composited correctly together, 3d motion blur 

needs to be combined with either render time compositing of surfaces and volumes or a 

deep image type of representation [Clinton Elendt 2009]. 

 

 
Figure 15.  The equation for determining the screen space velocity as described 

below. 
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To render with 2D motion, we render a velocity image that encodes screen space velocities 

of the volume at each pixel.  The screen space velocity for a pixel is derived by taking an 

average of velocities, Vi for each step i along a ray weighted by the transmittance, (Ti).  

Thus, velocities that are "covered up" farther along a ray contribute less to the screen space 

velocity.  While this doesn't have a physical basis, it offers better results than a mean or 

max for the 2D velocity. 
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History of DNB
DNB (Double Negative Renderer B) was developed at the end of 2004 for use in 
production on Batman Begins.  At the time it was felt that commercial renderers did not 
provide a fast enough solution for true 3D volumetric rendering and that an in-house 
solution would benefit Double Negative.

Version 1 of DNB proved successful in production and as a result it was decided to keep 
developing DNB as part of Double Negativeʼs FX pipeline for all future shows.  To date 
DNB has been used on over 20 feature films including Stardust, 2012, Prince of Persia 
and The Sorcererʼs Apprentice. Over this time there have been 4 major versions with 
Version 5 now just starting to be used on Harry Potter and The Deathly Hallows.

DNB was designed to fit into the 3D pipeline very much like RenderMan. The renderer 
itself is a standalone application and the interface to using it and its shaders is provided 
via a Maya plugin and UI.

The following sections aim to explain the reasoning behind DNBʼs design and some of the 
decisions chosen.

Initial Aims

At first it was important for DNB to have the following:

• Low memory footprint
• Simple design
• Fast rendering
• Controllable via shaders
• Self-shadowing

Users wanted to be able to render Maya fluids quickly and easily and at the same time, 
with limited memory on the renderfarm, it was important to design DNB to be smart with 
what was available.

Later Aims & Features

After each project on which DNB has been used, the TDs have provided plenty of 
feedback and as a result more features have been added. In this way DNB is very much a 
production evolved renderer, with more features always being added but the basic simple 
architecture staying the same.

The idea behind DNB is that it is very much a useable renderer, with its working process 
easy enough to explain to all TDs, and accessible enough to allow them to write their own 
shaders for it.

By the time of DNB v4 the following features were available:

• Camera motion blur
• Fluid motion blur
• Isosurface normals

!
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• User attributes
• Memory management
• Multiple threading
• Single scattering
• Multiple scattering

The following notes discuss v4 of the renderer.

Design of DNB
The design of DNB has essentially stayed the same over the various versions with more 
features and optimizations added on the way.

The following flowchart shows the workflow of DNB:

DNB Workflow

3D

DNB

2D Voxel Frame 
Buffer

Houdini

Zen Particle File

MayaSquirt

Zen Fluid File

3D Voxel Buffer

Image Buffer

Zen Fluid File

Zen Particle File

Ray March

Rasterize

Voxel Fill

Basically, users generate data using the 3D application of their choice.  DNB then takes 
this data at rendertime and fills its voxel structure with it. From that point DNB renders the 
image along its voxel z rays before rasterizing an image. The following sections explain 
the process in more detail.
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We stick to discussing using fluid sims here although DNB can also fill from particle data 
sets.  This is because splatting of particles into voxels is covered in the other course notes.    
It is also because DNBʼs most common data source is fluids.  However, in the shader 
section loading additional particle data at voxel shading time is discussed.

The DNB Voxel Grid

DNB essentially treats the Fluid sim data as its “primitive”.  At render time DNB calculates 
the bounding boxes of all the sims it will render and then creates a frustum aligned voxel 
grid so that all sims are just enclosed. DNBʼs voxel grid will only extend as far as the 
camera frustum. DNBʼs grid therefore varies on a frame by frame basis. This means that 
as fluids move to or away from the camera DNB adjusts its grid so that the user specified 
detail is maintained in the render.

Three fluids in a camera aligned frustum - the thick blue lines indicate the tightly bound volume that DNB 
will subdivide according to the required voxel resolution

The z spacing of DNBʼs voxel grid is designed to be regular intervals in camera space so 
that the sampling rate doesnʼt vary.

Fluid Data Formats

Initially when DNB rendered Maya fluid sims the data was exported in Mayaʼs PDB data 
format.  This was fine for a while but had some disadvantages - the files were very large 
and we were restricted by how the data had to be stored.  We then moved to Tweak Filmʼs 
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Open Source GTO format.  This allowed for greater flexibility in the types of data we could 
store - e.g. some data could be stored as half rather than float. This in turn resulted in 
smaller files and quicker reading of data. Finally, Double Negative moved to using its own 
data format ZEN (written by Jon Stroud in 2005 - he claims he discovered it in the arctic!)  
This allowed us to develop our own Fluid Data Protocol, the result of which meant we 
could access just parts of data in a file, automatically use LODs and compress the data 
using a discrete wavelet transform for greater file compression.

Generation of Data

Data passed to DNB now comes from a range of sources.  These sources will generate 
two types of ZEN data - either zenVoxel data (fluids) or zenParticle data (particle sets).  
Initially just Maya Fluid sims were rendered but these days the following sources all create 
data that DNB is capable of rendering:

• Maya fluids
• Maya particle sets
• Squirt fluids
• Squirt particle sets
• Squirt levelsets
• Houdini particle sets
• Houdini volumes
• Procedural (rendertime) data

Squirt (initially written by Marcus Nordenstam and now developed by Ian Masters and Dan 
Bailey) is Double Negativeʼs in-house Fluid Dynamics Simulator.  It is by far the most 
common source of data for DNB due to its capabilities and generation of either fluid or 
particle data (or both simultaneously) by its solvers.

To aid in the viewing of such data, a set of in-house GPU viewer tools is used to view ZEN 
files in apps like Maya or via command line.  There are also tools for splatting particle ZEN 
files into fluid ZEN files if desired.  Further command line apps allow merging of fluids, 
extracting statistics about attribute values, retiming etc. These additional tools give the 
TDs extra flexibility in how they generate their data and quickly reaching the kind of look 
they are after.

Clipping

It is worth mentioning a few optimizations DNB can do to reduce the amount of clipping 
checks that need to be done.  Clipping and how to do it properly in a renderer is 
extensively covered in much literature.  Weʼd recommend Jim Blinnʼs books on the subject 
(see Bibliography).

As DNB renders data that comes in 3D grids it is worth calculating for each data set 
whether any of the 8 corner points clip the camera frustum.  This allows us on a per frame 
basis to quickly reject data sets that are completely outside the camera frustum.  It also 
means we can see if the entire data set is contained within the frustum and shrink DNBʼs 
voxel grid to just contain it providing for a higher quality render.
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Fluid Shading

Once data is loading into DNBʼs memory from a ZEN fluid file it is possible to use a fluid 
shader on that data.  This allows TDs more control over the output look of their render by 
giving them access to change their data at this point of the rendering stage.  Please see 
the Fluid Shader section for more info.

Filling of Voxels (The Preprocessor)

In DNB a lot of work is done at the same time as filling its voxel structure so that the 
rendering phase requires less computation.  The filling of the voxel structure is a main task 
though and this section explains how it is done in DNB.

Back Interpolation

DNB takes a slightly different approach to how it fills its voxels to that of other renderers.  
Instead of splatting the data into DNBʼs frustum-based voxel grid, DNB iterates over the 
centre points of each of its voxels and then does a backwards looking interpolation back 
into the fluid data sets.  By looking up the exact value for the centre point of each voxel we 
avoid aliasing and we then have the data nicely aligned along DNBʼs voxelʼs z-rays for ray 
marching later.

Raymarching along a slice, the current (green) voxel looks up the 
neighbouring fluid grid cells and interpolates
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There are two choices to the interpolation type used to fill DNBʼs voxels, each with their 
own advantages and disadvantages:

Tri-Linear Hermite-Spline

Uses less memory More memory required for 
storing gradients

Rougher looking results Smoother looking results

No gradient data generated Gradient data generated 
which is used by renderer 
later

Although the Hermite-Spline interpolation is also slightly slower than the Tri-Linear 
interpolation it tends to be used by TDs all the time now due to the additional benefit of 
using the gradient data to generate an isosurface normal for each voxel.  This can then be 
used for various lighting effects at shading time.

Hermite-Spline Interpolation

Before any interpolation can be performed DNB needs to work out if a voxel is within the 
3D space of each fluid sim.  Because the sims are simply 3D orthogonal grids, by doing a 
quick dot product with each of the fluid dataʼs orthogonal vectors it is possible to check not 
only if the voxel lies within the bounding box of the sim but what the local cell is. The local 
cell indices are what is needed for the interpolation lookup.

Before solving the interpolation DNB requires the gradients of the attribute it is solving for.  
Therefore, DNB first of all differentiates each fluid cellʼs attributes in the local x, y & z 
directions to use in the Hermite-Spline calculation.

To calculate the Hermite-Spline Interpolation in the 1D case there are four terms rather 
than two in the Tri-linear case.  If DNB is calculating the value v at point s and the attribute 
values are known at v1 and v2 and their gradients t1 and t2 known, then the four Hermite 
basis functions can be calculated and added together to find the interpolated value.

Once the attribute has been solved for the exact centre position of the DNB voxel, if the 
attribute happens to be opacity then the opacity gradient is also calculated and used to 
form DNBʼs isosurface normal for that DNB voxel.

h1(s) = 2s3 − 3s2 + 1

h2(s) = −2s3 + 3s2

h3(s) = s3 − 2s2 + s

h4(s) = s3 − s2

v(s) = v1h1 + v2h2 + t1h3 + t2h4
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Overlapping Data

An advantage of how DNB fills its voxels is in the way it deals with overlapping data.  
When DNB fills a particular voxel it loops over all data sets and fills that voxel with data 
from all of them.  If more than one set of data fills a voxel then for each attribute the data 
needs to combine in the desired way.  For opacity this is a simple summation and colour 
combines according to opacity ratio.  Other attributes, like age and phi, can be controlled 
via the voxel shader to determine how best to combine the data for what the user wants to 
achieve in the render. 

Holdouts

In DNB, holdouts are dealt with at the filling stage.  Holdouts are supplied to DNB as Deep 
Shadowmaps (either from another DNB render or Renderman render). Such a file format 
means that voxels can be partially heldout if required.  It also allows for optimizations to 
the render time for when a voxel is completely held out, as this means DNB doesnʼt need 
to progress further along the z-ray it is currently on.  This saves on needless interpolation 
and filling.  A further optimization comes from recording the totally heldout voxel so that at 
rendering time an early exit along that particular ray is also possible.

Camera Motion Blur

The blurring of data due to the relative translation and rotation of camera and data objects 
whilst the shutter is open is dealt with in the Preprocessor in DNB rather than at the 
rendering stage.  A simple multi-sample technique is used where for each motion sample 
another fill call is made with the lookup being in a different location.  An average of the 
number of samples is then taken resulting in voxels that have been blur-filled.  Whilst this 
multi-sampling is time-consuming at this stage, it has the benefit of meaning that still only 
one voxel shade call needs to be done per voxel gaining us time at the later stage which is 
often more computationally intensive.

Fluid Motion Blur

There is another type of blurring required when a fast moving fluid requires blurring 
internally.  To do this the fluid data provides velocity data for each voxel.  DNB then works 
out how the fluid density changes for each motion sample based on these vectors.

The Renderer

The renderer part of DNB deals with the shading of voxels after they have been filled by 
the preprocessor.  It is also responsible for the raymarch along DNBʼs voxel structure z 
rays.

Voxel Shading

For each voxel DNB calls the voxel shader.  The voxel shader then calculates the output 
colour and opacity for that voxel.  The voxel shader usually does a light-loop to shade the 
voxel.  Examples of shaders can be found in the next section.  The voxel shader will have 
access to a variety of base class calls so that performing tasks like self-shadowing and 
doing diffuse and specular lighting using the iso-surface normal are simple calls.
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Voxel Attributes

In DNB each voxel has a range of attributes that can be set and then used in the voxel 
shade call.  The following struct shows what is available to the user:

struct voxel_struct
{

bool totally_heldout;
float fuel;
float temperature;
float user_attr_float_1;
float user_attr_float_2;
vector3f velocity;
vector3f texture;
vector3f user_attr_vector_1;
vector3f user_attr_vector_2;
rgbf colour;
rgbf opacity;
rgbf holdout_transparency;
rgbf mean_scatter_angle;
rgbf scatter;
vector3f isosurface_normal;
vector3f centre_pt;

}

As well as common attributes like colour, opacity, velocity etc there are some user slots 
that store other attributes (e.g. age) or can be used for calculation purposes.

Light-Loop

Within a voxel shade call usually a light_primary() call is made which triggers all 
lights that are lighting the voxel for the primary image output to calculate their contribution 
to the voxel being shaded.  This loop effectively calls the light shader for each of those 
lights which allows for lighting calculations to be done and other tasks like deep 
shadowmap lookups to occur.

Self-Shadowing

In DNB self-shadowing from directional and spot lights is achieved by the use of deep 
shadowmaps using Pixarʼs .dshd type files[1].

In the light-loop the amount of light reaching a voxel from each light is calculated by 
looking up the deep shadowmap for that light.  This call is provided automatically via the 
lightShader base class.  TDs can override the call to vary the lookup with multipliers or 
ramps if they so wish.

Ray March

As all voxels are shaded along a z-ray DNB performs an “Under” ray march to calculate 
the overall value to assign to the voxel frame buffer.  The x & y resolution of the voxel 
frame buffer is the same as DNBʼs voxel grid but it has no z depth.
The ray march continues until the furthest away z voxel is reached, or if the opacity 
threshold is reached.  An opacity threshold of 0.99 is typically used as an optimization to 
prevent the renderer needlessly carrying on with the ray march geometrical progression 
when the value is tending towards 1.0.
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This Under is calculated as follows:

For the nth voxel along the ray.  A partial holdout is taken care of with Oho.  Oin is the 
output shaded opacity.

The equation is the same as the above for the colour calculation but with the opacity 
multiplied against it as part of the raymarch.

Opacity Normalization

One aspect of DNB that has been very important from its inception is the ability for TDs to 
perform look development using a low resolution voxel grid and then switch to using a high 
resolution grid at beauty render time, but still be assured that the overall opacity of the 
render will be maintained.  Essentially TDs want to be able to change the number of z 
voxels used and still achieve the same look.

In DNB this is achieved via opacity normalization.  Essentially we are sampling the same 
data using fewer or more z samples than before.  Therefore, DNB needs to adjust the per 
voxel opacity to compensate correctly so that after raymarching the same total opacity is 
achieved.  The answer to this problem is actually to solve the geometric progression of the 
raymarch and not to simply scale the opacity of each voxel according to the change in the 
number of voxels (i.e. raymarching through 2 voxels of 0.5 opacity is not the same as ray 
marching through 4 voxels of 0.25 voxels each - even if some textbooks do suggest this!).

The Rasterizer

DNBʼs rasterization engine simply converts the DNB voxel frame buffers to image buffers 
of the desired resolution via linear interpolation.  Typically this results in an RGBA image 
for the primary render and further RGBA images for any secondary outputs.

Additionally, TDs can opt to have Z data rendered out.  They can choose a near, far or 
depth threshold to be written out for each Z ray and this will also be rasterized into the 
output image in a separate Z channel.

Orayn = Orayn−1 +Oin ∗ ((1.0−Oho)−Orayn−1)
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Memory & Threading

Now that we have explained the various stages in a DNB render, the optimizations to 
memory and threading that have been implemented can be discussed.

Slices

Over time the amount of memory available to users has increased (DNB v1 users typically 
had 512MB-1GB available, with DNB v4 the amount has increased to at least 16GB) - and 
as anyone in production knows, TDs will consume this additional amount of memory with 
ease!  At the same time the data sets in terms of numbers to render and individual size 
have increased.  With the film 2012, the fluid sims would be up to 100MVoxels in size and 
there would be hundreds of sims per frame.  Consequently DNB would sometimes need to 
squeeze over 100GB of data per frame into under 16GB.

To do this DNB was designed to render slices of voxels at a time with the user deciding 
how much memory each DNB voxel slice should use.  A DNB slice is DNBʼs full voxel grid 
divided into vertical strips.  Each of these strips has a full y & z number of voxels and a 
reduced number of x voxels.

By using slices DNB can perform further memory reductions by just loading those data 
sets that contribute to each slice and then unloading them once done as soon as possible.  
With ZEN files this is taken further by loading only those cells within the data set which 
contribute to a slice - something that was not possible with PDB or GTO files.

Multi-Threading

Over the years as well as memory quantities increasing, the number of cpu cores has  
increased.  DNB has been optimized to take advantage of this and is coded to do both the 
preprocess filling and rendering in multiple threads in a simple stable way.
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The green line delineates the right hand edge of a single slice for DNB to initially render. The pink and red 
fluids that overlap this slice will be loaded into memory, purple will not yet be read. Then depending on 
threading settings, this slice could be subdivided vertically as shown by the Yellow chunk.

Taking advantage of the DNB slice design it is possible to easily divide the vertical slice so 
that each cpu thread processes a different section of voxels in the slice.  As these threads 
wonʼt write to the same data it means they can both fill and render simultaneously with a 
linear improvement in rendering speed as a result.

Slice Loop

Pre-Processor Renderer Rasterizer

Voxel Frame Buffer

Image Frame 
Buffer

Secondary Outputs

Voxel ShadeFluid Shade

Voxel Fill

Holdouts

Light Loop

3D Voxel Buffer

2D Voxel Frame 
BufferMotion Blur
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Other Features

Secondary Outputs

In DNB additional voxel frame buffers are available for rendering secondary outputs into.  
Each additional secondary output is an RGBA buffer.  Access to these is provided by the 
voxel shader where the opacity Oi[n] and colour Ci[n] values set are in a vector array of 
length n, the number of secondary outputs.  This is shown in the shader examples in the 
next section.  DNBʼs rasterizer then converts the secondaries to images automatically.

DNB Holdouts

As well as rendering images, DNB is able to render deep shadowmaps from the point of 
view of the camera.  Such a render is the same as a beauty render but DNBʼs voxels are 
rasterized into a 3D deep shadowmap rather than a 2D image, with just the opacity being 
set per voxel.  A separate shadow_shade() call per voxel can be performed at render 
time in this case to eliminate colour calculations.  Such renders can then be used for 
holdouts in PRMan.

Limitations

We have discussed various features of DNB that it is designed to do well.  However, some 
things are either difficult or very slow to do with DNB and it is worth discussing them and 
how to avoid such issues.

Multiple Scattering has not been mentioned much in this course.  The main reason for this 
is that such an effect when implemented properly is very expensive computationally.  
Although DNB has implemented multiple scattering based on generating scatter maps 
from lights and from the camera, from our experience we found the render time taken to be 
unsatisfactory.  TDs also found that proper multiple scattering reduced their control over 
where they wanted more or less scatter to occur.  As a result “faking” multiple scatter by 
simply light bleeding the colour in DNBʼs voxels gave the TDs a much faster and more 
controllable result.

Whilst DNB has implemented slices to reduce memory consumption this does mean voxel 
shaders are limited to the extent of lookups in the local neighbourhood in the x direction.  
To overcome this, users may set a value in voxel shaders to provide a number of x voxels 
to overlap between slices so that there are always enough voxels available to a particular 
algorithm.  However, in the extreme case for algorithms that needed access to many or all 
voxels, this overlap could extend to trying to hold the entire voxel structure in memory 
which would exceed the memory limits DNB currently works under, and negate the 
advantages of DNBʼs slice-based approach.

!
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DNB Shaders
As previously mentioned DNB has been designed to be very open and flexible, shader-
wise.  In this section weʼll discuss the different types of DNB shaders and provide 
examples of their capabilities.

Shaders in DNB are written in C++ and are designed so that they derive from a base class 
that provides a lot of base class functions and parameters already.

Shaders are then compiled into dynamic libraries that are loaded and executed by DNB 
during a render. New shaders are distributed and maintained on a per-show basis, but 
when they reach a certain level of usefulness/global appeal, they become part of the 
sitewide DNB distribution.

Comparison of Shaders

Over time DNBʼs shader set has expanded to four different types.  This is to allow the TDs 
as much control as possible over their renders.  It also allows them to override the DNB 
base shaders and create their own specific type shaders - e.g. their own spotlight shader.

Fluid Shaders Particle Shaders Voxel Shaders Light Shaders

Called once per 
fluid data set

Called once per 
particle data set

Called once per 
voxel

Called in voxel 
shaderʼs light loop

Act on entire fluid 
data

Act on entire 
particle data

Act on current voxel Act on lights queried 
during light loop

Have access to all 
fluid attributes

Have access to all 
particle data 
attributes

Have access to 
neighbouring 
voxelʼs data

Have access to all 
light parameters

Can create extra 
attributes

Can create extra 
attributes

Responsible for 
setting voxelʼs 
output colour & 
opacity

Provide deep 
shadowmap 
lookups

Can generate data 
procedurally

Can instance more 
particles or fluid 
data

Call light loop Provide access to 
gobos

Used to set 
opaqueness of fluid

Can cull particles 
according to LOD

Can calculate 
secondary outputs

Provide 
environment map 
lookups

!
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Shaders Parameters and UI

Shader parameters are listed in an associated xml file for each shader written:

<dnbFluidShader>
<category name="general" label="General" collapsed="false">
! <parameter>
! ! <name>useInBeauty</name>
! ! <label>useInBeauty</label>
! ! <keyable>true</keyable>
! ! <type>bool</type>
! ! <value>1</value>
! ! <annotation>Switch off to disable fluid's evaluation in camera pass (you 
could keep it on in shadow so it casts shadows but isn't visible!)</annotation>
! </parameter>
! ..
</category>
..
</dnbFluidShader>

The DNB Maya plugin can read and display these shader parameters, automatically 
creating the correct widgets.  A shader node within maya keeps track of the userʼs shader 
parameter choices and these get written to the DNB script file for the shader to use at 
render launch.

swiss army knife fluid shader UI (small section)spotlight shader UI

!
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Fluid Shaders

As previously discussed fluid shaders act directly on the data as provided by the data files.  
This allows users to change how different fluids appear on an individual basis.  For 
example, the same data file could be used with different fluid shaders and this would 
cause three different looking fluids to be rendered in the same scene.

Fluid shaders can also been used to create additional attribute data at render time.  They 
can even procedurally create all data required thereby removing the need for a data file.

The densityFluidShader:

The following code shows one of the most useful features of fluid shaders - describing the 
opaqueness of a fluid,  i.e. the user is basically saying a certain density value is equivalent  
to an opacity value of 1.0.

// The shade function can be used to do alterations to the
// fluid data (i.e. the Maya/squirt fluid data) before the render occurs.
// It is usually faster to do some operations here rather than in the 
// voxel shader since fluid resolution is generally << voxel resolution

bool densityFluidShader::shade(fluid_struct& fluid_structure)
{
! // Lets convert density to opacity according to shader parameter curves
! const float opaque_density = (m_renderInfo->render_pass == "camera") ? 
fluid_structure.camera_opaque_density : fluid_structure.shadow_opaque_density;

! vector<float>::iterator density_iter = fluid_structure.hd_attributes.density.begin();
! const vector<float>::iterator density_end_iter = 
fluid_structure.hd_attributes.density.end();

! while(density_iter != density_end_iter)
! {
! ! *density_iter /= opaque_density;

! ! if(*density_iter > 1.0)
! ! ! *density_iter = 1.0;
! ! if(m_renderInfo->render_pass == "camera")
! ! ! *density_iter = DensToOpac.linear_lookup(*density_iter);
! ! else
! ! ! *density_iter = ShadowDensToOpac.linear_lookup(*density_iter);
! !
! ! ++density_iter;
! }
! return true;
}

Here follows some code snippets from a similar fluid shader as it processes a particular 
(temperature) attribute with more typical fluid shader controls:

class uberFluid: public dnbFluidShader {
private:
! int !! ! temperatureMode;
! bool!! remapTemperature;
! float!! temperatureMin;
! float!! temperatureMax;
! ramp !! tempRemap;
}

!
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bool uberFluid::shade(fluid_struct& fluid_structure) {
! vector<float>::iterator temp_iter = fluid_structure.hd_attributes.temperature.begin();
! const vector<float>::iterator temp_end_iter = 
fluid_structure.hd_attributes.temperature.end();
! while(temp_iter != temp_end_iter) {
! ! if (remapTemperature) {
! ! ! float tempNorm = linstep( temperatureMin, temperatureMax, *temp_iter) ;
! ! ! *temp_iter =  tempRemap.linear_lookup( tempNorm );
! ! }
! ! ++voxel_index ;
! ! ++temp_iter;
! }
}

which translates to the Maya UI as:

fluid shader snapshot with temperature remapping 

This can be utilized to bring differently simulated fluids into the same range so they all sit 
together, or to emphasise particular differences between sims, like bring up an area of 
hotness in the core of a large explosion.
We also provide the ability to remap attributes for example using temperature from a fluid 
sim as the density of a render. Also available are four generic slots (two for float attributes 
and two for vectors) where a user can specify any custom attribute to pass across to the 
voxel shader, where they could be used to multiply against opacity via ramps or get sent 
out as secondary outputs.

!
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Particle Shaders

Particle shaders in DNB work in a slightly different fashion to fluid shaders - the renderer 
lets the user load whatever arbitrary attributes from the particle file the user sees fit, then it 
is up to the shader writer to populate a struct which contains the standard attributes that 
the voxel shader expects. Essentially, there are less restrictions put on what will be read in 
here compared to fluid loading since particles tend to get fairly arbitrary attributes created 
in different packages, and fluid simulations usually deal with quite specific attributes. But 
this is of course at the expense of greater shader complexity!
So a typical particle shader (looking at a single attribute) might allow for things like:

void simpleParticle::setParticleAttributes()
{
! if (m_age_attribute==0)
! ! setOptionalAttribute( "age" );
! else setOptionalAttribute( "ageNormalized" );
}

bool simpleParticle::init()
{
! if (m_preprocessAge) ! m_renderInfo->preprocess_data.user_attr_float_1 = true;
! return true ;
}
bool simpleParticle::pre_shade( std::vector< dnbParticle >& particles )
{
! if ( !m_hasAgeNormalized ) particles[i].AddAttribute( "ageNormalized", 0.0f );
! if (m_age_attribute==0)
! ! particle.AttributeOffset( "age", m_ageNormalizedOffset );
! else !particle.AttributeOffset( "ageNormalized", m_ageNormalizedOffset );
! return true;
}

// It is safe to assume that this function will only be called within the bounding sphere 
of each particle
bool simpleParticle::shade( const dnbParticle& particle, const GML::Point3f& 
localPosition, particle_attributes_struct &attributes)
{
! // Sort out Age
! float ageNormalized = 0 ;
! if ( ageScaleEnabled || m_ageOpacityRemapEnabled || age_density_remap_enabled || 
m_preprocessAge) {
! ! ageNormalized = particle.GetFloatAttribute( m_ageNormalizedOffset ) ;
! ! ageNormalized = linstep ( age_normaliser.x, age_normaliser.y, ageNormalized ) ;
! ! ageNormalized = age_norm_remap_advanced.linear_lookup ( ageNormalized ) ;
! }
! if ( preprocess_data.user_attr_float_1 ) {
! ! attributes.user_attr_float_1 = ageNormalized ;
! }

! return true;
}

Basic particle shaders instance either a radial blob of density or a sphere of noise on to 
each particle as discussed elsewhere in the course with regards to other renderers - a 
shader that allows for fluid instancing will be discussed here in the production focussed 
section.

!
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Voxel Shaders

Voxel shaders are at the heart of the DNB rendering process and this is where all the hard 
work gets done.  The dnbVoxelShader base class provides a lot of functionality and a very 
simple shader can be written in just a few lines:

// Note this shader uses the base class' light_primary call
// (which may be overloaded by your own version instead if you like)

// The aim of this call is to set Ci[0] and Oi[0]

bool generalVoxelShader::shade(
! vector<voxel_struct>* voxel_structure,
! int voxel_index,
! const ms& E_ms,
! vector< IMG::RGBf >& Ci,
! vector< IMG::RGBf >& Oi)
{
! const voxel_struct& cur_voxel = (*voxel_structure)[voxel_index];

! const GML::Point4f cam_pt(cur_voxel.centre_pt);

! // Set colour initially to zero in case we don't shade this voxel
! Ci[0] = IMG::RGBf(0.0, 0.0, 0.0);

! // Opacity is unchanged
! Oi[0] = cur_voxel.opacity;

! // Light loop
! if(GML::fgtz(Oi[0].r) || GML::fgtz(Oi[0].g) || GML::fgtz(Oi[0].b))
! {
! ! if( !light_primary(Ci[0],Oi[0],cur_voxel,cam_pt,E_ms) )
! ! ! return false;!!
! ! Ci[0] *= UseColourData ? cur_voxel.colour : VoxelColour;
! }

! return true;
}

This shader will automatically light the voxel correctly via the base class light_primary
() call.  A param also decides whether to use the colour contained in the voxel data or 
some user defined (via shader parameters) colour.

The IsosurfaceVoxelShader:

The following example is more complicated and uses DNBʼs isosurface normal voxel 
attributes to enable DNB to lookup an environment texture map.  The overall effect is to 
light the fluid with the environment map and where the size of the isosurface normal 
vectors is greatest this causes a surface to appear as the lookup is strongest - essentially 
an isosurface occurs.

bool isosurfaceVoxelShader::shade(
! vector<voxel_struct>* voxel_structure,
! int voxel_index,
! const ms& E_ms,
! vector< IMG::RGBf >& Ci,
! vector< IMG::RGBf >& Oi)
{
! voxel_struct& cur_voxel = (*voxel_structure)[voxel_index];

!
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! const GML::Point4f cam_pt(cur_voxel.centre_pt);

! // Set colour initially to zero in case we don't shade this voxel
! Ci[0] = IMG::RGBf(0.0, 0.0, 0.0);

! // Opacity is unchanged
! Oi[0] = cur_voxel.opacity;

! // Light loop
! if(GML::fgtz(Oi[0].r) || GML::fgtz(Oi[0].g) || GML::fgtz(Oi[0].b))
! {
! ! // Lets iterate over the local voxels to average the iso-surface normal

! ! const GML::Vector3f orig_isosurface_normal = cur_voxel.isosurface_normal;

! ! if( LookupTechnique != NONE )
! ! {
! ! ! GML::Vector3f meaned_isosurface_normal;  // Initially (0.0, 0.0, 0.0)

! ! ! vector< int > neighbours( m_n_total_lookups );

! ! ! vector< int >::iterator i_neighbours = neighbours.begin();
! ! ! const vector< int >::iterator i_neighbours_end = neighbours.end();

! ! ! if( LookupTechnique == RANDOM )
! ! ! {
! ! ! ! m_renderInfo->seed_random_generator( static_cast<unsigned int>
( voxel_index ) );
! ! ! ! while( i_neighbours != i_neighbours_end )
! ! ! ! {
! ! ! ! ! // get random values from this thread's random number generator
! ! ! ! ! const int x = static_cast< int >( m_renderInfo->random_value() * 
m_x_range_plus_one - m_x_half_range_plus_half );
! ! ! ! ! const int y = static_cast< int >( m_renderInfo->random_value() * 
m_y_range_plus_one - m_y_half_range_plus_half );
! ! ! ! ! const int z = static_cast< int >( m_renderInfo->random_value() * 
m_z_range_plus_one - m_z_half_range_plus_half );

! ! ! ! ! *i_neighbours = voxel_index + x * voxel_x_step() + y * voxel_y_step() + z * 
voxel_z_step();

! ! ! ! ! ++i_neighbours;
! ! ! ! }
! ! ! }
! ! ! else if( LookupTechnique == REGULAR )
! ! ! {
! ! ! ! for(int x = -XLookupRange; x <= XLookupRange; x += XRegularStepping)
! ! ! ! {
! ! ! ! ! for(int y = -YLookupRange; y <= YLookupRange; y += YRegularStepping)
! ! ! ! ! {!
! ! ! ! ! ! for(int z = -ZLookupRange; z <= ZLookupRange; z += ZRegularStepping)
! ! ! ! ! ! {
! ! ! ! ! ! ! *i_neighbours = voxel_index + x * voxel_x_step() + y * voxel_y_step() 
+ z * voxel_z_step();

! ! ! ! ! ! ! ++i_neighbours;
! ! ! ! ! ! }
! ! ! ! ! }
! ! ! ! }
! ! ! }

! ! ! i_neighbours = neighbours.begin();

! ! ! while( i_neighbours != i_neighbours_end )

!
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! ! ! {
! ! ! ! meaned_isosurface_normal += (*voxel_structure)
[ *i_neighbours ].isosurface_normal;

! ! ! ! ++i_neighbours;
! ! ! }

! ! ! meaned_isosurface_normal /= static_cast<float>( m_n_total_lookups );

! ! ! // Modify vector for light shader calls

! ! ! cur_voxel.isosurface_normal = meaned_isosurface_normal;
! ! }
! !
! ! if( !light_primary(Ci[0],Oi[0],cur_voxel,cam_pt,E_ms) )
! ! ! return false;

! ! // Set vector back so that other voxel lookups are correct

! ! cur_voxel.isosurface_normal = orig_isosurface_normal;

! ! Ci[0] *= UseColourData ? cur_voxel.colour : VoxelColour;
! }

! return true;
}

IsosurfaceShader shader results:

Using a random lookup of 100 nearby voxels produces a blurred look.

!
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In this render a regular grid lookup was used instead with the nearest surrounding voxels 
used to generate a meaned isosurface normal.  As a result the image is less blurred and 
with a less dithered look.

A more interesting result is shown here due to the voxel isosurface normals being varied 
so as to effectively bump map the fluid!

!
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Finally we have the compulsory teapot render!  No Siggraph Course should be without 
one!

Light Shaders

Light Shaders not only describe the shading effects for a light but they literally describe the 
full light. In fact, within Maya, DNB shaders are loaded and then become DNB Light nodes 
- effectively replacing the use of Maya lights.  As a result, at render time DNB has access 
to all light attributes as well as shader parameters.
 
The base lighting classes in DNB look after the effect of each light on the voxel shader 
when it does its light_primary() call. But each light could override the functions from 
the base class if it wanted. DNB has native support for the following types of lights: spot 
light, point light, ambient light, directional light. In practice, the spot light is used in 95% of 
renders, and the main thing the light shader is relied on for is to do shadowmap lookups.

In theory, one could modify anything in the voxel structure in the light shader. In practice, it 
just modifies the colour. An important distinction is that this isn't the shader that gets run 
when generating the shadowmap - that is run through all the same processes as a beauty 
render, just from the point of view of the light and with a deep shadowmap rather than 
image being generated.

!
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Though DNB gives the ability to TDs to modify most aspects of the process as they see fit, 
we have seen very little need to customize light shaders in production - but custom 
controls for falloff on a pointlight were added on a recent show to match a setup that was 
look-developed in compositing. 

bool specialLight::shade(
! IMG::RGBf& Cl, IMG::RGBf& Os,
! GML::Point3f& Ps, GML::Vector3f& L,
! IMG::RGBf& Cl_shadow, ms& L_ms,
! GML::Vector3f& /*N*/)
{
! Cl = colour_intensity * pFalloff(L);
! if( !gobos( Cl, Os, Ps, L, Cl_shadow, L_ms ) )
! ! return false;
! return true;
}

const float specialLight::pFalloff(const DNB::Vector3f& L)
{
! float decay = 1.0;
! float fadeout = linstep( m_near_clip, m_far_clip, L.length() ) ;
!
! if(m_shading_light.decay_rate != none)
! {
! ! const float length_L_squared = fadeout * fadeout;

! ! if(m_shading_light.decay_rate == linear)
! ! ! decay /= sqrt(length_L_squared);
! ! else if(m_shading_light.decay_rate == quadratic)
! ! ! decay /= length_L_squared;
! ! else if(m_shading_light.decay_rate == cubic)
! ! ! decay /= length_L_squared * sqrt(length_L_squared);
! ! else
! ! ! cerr << "dnbLightShader:  Unknown decay rate" << endl;
! }

! return decay - 1;
}

The spotlight deepshadow() lookup has also been overridden to do a blurred shadow 
lookup to get softer edges to shadows, and give the appearance of less blocky shadows 
when using a low resolution shadowmap source.

!

26
The DNB Volumetric Renderer



Shaders in Production
Throughout the last 6 years of DNBʼs use, it has been found that what most TDs desire is 
the flexibility to produce either a completely correct beauty “out of the box”, which means 
providing maximum levels of control over any parameters that could improve the look of 
the final image, or else to be able to send as many useful arbitrary outputs to the 
compositing stage, so that the right look could be found there without any need for re-
rendering. Many shaders have been written during the rendererʼs life with these goals in 
mind; it is our intention to set out the main features of some of the more useful ones as it is 
our belief that this aspect of the renderer is just as important as some of the more intricate 
aspects of the renderer internals. Due to many of these being written in production by TDs 
who did not always have a strong programming background, much importance was placed 
on the renderer being open to programmable extensions without significant understanding 
of the underlying mechanisms being always required.

Inkheart Levelset Shader

On a project featuring a character made 
entirely out of smoke, it became 
necessary to swap out a rigid character 
from inside smoke sims that were 
supposed to envelope him as when he 
moved quickly, as limbs could suddenly 
become apparent and his geometric 
nature became apparent.
Using levelset code that had been 
added to Squirt, fluid grids were 
generated encapsulating the characterʼs 
volume. In DNB a fluid shader was 
implemented to take the phi attribute (a 
user attribute, not one supported by 
DNB as standard) per fluid and convert 
the levelset information to density at 
rendertime in the shader.
Parameters were added to: 
• control softness of falloff
• implement displacement maps 

and mask textures for local control/detail 
• add noise based on the texture coordinate on the surface closest to the current levelset 

position
• animate expanding noise so patterns on characterʼs surface looked simulated not static
Being a fluid shader made it possible to generate separate levelsets for hands, arms, 
body, head, and custom texture maps for each. By rigidly constraining the levelsets to the 
animation rig, resolution could be tailored for each body part based on shot requirements.
It was found to be a powerful additional tool in DNBʼs volume rendering arsenal, created 
by TDs without having to change the renderer's underlying code or architecture.

part of the levelset shader parameters UI

!
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Hellboy 2 / Harry Potter / Sorcerer's Apprentice Fire Shaders

Fire was an effect that first came up for DNB on Hellboy 2, then reappeared again and 
again on subsequent shows. A particular setup has evolved using our "uber" fluid and 
voxel shaders that seemed to give compositors flexibility to create various different looks 
for the fire without needing resims or even rerenders, so 
in order to make it as easy as possible to keep 
consistency in fire setups, specific fluid and voxel 
shaders were produced which utilized code from the 
earlier shaders but only exposed a subset of the controls.
Having the same codebase as the main multi-purpose 
shaders allowed for ease of code maintenance; having 
only a limited subset of parameters exposed made life 
easy for newbie TDs. It was additionally installed with 
good fire-looking presets per-show after initial lookdev, 
but always with the end target being the same secondary 
outputs based on the proven methodology (age, density 
and temperature mapped to an RGB ramp) that plugged 
into a standard comp template.

Fire passes, clockwise from bottom left: 
density remap, temperature remap, age remap, 
typical raw beauty colour output, composite produced 
using the remapped secondary outputs



2012 Smoke Shaders

The standard practice for rendering smoke type effects is a little less well defined, as the 
desired look can vary greatly. As a result of this, a very general purpose shader is usually 
used, a variant of DNBʼs "uber" / swiss-army knife shaders. On 2012, there were four main 
types of smoke render - the massive ashclouds, airborne smoke trails coming from 
lavabombs, ground impact dust when lavabombs or earthbombs hit the yellowstone 
environment, and masonry-type dust from collapsing structures in St. Peter's Square.
The common trick used across these smoke types was to render shadowmaps with a 
('orange') multiplier on each colour channel of the opacity - so the shadow opacity 
multiplier red channel had a density similar to the beauty opacity, the green channel had a 
lower value (typically 30% the red value) so more light penetrates the medium, and the 
blue channel had a very small value (perhaps 5% of the red) such that most light 
penetrated very deeply, or virtually all the way through the medium from the light's point of 
view.
When these shadowmaps were looked up in the beauty pass, a cyan looking result was 
achieved, where the red channel could be used for quite a harsh rim light, the green gave 
the average "typical" light falloff, and the blue channel could be used for filling in detail so 
no areas had to be completely in shadow from any light.
The beauty output would use a colour-correcting set of multipliers so a good balance of 
the lighting could be found without having to recalculate shadowmaps. The untweaked 
light colours were written as secondary outputs so that compositors had the power to 
make the same lighting decisions without needing a re-render.

Standard secondary outputs like depth, density, age and temperature were then also 
output as colour ramps, and if texture coordinates had been simulated getting advected 
through the fluids, 3d noise could be written as a colour for 2d to use - or it could be 
remapped into a density ramp to tweak the opacity in certain areas to increase the amount 
of apparent detail in the sim at rendertime. For render efficiency, checks must be put in 
place to ensure particular attributes are needed - the voxel shader passes information 
back to the fluid shaders via the renderInfo structure, the fluid shaders then check for 
these signals and activate the attributes accordingly. 

!
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So the voxel shader might contain in the init() function

if ( ((noiseCoords==TEXTURE) && ((noiseMix>0)||(noiseBlendMode>0))) || (texBlendMode>0)) 
{ !
! cerr << "uberVoxel: preprocessing texture" << endl ;
! m_renderInfo->preprocess_data.texture = true;
}

which is then picked up on by the fluid shaderʼs pre_shade() call - this is executed after the 
fluid and voxel inits, but before any shading occurs:

doTexture = (m_renderInfo->preprocess_data.texture) || (noiseSpace==2) || 
(colourMode==3) ; 
// possible that texture is needed even when voxel shader hasn’t asked
// since fluid shader can use it to drive density and colour too
if (doTexture) {
! if (!fluid_structure.contains_texture) {
! ! cerr << "uberFluid: creating texture" << endl ;
! ! if(!createFluidAttribute(fluid_structure, "texture"))
! ! ! ! return false;
! ! }
! else cerr << "uberFluid: texture found - processing." << endl ;
}

and then we can iterate over the texture attribute and fill it from disk in the fluid shaderʼs 
shade() as has been shown for other attributes:

if (doTexture) texture_iter = fluid_structure.hd_attributes.texture.begin();
//etc

!
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2012 Particle Shaders

Standard Particle Shading Practice in DNB

As is typical with many other volume renderers, when DNB wants to render particles it 
gives the user the option of sticking some sort of radially fading soft blob onto each point, 
or generating noise in the volume around the point. 

On 2012 we found the need to go a lot further than what was provided to the user out of 
the box, so we did the typical DNB workflow of writing a shader which did roughly what we 
wanted, and then handed the code over to R&D to make it production worthy. In this case 
we wanted to instance many thousands of pyroclastic bursts to give the appearance of a 
massive wall of exploding ashcloud. The shots this technique would be used for were 
isolated from the bulk of our (very dynamic, not as expansive a scale) ashcloud shots but 
had to match in look, so we wanted to use our base ashcloud sims but in numbers 
impossible to implement using our normal fluid rendering pipeline.

Instancing Shader Initial Approach 

Our workflow was to generate a surface to represent the wall of ashcloud, put particles on 
the surface, pass the surface normal as an attribute on the particles to DNB, and instance 
one of a selection of animated ashcloud sims on to each particle.
An existing scattering shader used a single fluid sequence instanced on particles as a 
source for the scatter, so we took this code as a basis for our work, and fleshed out the 
parameters and attributes that our shader would need to give us the right behaviour - 
orientation, fluid id/multiple sequences support, growth controls with age, frame of the fluid 
sequence to pull in, etc.

Particle render types, clockwise from top left: 
radial density falloff, procedural fluffy noise, 2012 
style instanced fluids

!
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The shader was written to allocate density buffers for the storage of the fluid data e.g.

! size_t! ! ! m_res;
! size_t !! ! m_res2d;
! size_t! ! ! m_res3d;
! float* !! ! m_noiseBuffers;

init() {
! m_noiseBuffers = new float[ m_fluidBufferCount * m_res3d ];
! for (as many fluid buffers as you want):
! ! float* densityBuffer = NULL;
! ! densityBuffer = new float[ density_size ];
! ! zenVoxelReader.readFullGrid( fAttr, densityBuffer, 2 ) ; 
! ! // and a bit of other code to get the zen file read in
! ! int index = m_res2d*z + m_res*y + x;
! ! float densValue = densityBuffer[index];
! ! densValue = m_fluid_density_ramp.linear_lookup( m_densityMultiplier * densValue ) ;
! ! m_noiseBuffers[currentBuffer*m_res3d + index] = densValue ;
! ! delete[] densityBuffer;
}

shade() {
! // nearest_neighbour_lookup, trilinear_interpolation also supported
! size_t localIndex = static_cast<size_t>( noisePos.z + 0.5f )*m_res2d +
! ! ! ! static_cast<size_t>( noisePos.y + 0.5f )*m_res +
! ! ! ! static_cast<size_t>( noisePos.x + 0.5f );
! size_t absIndex = bufferIndex*m_res3d + localIndex;
! density = m_noiseBuffers[ absIndex ];
}

but of course with this naive approach we ran into such obvious problems as massive 
memory consumption when trying to allocate many buffers (one for each frame of the fluid 
we wanted to instance, and we were trying to instance many fluids). But as proof of 
concept went, this was a great way for us to work out all the mechanisms involved in the 
setup, how to setup our particles, and so on. 

Instancing Shader Optimised Approach

At this stage we could either live with our limitations (on most shows this would have been 
fine, but not on the epic to beat all epics that was 2012) or look to somebody who knew 
what they were doing - enter R&D, and statically allocated density buffers which could be 
shared across particle systems, and deallocated on demand, to optimise memory use.

struct InstanceInfo {
! float* data;
! int instanceCount;
! InstanceInfo() :
! ! data(NULL),
! ! instanceCount(0)! {! };
! ~InstanceInfo() {!delete[] data;! };
};
class Particle : public dnbParticleShader {
private:
! std::vector< InstanceInfo* > m_fluidInstances;
! static std::map< std::string, InstanceInfo* > s_instancedFluids;
! bool initFluidInstance( const std::string& filename, int bufferId ); 
! ! // what used to happen in-line in init()
! bool populateBuffer( const std::string& filename, float* instanceData );
! std::vector<std::string> m_instancedFilenames;
}

!
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//Each instance of a particle shader creates its own structures..
initFluidInstance( const std::string& filename, int bufferId ) {
! InstanceInfo*& instance = s_instancedFluids[ filename ];
! if ( !instance )
! ! instance = new InstanceInfo;
! m_fluidInstances[bufferId] = instance;
! m_instancedFilenames[bufferId] = filename;
! if ( instance->data ) {
! // if the data is already loaded, increment the instance count and return
! ! ++instance->instanceCount;
! ! return true;
! }
! instance->data = new float[ m_res3d ];
! ++instance->instanceCount;
! populateBuffer( filename, instance->data );
}
!
populateBuffer( const std::string& file, float* instanceBuffer ) {
! zenVoxelReader.readFullGrid( fAttr, densityBuffer, 2 ) ; 
! // and a bit of other code to get the zen file read in
! for( int x=0; x < xVoxelRes; ++x ) {
! for( int y=0; y < yVoxelRes; ++y ) {
! for( int z=0; z < zVoxelRes; ++z ) {
! ! int index = xVoxelRes*yVoxelRes*z + xVoxelRes*y + x;
! ! float densValue = densityBuffer[index];
! ! densValue = m_fluid_density_ramp.linear_lookup( m_densityMultiplier * densValue ) ;
! ! instanceBuffer[index] = densValue; 
! ! // So we're assigning to an instance->data buffer 
! ! // which is static in memory and shared across shader instances
! } } }
}
// and it had a fluid destructor too!
// this lets us clean up any buffers that we're done with e.g. if different particle 
shaders/fluid instances are being used across the width of the frame

Once these corrections to the code were made, the TDs were able to get on with cranking 
up the instance numbers and generating their pretty pictures. 

!
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Example shot from 2012: ashcloud was too epic to construct from fluids through standard methods, so 
particles were distributed across a sculpted ashcloud surface, and pyroclastic sims instanced into that. 
Lavabomb trails also used procedural noise blobs to avoid the need for fluid simulation
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2. History and overview

The volume rendering pipeline at Imageworks has been developed over the last 5 years. Originally a set 
of Houdini plugins for modeling and rendering, it has grown into a larger tool set that integrates 
volumetrics-related tasks from modeling and processing to simulation and rendering. 

An important part of the pipeline is the Field3D library, which was released under an open source 
license in 2009. Field3D is the foundation of all volumetric tools and provides the glue that lets each tool 
communicate with the others both through .f3d files and directly in-memory using the Field3D::Field 
data structures. 

To provide an overview of the development of the tools, the following is a rough history:

2005-2007 : Spiderman 3
Svea was written to model and render dust and distant sand effects. Version 1 of FieldTools were 
developed as part of the Sandstorm tool set which was used to model, simulate and render Sandman.  
At this point an in-house file format based on GTO was used (called IStor). 

2006–2007 : Beowulf
Fire shading and rendering capabilities added to Svea. Support for the previous fire pipeline’s file 
format (.cache) was added, and was used to bring Maya Fluids caches into Svea for rendering. In 
order to handle the sharp features of fire, an adaptive raymarch scheme was implemented. Camera 
and deformation motion blur for procedural volumes was implemented using ray differentials to 
determine sample density.

2007–2008 : Hancock
A Python interface was added to Svea in order to integrate it with the in-house lighting software 
(Katana). A sparse field file format and data structure was added to Svea in order to handle the high 
resolution voxel buffers used to model the tornadoes. An extension to the holdout algorithm allowed 
volumetric holdouts to be used so that each of the six tornado layers could be broken out and 
manipulated separately in compositing. Multiple scattering was implemented to create realistic light 
bleeding effects from lightning strikes inside tornadoes.

2008–2009 : Field3D
The Field3D library was developed in an effort to unify the volumetric-related tools. Svea was 
updated to use the Field3D data structures as its native format for voxel buffers. The FieldTools were 
re-written (version 2) to support Field3D data structures natively in the Houdini node graph, 
allowing very high resolution fields to be manipulated interactively. A FLIP-based gas solver, a GPU-
accelerated SPH liquid solver, and a suite of fluid-related vector field manipulation tools became the 
FluidTools package.

2009–2010 : Alice In Wonderland
A new particle-based advection scheme was added to the gas solver which allowed decoupling of the 
density simulation field from the underlying velocity field while still remaining fully coupled in 
terms of affecting the behavior of the simulation. Svea was updated with new empty space-
optimizations to render the sparse but high-resolution (often over 40003) voxel buffers efficiently. On 
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the pipeline side, the interface to Svea in the lighting package (Katana) was improved so that the full 
pipeline could be accessed and controlled both through Houdini and the Python API.

All in all, the tools have been used in: Spiderman 3, Beowulf, Surf's Up, Hancock, Speed Racer, Valkyrie, Body of 
Lies, G-Force, Watchmen, Cloudy With a Chance of Meatballs, and Alice In Wonderland. 

2.1. Pipeline overview

Modeling

Animation

FX

Lighting

Compositing

Field3D files

EXR images EXR images

Flow of data between departments

Seen at the broadest scale, volume modeling and rendering is accomplished in the effects and lighting 
departments. For certain types of elements, the effects department will handle both modeling and 
rendering/lighting of volumetric elements. In other cases effects only handle modeling of the 
volumetrics and pass off Field3D files to the lighting department for final rendering. In both cases final 
rendering is done using Svea, outputting one or more EXR files as the final product. 
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2.2. The volumetrics toolkit
The tools used to create volumetric effects at Imageworks fall into four basic categories (volume 
modeling, processing, simulation and rendering) and are accomplished by three different modules. 

2.2.1. FieldTools & FluidTools
For interactive processing of voxelized data we use a suite of Houdini plugins called FieldTools. These 
offer a parallel workflow to Houdini’s own volume primitives, and are used to connect and manipulate 
all field- and voxel-related data in the effects pipeline. The tools perform tasks such as field creation, 
level set conversion, calculus and compositing operations, attribute transfer from/to geometry, etc. Some 
of the main features are:

• Support for multiple data structures. The FieldTools use the data structures from Field3D as their 
internal representation, and any subclass of Field3D::Field may be passed through the node graph. 
This lets the user mix densely allocated and sparse fields, as well as MAC fields (used in fluid 
simulation) in the same processing operation. 

• Resolution, mapping, data structure and bit depth independent processing of fields. Operations that 
apply to multiple fields can mix resolutions arbitrarily, and also lets the user mix fields of different 
mappings (i.e. different transforms). Most algorithms are optimized for certain data structure 
combinations (such as dense-dense, sparse-sparse), but fall back to generic code in order to support all 
data structures. Because Field3D’s I/O classes support multiple bit depths, the user can also freely use 
any combination of half/float/double to save memory or provide extra precision where needed.

• Field3D fields flow in their native form through the Houdini node graph. Using a shared memory-
manager, FieldTools, FluidTools (and Svea) can pass live fields (Field3D fields in the Houdini node 
graph) between each other with no copying or other overhead. 

• Multi-layer support. Any number of fields may flow through a single node connection, for example 
when converting complex geometry into multiple separate level sets and velocity fields.

• Procedural and boundless fields. Procedural fields can co-exist with voxelized fields, and can both be 
used interchangeably. Procedural fields such as Perlin noise or Curl noise can be sampled at any point 
in world space (i.e. even outside their designated bounds), but still respond to transformation 
operations such as translation, scale and rotation.

• Hardware acceleration. Most of the voxel processing tools (resizing/resampling, blurring, distortion) 
are implemented in both as CUDA-optimized and multithreaded CPU code, taking advantage of 
hardware acceleration where available, but falling back on a CPU version that produces identical 
results if no compatible graphics card is available.

For liquid and gas simulation Imageworks uses a proprietary framework that connects directly to the 
FieldTools in order to input live Field3D fields from the Houdini node graph into the fluid simulators, 
and to give the rest of the system direct access to the simulator’s internal simulation fields. The gas 
simulator is based on the FLIP algorithm and uses a hybrid particle/field-based advection algorithm 
with very low numerical dissipation. Two liquid simulation schemes are used – one FLIP-based for 
voxelized liquids, and a GPU-accelerated SPH solver for particle-based fluids.
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2.2.2. Svea
The volume modeling and rendering tools at Imageworks go by the name Svea (Sony Volume 
Engineering Application). Some of its key features are:

• Extendable and scalable modeling pipeline. An API gives TDs and developers the ability to extend 
most stages of the modeling pipeline using plugins. Rasterization and instantiation primitives can 
both be extended, and a secondary stage for processing of instantiated geometry (Filters) makes for a 
modular workflow. To ensure that large data sets can be generated, the pipeline can operate in a batch/
chunk-mode where data is processed piecemeal, in order to keep memory use under control. 

• Flexible rendering pipeline. Svea is a raymarch-based renderer, and the scene graph is implemented as 
a shade tree, which lets users build complex trees of volumes/shaders inside the Houdini node graph. 
The Svea also offers a plugin API for extending the types of volumes supported by the renderer. 

• Resolution independence. The interaction between the raymarcher and the shade tree uses physical 
units which makes the renderer agnostic of aspects such as the underlying resolution of voxel buffers, 
or even whether the data is supplied by voxels, some procedural function, or a combination of both. 

• Effects and lighting artists both have access to the full feature set. Both the modeling and rendering 
tools are exposed through the Houdini plugins and Katana (via the Python API). This allows effects 
artists to not only hand off voxel buffers of data to be rendered by lighting, but to create entire setups 
that utilize the full modeling and rendering pipeline, which can then be used and tweaked by lighting 
artists. In the Production examples section we will discuss how this was used on Alice In Wonderland to 
let lighting artists handle volumetric effects on over one hundred shots.

• Integration with FieldTools pipeline. Any live field present in the Houdini node graph can be rendered 
directly in Svea, and voxel buffers created by Svea can be passed back into the Houdini node graph and 
processed by other tools without having to write any data to disk. Likewise, the shade tree that is built 
and evaluated during the raymarch step can be rasterized and returned to Houdini as voxel data.

Although Svea and FieldTools support both voxel buffers and procedural volumes, Svea leans towards a 
procedural approach where voxel buffers are but one instance of generic volumes, and FieldTools leans 
towards discrete (i.e. voxelized) volumes where procedural volumes act as immutable, infinitely high-
resolution voxel buffers.
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2.2.3. Integration of components

.py scriptKatana 
(lighting package)

FieldTools 
plugins

Svea Bake To 
Disk ROP

Fluid simulation 
plugins

Particle data Geometric 
primitives

Svea Render ROP

EXR Images

Field3D live fields Svea Rasterizer 
SOP

Svea Python Module

Field3D I/O

Files on disk

Data in Houdini 
node graph

Svea tools

 Field/FluidTools

Legend

Houdini 
plugin Data

Data flow between various parts of volumetric pipeline

The diagram above illustrates how the volumetric tools are exposed to the user and how data flows 
between the various parts. We can see that there are several categories of tools that need to interact: 

• The FieldTools and FluidTools (in red) all work independently and communicate by passing Field3D 
fields directly through the Houdini node graph. We refer to these fields as live fields, and to distinguish 
them from Houdini’s native primitives they are also blind data when see by Houdini’s built-in nodes. 
These fields may flow into the volume rendering part of Svea (Svea Render ROP) regardless of their 
origin, making it possible to directly render previews of running fluid simulations and field 
processing operations, without having to write a file to disk.

• The Svea plugins in Houdini (blue), which are responsible for volumetric modeling operations as well 
as for rendering volumes into final images. Modeling operations take geometry data from the node 
graph (particles, curves, and surfaces) and rasterizes the data into Field3D fields. Voxel rasterization 
can happen in any of the four modules, and is only dependent on receiving a scene description, which 
can be supplied either directly from the Houdini node graph or through the Python API. The 
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rasterized volumes can either be raymarched directly (in the Svea Render ROP), be output back into the 
Houdini node graph (the Svea Rasterizer SOP) or written to disk (the Svea Bake To Disk ROP).

• The lighting application (Katana) uses Svea through the Python API, and creates Svea volume 
primitives in the Katana scene graph, which are then translated into a generic scene description form 
and written to .py files. Once translated, the Svea scene description is identical to the data passed from 
Houdini to the Svea OPs, and exposes the full Svea processing pipeline, including both modeling and 
rendering operations.
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2.2.4. Examples
To illustrate how the various tool sets are integrated we will now see how some simple tasks are 
accomplished in the volume pipeline.

This first example shows how a piece of geometry (torus node) is converted into a level set representation, 
modulated by a noise field, and converted back to geometry for visualization. Although the tools are 
resolution independent, sharing the domain and voxel resolution between both the level set and the 
(voxelized) noise field is more efficient as the plugins detect that the operation may be performed in 
voxel space, and avoids unnecessary coordinate space transformations.

Processing level set data using FieldTools operations
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The next examples illustrates how the various tools can work together across functional boundaries to 
accomplish a task. All data is shared between the various plugins, and the voxel buffer created inside the 
voxel rasterization node is available directly to the distortion node. In this case, the resulting density 
buffer is visualized using OpenGL, but it could also be rendered by Svea and be accessible to any part of 
its shade tree. The field distortion code is GPU-aware and will execute on CUDA-compatible graphics 
cards, or revert to an identical CPU implementation if no graphics card is available. 

Svea nodes (blue), FieldTools nodes (green) and FluidTools (red) used in conjunction

Svea point primitive distorted by noise vector field Distortion only affects top of noise point after 
modulating vector field by a gradient ramp
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In this third example, the same noise point is animated and used as a density source in a fluid 
simulation. The flexibility given by this level of integration and direct interaction between components 
is important in production work, where each added step in a process is a potential source of errors and 
user mistakes. 

Using a Svea primitive as a density source in a fluid simulation, and a voxelized vector field as a force input

A key design objective was to maximize the utility of both the in-house and the existing tools in 
Houdini. With this in mind, it is possible to convert Field3D fields to and from Houdini’s native volume 
primitives, and also to a particle system representation which allows the artist to manipulate volume 
data in Houdini’s native expression language as part of their workflow. The proprietary volume 
primitives also interact efficiently with Houdini’s built-in transformation nodes,  so that arbitrarily high 
resolution data sets can be moved around a scene in real-time.
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3. Volume modeling pipeline
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Volume modeling and rendering pipeline

The graph above shows how the Svea modeling pipeline processes and combines data in a number of 
ways in order to create a Scene (which is effectively a shade tree). Voxel rasterization is often the method 
used, but the pipeline is not limited to just voxels – instead it maintains a plugin system of 
VolumeMakers whose task it is to turn each item of the scene description into one or more Volumes that 
is part of the final Scene (the Shade trees section will describe this in more detail). 
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The Scene Construction Description contains a set of GeometryData objects, each of which contains a basic 
set of primitives and points along with global, primitive and point attributes. This serves as the basic 
description of how each Volume should be created.

• N GeometryData objects
• Detail (global) attributes
• Primitives, primitive attributes and primitive groups
• Points, point attributes and point groups

Once the VolumeMaker class pool is handed the scene construction description, it will dispatch each 
GeometryData object to its appropriate VolumeMaker (based on a global attribute), which extracts 
information about how to set up its particular type of Volume. Some examples of VolumeMakers are:

• File I/O, which reads Field3D and other supported volume formats from disk.
• Rasterization pipeline, which creates voxel buffers. (Described in more detail in the next section.)
• Each type of procedural volume also uses a VolumeMaker to configure its look, based either purely on 

global attributes, or on more complex input types, like geometry.

While the rasterization pipeline falls squarely in the volume modeling side of things, some procedural 
volumes blur the line by doing their modeling work at render-time, as part of the shade tree evaluation 
itself. Procedural noise banks, compositing- and attribute manipulation-operators are some examples. 
This is in contrast to parts of the shade tree that deals only with rendering tasks, such as marking 
volumes as holdout objects, nodes for render-time deformation blur, etc. The shade tree will also be 
described in more detail further on in these notes.
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The following diagram shows the rasterization pipeline in more detail, and the next sections will 
describe two of its key features: Generators and Filters.

Fractal functions Noise functionsSplatting primitives Rasterization primitives

Voxel Buffer

Filtered Geometry 
Data
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Quick specks
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fBm fractal
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Geometry Data
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Filters Filters Filters
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3.1. Generators
Svea’s mechanism for instantiation-based primitives is called Generators. During the volume modeling 
process, each GeometryData instance can spawn an arbitrary number of Generator objects, each getting 
access to the GeometryData of its creator. This is done so that a single Generator object may handle 
instantiation for any number of primitives in its input. 

Each generator may in turn create N new GeometryData objects, which are either further recursed, or 
passed to the filtering stage and then rasterized. Because the amount of data generated by a single 
Generator can be arbitrarily large (production scenes sometimes involve billions of point instances), this 
batch-processing mode is needed in order to guarantee that rasterization will finish given a finite 
amount of available memory. Some examples of generators available in Svea are:

• Speck Spline – curve-based point instantiation.
• Speck Surface – surface-based point instantiation.
• Cluster – a space-filling algorithm that instantiates points based on the configuration of an input 

particle system. Used for everything from white water to mist and smoke-like effects.

Underlying primitive Preview of distortion noise

Preview of point instantiation Rendered result
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Generators are only instantiated inside the volume modeling pipeline, and because of this they can be 
less than intuitive to use. For this reason we provide several ways of previewing the result of the 
instantiation. Each generator’s parameters are controlled using a specialized SOP in Houdini, which is 
able to preview the effects of all of its parameters directly as Houdini guide geometry. We also provide a 
specialized SOP which replicates the generator pass in the modeling pipeline, so that instantiation can 
be executed directly within the Houdini node graph, passing the instantiated points as its output. These 
have in combination proven to be a good way to accelerate the artists’ efforts when doing effects look 
development and production work. 

In the illustrations above, readers may notice a slight discrepancy between the geometric preview of the 
distortion noise and the final result. Because the geometric preview only samples a given depth offset 
(measured along the normal from the root primitive), it only represents one slice of points in the final 
instantiated output. This slice plane may be placed at any depth by the user, allowing preview of the full 
volume.

3.2. Filters
Filters act as the final set of shaders before a primitive gets rasterized. They are instantiated and 
executed based on attributes set either by the user in the Houdini node graph, or by attributes created in 
a Generator. Filters are a type of shader that have access to the full state of the GeometryData instance 
before it gets rasterized. 

Some examples of Filters:

• Texture projection. Allows images to modulate the opacity, color or any other attribute of a 
rasterization primitive.

• Attribute randomizer. Used to create per-primitive variation post-instantiation. Especially useful for 
randomizing velocity vectors of instantiated points.

• Camera-based projection. Used to project the film plate itself into a volumetric element.

The effect of filters can be previewed using the same tool that is used to preview point instantiation (as 
described above).

3.3. Procedural volumes
We generally distinguish between ordinary Volumes, which create volumetric data, and AdapterVolumes, 
which modify attributes in the shade tree (see below). Volumes can be both leaf and branch nodes in the 
shade tree (depending on whether they are driven by the properties of a secondary volume), whereas 
AdapterVolumes always reside at branch points (they required an input).
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Some examples of regular Volumes are:

• Voxel buffers. The primary source of volumetric data.
• Procedural noise banks. Used to add detail at render-time.

Some examples of AdapterVolumes:

• Compositing volumes. Used to combine the values of one or more volume nodes.
• Texture projection volumes. Allows render-time projection of images into the scene. (The texture 

filter mentioned in the previous section is applied at rasterization time.)
• Density fit functions, for manipulating already-rasterized data at render-time.
• Vector blur & distortion. Used for deformation blur of fluid simulations, and for artistic effects.
• Arbitrary shaders, written by TDs to manipulate other attributes in the shade tree

The Volume classes provided with Svea serve most common volume rendering tasks, and usually the 
plugins that get written are AdapterVolumes. However, both Volumes and AdapterVolumes are written 
as C++ plugins and can be extended by TDs and developers as needed.

An examples of how Volumes are implemented is provided in the Shade trees section below.
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4. Volume rendering

4.1. Svea’s rendering pipeline
A fundamental part of Svea’s rendering pipeline is the Scene object, which contains a reference to the 
root of the shade tree, as well as information about the camera and the scene’s lights. The shade tree can 
range in complexity from a single node (in the case of rendering a single voxel buffer), to complex 
configurations of tens or hundreds of nodes, several levels deep. The nodes in the shade tree are all 
Volume instances (which is what was created in the volume modeling process described previously). 

Volumes have a very simple interface:

class Volume:
{
public:
 virtual Color value(const Attribute &attribute, const SampleState &state);
 virtual void getIntersections(const Ray &ray, std::vector<RaymarchInterval> &outIntersections);
};

struct RaymarchInterval
{
 float t0, t1;        // Start and end of interval
 float sampleDensity; // Required number of samples per length unit
};

struct SampleState
{
 V3f wsP;             // World-space sample location
 V3f dPds, dPdt, dPdu // Pixel derivatives in x/y, and raymarch step size
};

We note that all volumes return a spectral color from the value call – even scalar voxel buffers convert 
their results into a Color, and the raymarcher only deals with spectral properties. Also, in order to better 
support sparse volumes, each Volume may return an arbitrary number of intervals that should be 
raymarched, along with the required sample density for each. The sample density relates to the volume’s 
frequency content and is an indication of its Nyquist limit. One alternative would be to find the most 
restrictive sampling density in the scene and use that throughout, but using a varying step length helps 
speed up rendering of areas that do not require fine sampling.

The following is a slightly simplified list of steps needed in order to render an image:

• For each pixel in the output image
• Intersect ray against scene. This yields N raymarch intervals
• Split raymarch intervals into non-overlapping segments
• For each split interval, starting nearest camera

• Run raymarch loop, updating transmittance and luminance
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When multiple volumes are visible to the ray we need to make sure that they are each sampled 
appropriately. Different volumes may have different frequency content, and may required different 
sampling densities. The illustration below illustrates the problem where two volumes overlap.

Intervals

Split intervals

50

500

50
500

500

Volume 1
50 × 50 × 50 voxels

Volume 2
500 × 500 × 500 voxels

Camera ray

During raymarching, all volumes are sampled together (the raymarcher only sees the root node of the 
shade tree). Because Volume 1 requires much fewer samples than Volume 2 we see that we only need to 
sample at 500 samples/length-unit for the portion of the ray that overlaps the second volume; in the first 
interval 50 samples/length-unit will be sufficient. We therefor split the intervals created from the 
intersection points in the scene into non-overlapping segments, and choose the most conservative sample 
rate in each segment.

Once we have a set of non-overlapping RaymarchIntervals, we can proceed to raymarch each of them, 
starting nearest the camera. The raymarching algorithm itself is fairly simple, with the addition of an 
adaptive sampling scheme (described below) and routines for deep shadow holdouts, volumetric 
holdouts and light shaders.
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4.2. Shade trees
In the illustration of splitting raymarch intervals above, there were two volumes, but it was also 
mentioned that Svea only sees one volume – the root of the shade tree2. In reality, the structure for the 
example would have been:

 root (GroupVolume)
 Volume 1 (VoxelVolume)
 Volume 2 (VoxelVolume)

The GroupVolume is a simple Volume class that groups N volumes together and composites their output 
using some trivial operation (i.e. sum, max, mult). Because it is a Volume subclass, it also needs to 
respond to getIntervals(), which it does by calling the same member function on each of its children. 
While this is a short example, it shows how the shade tree functions in its simplest form. 

class GroupVolume : public Volume
{
public:
 virtual Color value(const Attribute &attribute, const SampleState &state)
 {
  Color value(0.0f);
  for (VolumeVec::iterator i = m_children.begin(); i != m_children.end(); ++i) {
   value += i->value(attribute, state);
  }
  return value;
 }
 virtual void getIntersections(const Ray &ray, std::vector<RaymarchInterval> &outIntersections)
 {
  for (VolumeVec::iterator i = m_children.begin(); i != m_children.end(); ++i) {
   i->getIntersections(ray, outIntersections);
  }
 }
 void addChild(Volume::Ptr child) 
 {
  m_children.push_back(child);
 }
};
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We notice that the value() call takes an Attribute parameter. The shade tree in Svea supports an 
arbitrary number of attributes flowing through it, and makes no assumptions about what properties any 
of its Volume members choose to expose. Seen in further detail, the shade tree example above contains a 
few more pieces of information:

 root (GroupVolume)
 Attributes:

 emission
 extinction
 velocity

 Children:
 Volume 1 (VoxelVolume)

 Attributes:
 emission
 extinction

 Volume 2 (VoxelVolume)
 Attributes:

 emission
 extinction
 velocity

When raymarching a scene Svea always looks for a basic set of attributes (see below). The shade tree may 
make use of any number of other attributes in the process of evaluation, although any extraneous 
attributes exposed by the root node will be ignored by the raymarcher. Thus, velocity would be ignored 
by the raymarcher, but could be used by other Volumes, for example to apply motion blur or distortion 
effects. The set of basic attributes that the raymarcher samples from the root of the shade tree are:

• scattering, used to determine in-scattering and out-scattering.
• extinction, used for absorption.
• emission, used for self-illuminating volumes like fire.
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Volumes can also act as a form of shader, altering the appearance of other Volume instances. For example, 
fire in Svea is shaded at render-time from simulation buffers containing temperature and density 
representations. In this case, it exposes a different set of attributes to the raymarcher than its inputs 
provide.

 fire (FireShader)
 Attributes:

 emission
 extinction
 velocity

 Children:
 simulation (VoxelVolume)

 Attributes:
 temperature
 density
 velocity

4.3. Adaptive raymarching
Sharp transitions in density are a problem for raymarchers. While voxel buffers behave nicely (i.e. vary 
smoothly) if their contents are rendered directly using interpolation, shaders and procedural volumes 
based on voxel buffers can make transitions arbitrarily sharp. Fire shaders are one notable example – 
they often use steep transitions to increase the perceived resolution of the simulation. For example, even 
if the voxel spacing of a simulation is ∆x, the output of the shader may go from zero to full density/
luminance in distances as short as 0.1∆x or less. In order to prevent noise in the final image the 
raymarcher must reduce its step length such that these sharp transitions are captured.

One approach that is particularly easy to implement is to use each raymarch step’s contribution to the 
final pixel value as the heuristic for whether finer sampling is needed. If the contribution is greater than 
some user-defined threshold (say 1/256’th of pure white color), then the current raymarch step is 
discarded, the step length is halved and a new calculation takes place.

In slightly simplified code (ignoring lighting calculations, holdouts, etc.), the algorithm can be 
implemented as:

float t0, t1;
int numSamples;
scene->intersect(ray, &t0, &t1, &numSamples);
float stepLength = (t1 - t0) / static_cast<float>(numSamples);
// Luminance and transmittance
Color T = 1.0f, L = 0.0f;
// t0 and t1 for each individual raymarch step
float step_t0 = t0;
float step_t1 = t0 + stepLength;
while (step_t1 <= t1) {
 Color Lstep, tau;
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 // Sample point
 float t = (step_t0 + step_t1) * 0.5f;
 // Calculate incoming luminance and optical thickness
 lightingCalculation(scene->root, ray(t), &Lstep, &tau);
 // Account for current transmittance and step length
 Lstep *= T * stepLength;
 // Before applying the result, determine if we need to supersample
 if (max(Lstep) > threshold) {
  // Change step interval and recalculate step
  stepLength *= 0.5f;
  step_t1 = step_t0 + stepLength;
  // Terminate current step here
  continue;
 } 
 // Apply results
 L += Lstep;
 T *= exp(-tau * stepLength);
 // If contribution is low we can increment step length
 if (max(Lstep) < threshold * 0.25) {
  stepLength *= 2.0f;
  step_t0 = stepT1;
 } 
 // Increment step interval
 step_t0 = step_t1;
 step_t1 += stepLength;
}

The algorithm has some notable benefits – it works without any knowledge of how the lighting 
calculation happens or how density translates to changes in transmittance. And because it is only 
dependent on the given step’s contribution to the final pixel luminance it automatically takes into 
account both the current transmittance, which in turn incorporates holdouts, etc. This makes the 
oversampling less strict as the ray marches further into a volume, in effect being most sensitive at the 
first steps into a volume, which is where it is usually needed.

The code can be further modified to look at the change in luminance relative to current pixel 
luminance, and also to look at changes in transmittance. These both work well in production but are left 
as an exercise to the reader.
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Cross section of raymarch samples through a fire volume

Cross section of raymarch samples with adaptive sampling enabled

In the following images, a simple fire element is raymarched at various step lengths to illustrate the level 
of oversampling that is necessary in order to completely remove noise from a render. The brute-force 
solution of globally increasing sample density is several times slower than implementing an adaptive 
strategy, when comparing achieved noise levels.

Step length Time per frame

1 voxel 21s

1/16 voxel 5m

1/64 voxel 20m 30s

1/2 voxel, adaptive refinement 2m
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1 sample per voxel 2 samples per voxel, adaptive refinement

16 samples per voxel 64 samples per voxel
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4.4. Empty space optimization
Depending on the input to the renderer, raymarching may constitute a large or small portion of the 
overall render time. As an example, scenes involving expensive rasterization primitives may take several 
times longer to compute than the final raymarch, whereas procedural volumes are next to instantaneous 
to create, but potentially expensive to evaluate at raymarch time. One of the easiest ways to reduce the 
time spent in the raymarcher is to optimize away as much as possible of the empty space in the scene. 

So far, we have always intersected each ray against the domain of the voxel buffer, or whatever volume 
constitutes the scene to be rendered. This implies that all parts of the domain are equally important to 
sample, and that all parts could potentially contribute to the final image. Of course, most volumes have 
some number of zero-values in their domain (although some do not, for example homogeneous fog). 
The challenge lies in determining which areas contain data, without testing every possible sample 
location. Fortunately, depending on the input type, the cost of evaluation and the data structures used, 
there are often ways to quickly analyze which areas may excluded.

4.4.1. Level sets
Certain volume types are especially expensive to evaluate, without necessarily having very high Nyquist 
limits (i.e. required sampling frequencies). As mentioned in the Adaptive raymarch quality section, 
simulation buffers for fire are one example: the shaders normally used to render a simulation’s 
temperature and density buffers contain sudden transitions which give the fire its sharp features. 
Deformation blur is also required when rendering fire, making the evaluation of a raymarch even more 
expensive. For data sets of this type, it may be less expensive to visit each voxel of the buffer once, 
evaluating its shader and velocity, marking it as either empty or contributing, then rendering the 
optimized scene, than to blindly raymarch the entire scene. 

Level sets are especially useful in this context. They work both for storing the information, for providing 
a simple construction method, and for performing efficient ray intersection tests. We simply create a 
level set with the same domain as the simulation buffer, sample each voxel’s shader result and velocity 
vector, and if the shader is non-zero we rasterize a sphere of radius abs(v) * dt into the level set. During 
rendering, for each ray fired by the raymarcher, we simple intersect it using a root-finding algorithm to 
find a more efficient raymarch interval than the simulation domain provides.

The following pseudo-code implements construction of a level set that also takes into account motion 
blur:

void calculateLevelSet(const DenseField<float> &temp, const DenseField<float> &dens,
                       const DenseField<V3f> &v, const Shader &shader, LevelSet &outputLs)
{
 outputLs.setSize(dens.size());
 outputLs.setMapping(dens.mapping());
 for (int k = 0; k < size.z; ++k) {
  for (int j = 0; j < size.y; ++j) {
   for (int i = 0; i < size.x; ++i) { 
    Color emission = shader.eval(temp.value(i, j, k), dens.value(i, j, k));
    if (max(emission) > 0.0f) {
     Vector motion = v.value(i, j, k) * globals.dt();
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     float radius = max(1.0, motion.length() / outputLs.voxelSize());
     outputLs.writeSphere(i, j, k, radius);
    }
   }
  }
 }
}

While it may seem expensive to check the value of each voxel, it is important to remember that the 
raymarcher will be interpolating values at least the same number of times, and often more. 
Interpolations are much less cache-friendly than traversing voxels directly, and in practice the time 
spent generating acceleration structures using this method is at least an order of magnitude less than an 
unoptimized render. 

The images below show how the distribution of sample points is improved during final rendering:

Plot of raymarch samples after intersecting primary rays against the simulation domain (left) and against a level 
set (right)
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4.4.2. Using the buffer’s data structure
If the voxel data structure itself optimizes away unused space it is often possible to take advantage of that 
information during raymarching. We will examine the case of sparse blocked (tiled) arrays here, but the 
example extends to many other structures as well.

Intersecting an array of blocks is straightforward, and can be implemented either by testing the bounds 
of each block individually against the ray, or by using a 3D line drawing algorithm to find the blocks that 
overlap the ray’s path.

Fluid simulation element Wireframe display of sparse block bounds

Raymarch sample placement, primary ray 
intersected with buffer domain

Raymarch sample placement, primary ray 
intersected against sparse blocks

The added cost of a more complex intersection test is far outweighed by the improvement in speed 
gained from sampling less. Even for mostly-full data sets the cost of ray intersection is negligible 
compared to that of raymarching a single ray.
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4.4.3. Frustum buffers
Because frustum buffers by definition have one voxel axis perpendicular to each camera ray we can 
perform some pre-processing that analyzes which voxels along each ray path contains non-zero values, 
and use that for the RaymarchInterval when queried by the raymarcher. As mentioned before, visiting 
the voxels once to build this acceleration structure is much cheaper than performing the interpolated 
lookups that the raymarcher does during final rendering.

For densely allocated voxel buffers there is no option but to visit each voxel along each scanline, but just 
like the example above sparse data structures provide valuable information about which voxels have data 
in them. For the SparseField data structure we simply need to check the contents of each SparseBlock, 
improving the generation speed of the acceleration map by several orders of magnitude.

Once the acceleration map is built, it can be represented as a pair of scalar 2D images, one for the first 
intersection distance, and the other for the end of the interval. For a dense buffer of high resolution 
(2048 × 1556 × at least 100 slices), acceleration map generation can take a bit over 10 seconds, but for 
sparse buffers the generation time is just a fraction of a second.
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5. Production examples

The following section aims to show how all the techniques that are described in this course are used in 
actual shot production. Rather than describe exactly how each effect is accomplished from animation on, 
we will focus on which volume rendering techniques were used, why they were used, and how they 
helped accomplish the final result.

5.1. Hancock – Tornadoes
One of the major effects sequences in Hancock features tornadoes sweeping down on Hollywood 
Boulevard. The storm clouds in the background were modeled using existing rasterization primitives 
but the volume renderer had to be extended on several fronts in order to accomplish the tornado effects. 

The first new development was the Generator concept, which is how Svea implements instantiation-
based primitives. A surface-based primitive was used to model the core of the tornado, and a curve-based 
one was used to create wispy features that tore off the main funnels. The illustrations on the next page 
show some examples of how the look was accomplished with only a few hundred primitives per funnel.

Final shot from Hancock. © 2008 Columbia Pictures. All rights reserved.
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Keeping the primitive count low helped maintain interactivity in Houdini and allowed the effects artists 
to fine-tune animation without having to run expensive simulations. The rasterization was, in contrast, 
quite expensive and shots with full-frame tornado funnels took several hours for the voxel buffers to 
compute.

The second big R&D task was to figure out how to store and render the multiple (often over 20) different 
high-resolution frustum buffers used in a single scene. A block-based sparse data structure was written 
(this later served as the foundation for Field3D::SparseField), which reduced the memory use for 
individual frustum buffers greatly. But even reducing the memory use of an average full-frame frustum 
buffer (roughly 2048 × 1556 × 400 × 16 bit) from almost 2.5GB to around 500MB meant that only around 
10 could be loaded at once if enough memory was to be left for other rendering tasks. To solve this an 
out-of-core memory model was developed, using an LRU cache to decide which blocks would stay in-
memory. Using this scheme it was possible to set a fixed cache size (often less than 1GB) which was then 
shared between all loaded buffers, keeping memory use under control.

Illustrating the use of surface and curve primitives. 
© 2008 Columbia Pictures. All rights reserved.

Volume rendering at Sony Pictures Imageworks 31



5.2. Cloudy With a Chance of Meatballs – Stylized clouds
One of the more prominent volumetric effects in Sony Animation’s Cloudy With a Chance of Meatballs is 
the “Dock” sequence, where the first food-producing clouds sweep in over the city, in this case raining 
hamburgers. The clouds were highly stylized, literally forming hamburger shapes, but even though they 
weren’t intended to be photorealistic, they had to be highly detailed and highly art directable both in 
terms of animation, modeling and lighting. 

After experimenting with point-based rasterization primitives the artists found that it didn’t give them 
enough control to create continuous features across the surface of the clouds. Level set-based approaches 
gave more control in shaping the clouds, but weren’t intuitive and interactive enough. Instead, surface-
based volumetric primitives were constructed out of the geometry handed off by the animation and 
modeling departments. The instantiation-based primitives were driven by attributes that could be 
visualized interactively in Houdini, and could be manipulated using tools already familiar to the artists.

Hamburger clouds from »Cloudy With a Chance of Meatballs«. 
© 2009 Sony Pictures Animation Inc. All rights reserved.
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Hamburger clouds from »Cloudy With a Chance of Meatballs«. 
© 2009 Sony Pictures Animation Inc. All rights reserved.
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5.3. Alice In Wonderland – Absolem, the smoking 
caterpillar

Final shot of Absolem – the smoking caterpillar. 
 Alice in Wonderland and artwork © 2010 Disney Enterprises, Inc. All rights reserved.

Perhaps the most technically challenging part of Alice In Wonderland (for the effects department) was 
the simulation and rendering of Absolem’s smoke. The production design and concept artwork 
suggested an incense-like smoke, with sharp features that faded away but did not diffuse. 

The first problem regarded the representation of the smoke. In many shots the smoke covered the entire 
frame, which meant that resolutions would have to be at the very least 2k across, and in many cases 
much higher. 

The second problem regarded the simulation of the smoke. Although some initial tests indicated that 
simulations run at low resolutions (i.e. the resolution of the simulated velocity field) gave the fluid 
animation a more appropriate look for the scale of the scene, there was still the problem of providing 
enough resolution in the visual result to maintain completely sharp features. To solve the problem a 
hybrid field/particle advection method was developed. Grid-based advection methods need to calculate 
advection in all voxels in the domain because it is non-trivial to determine which voxels will have 
density flowing into them. On the other hand, advection of particles is well suited to sparse volumes, 
because they only require advection calculation of parts that contribute to the visual result of the 
simulation, i.e. the locations where particles exist). Still, a hybrid approach was used because the smoke 
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field had to be coupled to the underlying velocity field simulation (for rising smoke to behave correctly), 
and density sources and sinks were specified as density field inputs. The voxelized representation of the 
particles was created by splatting of the particle density values into a Field3D::SparseField, and 
changes to the grid representation were applied to the particles using a FLIP-like3 algorithm by 
calculating per-voxel derivatives after the application of grid modifications. The voxel buffer is also what 
was written to disk for final rendering.

Rendering the high resolution voxel buffers required a few developments both on the file format and on 
the Svea side. The Least-Recently-Used cache scheme used on Hancock for reading of sparse fields was 
replaced with a Clock cache4, and incorporated into the I/O routines of SparseField in the Field3D 
library. The block structure of each SparseField was then used to optimize the raymarch interval of 
each ray, so that only areas with density present had to be sampled. This reduced the render times of the 
highest resolution simulations from more than 10 hours to under 90 minutes. Apart from overall 
density adjustments, the voxel data was rendered without any shaders applied. 

The highest resolution voxel buffers used were over 4000 × 4000 × 3000, but sparse enough that they 
could be simulated in under 5 minutes/frame using around 400 million particles, and used just over 
200MB of disk space.

Final shot of Absolem – the smoking caterpillar. 
Alice in Wonderland and artwork © 2010 Disney Enterprises, Inc. All rights reserved.
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5.4. Alice In Wonderland – The Cheshire Cat

Alice in Wonderland and artwork © 2010 Disney Enterprises, Inc. All rights reserved.

After some initial tests of the Cheshire Cat’s “evaporating” effect it was decided that the look had to be 
very subtle, only highlighting the motion of the cat as he disappears and reappears. The idea was to 
make the effect look as if the transformation left a trail of substance behind, where the trail would carry 
the same color properties as the cat from each location it streamed off of.

Some initial tests of birthing particles from the surface were successful in carrying the surface properties 
from the cat, but could not achieve a smooth enough look, even when using several million particles. A 
different approach of advecting the cat’s color properties directly into a fluid simulation proved too hard 
to control. Instead, the final solution used a combination of both techniques, with the addition of a 
couple of custom Svea plugins in order to handle point instantiation and plate projection at render-
time.

The first step was to convert the cat’s geometry to a level set so that points could be scattered uniformly 
throughout the inside and along the surface. A fluid simulation was then run, using the motion of the 
cat as a “target field” (i.e. kinetically driving the simulation), but without any collision geometry. The 
cat’s motion was blended in an out in various areas to accentuate the motion as desired.  

Using a combination of the simulation field and procedural noise fields, a particle simulation was 
created for the trail streaming off the cat, recording each particle’s birth frame and location. A custom 
Generator plugin called Cluster2 was then written, which filled in the space between each particle and 
its neighbors smoothly. (Cluster was originally developed as a RenderMan DSO for creating white water 
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effects on Surf’s Up.) This resulted in turning the 50,000 or so original particles into tens of millions of 
instanced particles, giving a smooth final appearance while keeping simulation times at a minimum.

Instead of carrying the color properties of the cat on each particle, which would have resulted in a very 
blurry image, a Filter was implemented that performed texture lookups on each instanced point, after 
the Cluster instantiation was performed. 

Finally, the simulated particles were rendered together with the points scattered inside the cat’s body, 
giving a final result that had the trail element integrated into the final lighting element without having 
to resort to holdouts (and their potential artifacts). The compositor could then blend between the lit 
element and the volume render arbitrarily. 

Alice in Wonderland and artwork © 2010 Disney Enterprises, Inc. All rights reserved.
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5.5. Alice In Wonderland – A mad tea party
Atmospheric mist and fog was featured heavily in some sequences in Alice In Wonderland and it was 
clear early on that the modeling and placement of the elements would depend greatly on the lighting in 
each shot. Effects artists are usually responsible for modeling volumetric effects, but in this case it would 
have been too time consuming to accomplish an iteration if two departments had to be involved with 
each change to a shot.

Instead, a library of volumetric elements was built which was used by lighting artists as a set dressing 
tool. The library included both fluid simulations (for ground mist) and point clouds configured as 
rasterization primitives (for mist and background fog). These library elements were then wrapped up 
into Katana primitives which lighting artists could duplicate, reposition, and vary the settings of.

Deferring the rasterization of volumes meant that frustum buffers could be generated on-the-fly at 
render time, instead of being rasterized by effects artists and stored on disk. (Creating libraries of pre-
baked voxel buffers usually forces the use of uniform buffers instead of frustum buffers.) This approach 
reduced the amount of disk space needed for the library, and because primitives were rasterized after 
being repositioned, there was always enough detail available – something that would be hard to achieve 
with baked-out voxel buffers. A separate set of “negative” voxel buffers were also provided, which let 
artists subtract density at render-time, for example around the table and along the path leading off into 
the woods. 

The misty environment at the mad tea party was modeled and rendered by lighting artists using a library of 
volumetric elements provided by the effects department. 

Alice in Wonderland and artwork © 2010 Disney Enterprises, Inc. All rights reserved.
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Alice in Wonderland and artwork © 2010 Disney Enterprises, Inc. All rights reserved.
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