
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Parallel Surface Reconstruction for Particle-Based Fluids

Gizem Akinci Markus Ihmsen Nadir Akinci Matthias Teschner

University of Freiburg, Germany

Abstract
This paper presents a novel method that improves the efficiency of high-quality surface reconstructions for
particle-based fluids using Marching Cubes. By constructing the scalar field only in a narrow band around the
surface, the computational complexity and the memory consumption scale with the fluid surface instead of the vol-
ume. Furthermore, a parallel implementation of the method is proposed. The presented method works with various
scalar field construction approaches. Experiments show that our method reconstructs high-quality surface meshes
efficiently even on single-core CPUs. It scales nearly linearly on multi-core CPUs and runs up to fifty times faster
on GPUs compared to the original scalar field construction approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel Processing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Particle-based methods have been gaining increased inter-
est in a broad range of applications, e. g. in movies, com-
mercials and medical simulations. Various fluid phenom-
ena are simulated using particle-based methods, including
complex scenerios with more than ten million particles
[IABT11]. However, the reconstruction of detailed, smooth,
and artifact-free surfaces for large particle sets is generally
a bottleneck due to computational complexity and memory
requirements.

In recent years, many researchers have worked on the
efficient rendering of particle data sets. View-dependent
GPU-based methods, e. g. [ALD06, MSD07, FAW10], and
view-independent polygonization techniques, e. g. Marching
Cubes (MC) [LC87] or Marching Tiles [Wil08], are widely
used in this field.

In the context of MC, it is important to note that the em-
ployed grid cell size significantly affects the quality of the
reconstructed surface and the computation time. In order to
obtain smooth surfaces and to catch fine details, small cells
are required, which in turn scales the computation time cu-
bically (see Fig. 1).

Another important aspect is the computation of an ap-
propriate scalar field which matches the underlying flow as
good as possible together with suppressed surface bumps.

Commonly employed smoothing techniques [ZB05, SSP07,
APKG07, YT10] consider particles within an influence re-
gion in the computation of scalar values at grid points. Sim-
ilar to the MC cell size, the size of the influence region, i. e.
the number of considered particles per query point, signif-
icantly affects the quality of the reconstructed surface and
also the computation time. Depending on the MC cell size
and the size of the influence region, up to 90% of the compu-
tation time is spent on constructing the scalar field, whereas
the triangulation is rather efficient.

Our contribution. In this paper, we present techniques to
improve the performance of high-quality surface generation
for particle-based fluids. While many surface reconstruction
approaches process all grid nodes (vertices), we propose to
improve the efficiency by only considering grid nodes in a
narrow band around the surface, without introducing com-
plicated data structures. We also propose a parallelized algo-
rithm for CPUs and GPUs to further improve the efficiency
on modern architectures. Our method scales nearly linearly
on multi-core CPUs and runs up to fifty times faster on
GPU than the original scalar field construction approach. Al-
though narrow band techniques are not new to the literature
and there are some sophisticated techniques that were pro-
posed in recent years, e. g. sparse block grids [Bri03], run-
length encoding (RLE) methods [HWB04], our approach
is especially designed for efficient parallelization on shared

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

Figure 1: Close-up view of the reconstructed surface for the corner breaking dam (CBD) scene (1.7 million particles) with
three different MC cell sizes: left 2r, middle r, right r/2, with r being the equilibrium distance of the SPH particles. The grid
sizes are 123×107×123, 245×214×245, 485×409×486, respectively. The average surface reconstruction time (scalar field
computation and triangulation) per frame for the GPU-implementation of the proposed approach is 0.3, 1.18, 15.2 seconds,
respectively. While a small cell size produces artifact-free, high-quality surfaces, a larger cell size can be processed very
efficiently for, e. g. previewing purposes.

memory architectures, in contrast to the mentioned methods.
Due to its reduced memory requirements and efficient uti-
lization of multi-core architectures, the algorithm can be ap-
plied to simulations with large particle sets using small MC
cell sizes for generating high-quality surface meshes.

As the smoothed scalar field is only computed in a nar-
row band, memory consumption and computation time scale
with the surface instead of the volume of the simulation do-
main. Therefore, unnecessary processing and data storage
are avoided. In the context of parallelization, inherent data
dependencies and race conditions are avoided. Due to the
low memory consumption and by enforcing the localism
of data, the proposed implementation does not suffer from
bandwidth limitations, and scales well on multi-core CPUs
and on many-core GPUs.

Our method works with all previously published scalar
field construction approaches, e. g. [ZB05,SSP07,APKG07,
YT10]. In our experiments, however, [SSP07] is em-
ployed as it yields very smooth and artifact-free results,
while being comparatively efficient. For the simulations,
a variant of smoothed particle hydrodynamics (predictive-
corrective incompressible SPH [SP09]) with adaptive time-
stepping [IAGT10] is used.

2. Related Work

In this work, we focus on the efficiency of scalar field con-
struction techniques to be incorporated with the commonly
used MC method [LC87]. Within the context of these tech-
niques, Blinn proposed one of the earliest approaches by in-
troducing blobbies [Bli82], where the main downside of the
approach is that it is not able to generate flat surfaces, es-
pecially for particle sets with sharp features. Later, Müller
et al. [MCG03] suggested the use of the weighted density
information of particles. While this method has improved

the quality of classical blobbies, its main issue is still the
proneness to bumpiness. Zhu and Bridson proposed to use
the signed distance field of the particles [ZB05] to ame-
liorate the bumpiness issue where each particle within a
smoothing radius contributes to the scalar field. This tech-
nique achieves smooth surfaces. However, it suffers from ar-
tifacts in concave regions and in between splashes. Adams
et al. [APKG07] addressed these issues by introducing a
distance-based surface tracking technique. This technique is
able to capture smooth surfaces better compared to [ZB05].
However, its computational complexity makes it more suit-
able for frameworks where the distance-to-surface infor-
mation of particles are computed at each time step, e. g.
adaptively sampled particle sets. Solenthaler et al. [SSP07]
also improved the method of Zhu and Bridson, where they
correct the artifacts on-the-fly by considering the move-
ment of the contributing particles’ center of mass at a cer-
tain query point. More recently, Yu and Turk [YT10] pro-
posed to use anisotropic kernels. Thereby, the particle ker-
nels are stretched or shrinked along the associated direc-
tions of the density distribution in the particle neighborhood.
Position smoothing was also suggested to obtain smoother
surfaces which causes slight volume shrinkage. The ex-
periments show that the method yields high quality sur-
faces while being computationally expensive. In contrast
to [ZB05, SSP07], the method is highly parameter sensitive
and a neighborhood search is required in each reconstruction
step for the method itself. Also, stretch/shrink operations are
unnecessarily performed for inner particles.

There exist various other approaches that address the ef-
ficient representation of fluid surfaces. Witkin and Heckbert
[WH94] proposed to use simple constraints in order to track
implicit surfaces. Polygonization can be applied for better
visual quality, however, it decreases the performance of the
method significantly. Explicit surface tracking is a recently
used approach [Mül09,BB09] that allows changing the geo-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

metric representation and manipulating the regions with thin
features. However, small droplets are likely to be missed.

Surface splatting is one of the most popular and widely
used surface reconstruction methods, which was first intro-
duced by Zwicker et al. [ZPvBG01]. Adams et al. [ALD06]
used splatting for particles, where each particle is pro-
jected as a single quad, circle or ellipse to image space
using its position and size. Overlapping particles’ projec-
tions are then blended to obtain a smooth result. More re-
cently, van der Laan et al. [vdLGS09] proposed a splatting
method which applies curvature based smoothing and thick-
ness based transparency. The splatting method runs at in-
teractive rates. However, obtaining hole-free results is chal-
lenging.

Later within the context of GPU programming, Müller
et al. [MSD07] proposed screen space meshes where 2D
meshes are constructed for particle sets. The mesh is trans-
formed to 3D world space in order to add shading effects.
Fraedrich et al. [FAW10] also proposed a view-dependent
GPU rendering method where they discretize the view frus-
tum using an adaptively sampled perspective grid. The par-
ticle data is resampled on the grid by using the SPH interpo-
lation technique and poly6 or cubic spline kernel functions.
The reconstructed scalar field is finally rendered using ray-
casting. Goswami et al. [GSSP10] introduced a distance field
volume for surface particles. In this method, the scalar field
is reconstructed by simply assigning to each near-to-surface
grid vertex the value of the distance between the vertex and
the closest particle, without any interpolation. The volume
is finally rendered using GPU ray-casting. According to the
presented results of [FAW10] and [GSSP10], high perfor-
mance rates are achieved for high-resolution scenes. How-
ever, the demonstrated images show that achieving flat sur-
faces is still challenging. Similar to our method, [FAW10]
and [GSSP10] compute a scalar field over particles. How-
ever, the scalar field computation method we prefer [SSP07]
is based on the signed distance field method of [ZB05],
where an efficient resampling function is used together with
a proper surface kernel. The signed distance field method re-
sults in an efficient smoothing over the grid, and makes the
underlying particle patterns less visible.

In order to scale both the computational amount and the
memory consumption with the surface area, different narrow
band techniques have been proposed. Müller et al. [MCG03]
suggested to visualize the free surface by first identifying
the surface cells and later applying MC on the found cells.
However, no solution was given for the possible double layer
problem and the parallelization was not discussed. Later,
more sophisticated methods have been proposed for level
set approaches. In [Bri03], Bridson introduced sparse block
grids to define the volume over a coarse uniform grid that
consists of finer uniform grids in the narrow band region.
Houston et al. proposed RLE sparse level sets [HWB04] to
encode the regions using run-length encoding with respect

to their distance to the narrow band. In [NM06], Nielsen and
Museth proposed a new structure, namely dynamic tubular
grid (DT-grid), where the narrow band is not constructed on
a regular 3d-grid or a tree but without requiring information
from outside the narrow band. In terms of efficiency, Nielsen
et al. [NNSM07] later proposed a different approach where
they handle very high resolutions using out-of-core tech-
niques together with compression strategies. Although these
aforementioned structures can reduce the memory footprint
efficiently, none of them was designed for parallel architec-
tures and they are not easily adaptable for a parallelization
technique due to their sophisticated natures.

To the best of our knowledge, no efficient parallel imple-
mentation has been proposed for a particle-based fluid sur-
face reconstruction based on MC. The aim of our paper is
to improve the performance of high-quality surface genera-
tions for particle-based fluids with an efficient parallelization
technique that runs on the narrow band.

3. Scalar Field Estimation

In general, the scalar field computation affects the surface
quality and the computation time. While [ZB05] is faster
compared to [SSP07] and [YT10], it suffers from artifacts,
i. e. spurious blobs, in concave regions. [YT10] yields very
smooth surfaces, but is rather expensive to compute, as a
neighborhood search has to be performed at each recon-
struction step. Besides, we observed that spurious blobs
might occur between splashes and in concave regions sim-
ilar to [ZB05]. Therefore, we performed our experiments
with [SSP07], as the approach reconstructs artifact-free and
smooth surfaces with reasonable efficiency.

Starting with [ZB05], Solenthaler et al. argue that the
mentioned artifacts occur in concave regions if the average
position x̄ of neighboring particles around a query point x
changes considerably faster than x. Therefore, they check
the largest eigenvalue EVmax of ∇x(x̄) to detect fast move-
ments. Hence, the isosurface of the scalar field around the
query point x is defined as

φ(x) = |x− x̄|− r̄ f (1)

where φ(x) = 0 defines the on-surface points with r̄ being
the weighted average particle radius within the influence ra-
dius of x and r denoting the equilibrium distance of the SPH
particles. In our examples, r̄ is equal to r. The factor f is
computed as

f =

{
1 EVmax < tlow

γ
3−3γ

2 +3γ otherwise
(2)

with

γ =
thigh−EVmax

thigh− tlow
(3)

and user-defined threshold values thigh = 3.5 and tlow = 0.4.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

In [SSP07], thigh = 2.0 is proposed. However, in our experi-
ments, thigh = 3.5 yields smoother results. Further, x̄ is com-
puted as

x̄ =
∑ j x jk(|x−x j|/R)

∑ j k(x−x j|/R)
, (4)

with R being the influence radius specifically used in the sur-
face reconstruction, j being the contributing particles that re-
side within distance R and k being the kernel function which
is defined as

k(s) = max(0,(1− s2)3). (5)

It can be observed that the quality of the surface is signif-
icantly influenced by R. As stated in [ZB05], radii smaller
than 4r result in bumpy/non-smooth surfaces. I. e., in or-
der to gain smooth and detailed surfaces, a relatively large
neighborhood has to be considered. According to our exper-
iments, however, larger influence radii increase the compu-
tation time for the surface reconstruction significantly, as the
number of particles to be traversed for each query point in-
creases.

4. Optimized Surface Reconstruction

The computation time for extracting smooth surfaces is
mainly influenced by the resolution of the MC grid and the
smoothing radius.

In this section, we present an implementation which per-
forms the scalar field computation only for surface vertices
(Sec. 4.1). Therefore, robust criteria are proposed for deter-
mining grid vertices that are in close proximity to the fluid
surface. Also, a parallel formulation for the scalar field con-
struction is described, which avoids inherent data dependen-
cies and is applicable to both CPUs and GPUs. Finally, we
propose an efficient triangulation procedure which avoids
computing redundant values on shared edges and scales with
the number of surface vertices (Sec. 4.2).

In the beginning of the presented surface reconstruction
pipeline, surface vertices are extracted. The extraction of sur-
face vertices can be performed by using surface particles. In
order to determine surface particles in a preprocessing step,
the smoothed color field method [MCG03] is employed. The
defined color field criterion catches the surface particles on
the main fluid body precisely, while it fails to detect the iso-
lated parts like splashes. Therefore, we also consider parti-
cles with less than 25 neighbours as surface particles.

Details of the scalar field computation for surface vertices
and the triangulation procedure are explained in the follow-
ing subsections.

4.1. Scalar Field Computation

The scalar field computation stage consists of three parts:
extraction of vertices that reside in the close proximity of

Figure 2: The double layer problem. Surface vertices are
shown by small dots (yellow ones with φ(x) ≤ 0 and black
ones with φ(x) > 0). On the left, the scalar field is con-
structed using only surface particles (blue disks), causing
the inner surface vertices (inner black dots) to have wrong
scalar values. By taking the contribution of inner particles
(gray disks), inner surface vertices have correct scalar val-
ues on the right. All blue cells in both images and also green
cells on the right are sent to the triangulation stage. How-
ever, since only blue cells pass the triangulation criterion,
the double layer problem that occurs on the left is avoided
on the right.

the surface, identification of the contributing particles for
these vertices, and finally the scalar value computation. Im-
plementation details of these stages together with an efficient
parallelization technique are described in this section.

Extracting surface vertices. Any grid vertex that is close
enough to a surface particle can be defined as a surface ver-
tex. The close proximity of any surface particle can be eas-
ily defined as an AABB around the particle which spans a
2r length in each direction. Each grid vertex that resides in
such a bounding box is marked as a surface vertex.

Using this technique, a thin region is spanned around sur-
face particles which is sufficient to extract all surface ver-
tices through which the surface is reconstructed. The scalar
field computation is performed only for these vertices, and
their corresponding data are collected in an array, namely
sur f aceVertices. Accordingly, each MC grid vertex stores
just one integer value. For surface vertices, this value is the
index of the corresponding entry in sur f aceVertices, while
it is -1 for other vertices.

Identification of the contributing particles. The extrac-
tion of surface vertices using surface particles should not be
interpreted as if only surface particles would contribute to
the final scalar field. One should keep in mind that many
surface vertices, generally except the ones in the outermost
layers, lie also in the influence radius of some inner parti-
cles. Ignoring the contributions of those inner particles leads
to erroneous scalar values and bumpy surfaces. Furthermore,
a second layer is formed inside the fluid erroneously, as il-
lustrated in Fig. 2, left and dealt with in Sec. 4.2. In order to
prevent bumpiness, we suggest to consider not only the sur-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

id
55

id
89

id
120

id
789

surfaceVerticesstartIndices

si
ze

 =
 #

 p
ar

ti
cl

es

si
ze

 =
 #

 c
el

ls

-1

0 1

i+1i

cell_id: 0
p_id:55

cell_id: 0
p_id:89

cell_id: 1
p_id:120

cell_id: i
p_id:789

-1

cell_id:
0

cell_id:
1

cell_id:
i

si
ze

 =
 #

 s
u

rf
ac

e
v

er
ti

ce
s

1

0

i

i+1

handlerArray

Figure 3: Illustration of the different arrays used during the
scalar field computation stage. Blue and gray disks repre-
sent surface and inner particles, respectively. Each parti-
cle has a handler (particle id, cell id pair) that is kept in
the handlerArray in a cell-based sorted order. The cells of
startIndices point to the corresponding start indices in the
handlerArray. Each grid vertex is responsible for keeping
one integer value, which is either -1 for inner vertices or the
corresponding index of the sur f aceVertices which keeps the
scalar field computation related data.

face, but also the inner particles’ contributions in the influ-
ence radius of any surface vertex. In the presented method,
this is accomplished by computing an AABB around the ver-
tex along the user defined influence radius, and collecting the
particles in cells which are overlapping this AABB. How-
ever, identifying the particles that lie in those cells is not
straightforward, as will be explained next.

To optimize the performance, this stage is implemented
using the Z-indexing method as discussed in [IABT11].
Thereby, the locality of spatially close cells in memory is en-
forced which reduces the memory transfer. This stage starts
by pairing the particles with their cells where the cell id of
any particle is computed as:

x =
(p−g)

s
, (6)

cc = (bx.xc ,bx.yc ,bx.zc), (7)

id = iM[cc.x] |(iM[cc.y]� 1) |(iM[cc.z]� 2) (8)

where p is the particle position, g is the minimum position
of the grid, s is the cell size of the grid, cc is the cell coor-
dinate and iM stands for the interleave map array which is
used to store the Z-order indexing entries. For each particle,
a simple structure is used to hold the particle id and its cor-
responding cell id, which is called handler. Handlers of all
particles are placed in an array, namely handlerArray. Once
a handler for each particle is prepared, the handlerArray is
sorted with respect to the cell ids. At this point a new array,
namely startIndices, is generated in the size of total cells.
Thereby, each non-empty cell points to the corresponding
entry in the handlerArray with lowest index (see Fig. 3).

Scalar value computation. The scalar value of each sur-
face vertex is computed using the particles that reside in
the AABB of the vertex. As mentioned previously, influence

Figure 4: Surface reconstruction of the CBD scene with 2r
(left) and 4r (right) influence radii. Surface reconstruction
times including the scalar field computation and triangula-
tion are 7.5 and 60 seconds average per-frame on our 6-core
CPU, respectively.

radii smaller than 4r result in bumpy surfaces (see Fig. 4).
Therefore, AABBs are created along the influence radius
of 4r. For each cell that resides in this bounding box, par-
ticles inside it are gathered using the previously computed
cell-particle pairs. Paired particles of any cell can be easily
accessed using the cell id and the startIndices array. This
array returns the particles inside the cell by checking the
handlerArray starting from the stored index until the next
cell. Finally, the scalar value of the surface vertex is com-
puted by using the contributions of these particles.

Parallelization. A major point in parallel implementa-
tions is avoiding race conditions, i. e. multiple threads should
never try to write to the same memory address at the same
time. However, this is not easy to handle in current surface
reconstruction methods due to data dependencies. Our ap-
proach is specifically designed to avoid inherent data de-
pendencies. Furthermore, by employing (Z-ordered) sorting,
consecutive memory locations are read, which reduces the
cache-miss rate and minimizes the memory transfer.

At the first stage, surface vertices are determined by sim-
ply traversing along the surface particles in parallel and find-
ing the vertices that reside in their AABB. After the traver-
sal, each surface vertex is pushed into the sur f aceVertices
together with its related data. This is the only serial part in
our implementation due to possible race conditions.

At the second stage, the handlerArray is constructed in
the size of the total number of particles. Thereby, the cell id
of all particles is computed in parallel and stored at the corre-
sponding positions. Sorting the pairs with respect to cell ids
is a part that is harder to parallelize, and generally does not
scale as good as the other parts of the method. For this aim,
parallel sorting algorithms provided by the parallel program-
ming libraries are employed. Furthermore, the generation of
the startIndices array is easily processed in parallel without
any race conditions.

At the final stage, the scalar value of each surface vertex
is computed by traversing along all surface vertices in par-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

Algorithm 1: Optimized Surface Reconstruction

foreach particle do
compute color field quantity;
mark if surface particle;

foreach surface particle do
compute AABB that spans 2r distance on each axis;
mark each vertex that lie in the AABB;

foreach particle do
compute cell id (8);
create a handler;

foreach surface vertex do
compute AABB that spans 4r distance on each axis;
find cells in AABB;
foreach cell do

find particles inside;
add up each particle’s contribution (4) ;

compute scalar value of the vertex (1);

foreach surface vertex do
create a cell;
if all eight vertices are surface vertices then

pass the cell to triangulation stage;
if cell is on-surface then

triangulate the cell

allel and by taking the contribution of the particles in the
influence radius of each one.

In the most efficient serial implementation of the em-
ployed surface reconstruction method, a scatter approach
would be used. Thereby, the particle list is traversed and the
contribution of each particle to any vertex in its influence
radius is summed up. Consequently, only the scalar values
of vertices, that are influenced by the fluid, are computed.
More importantly, the expensive neighborhood query of par-
ticles inside the influence region of a vertex is avoided. How-
ever, the parallelization of this serial implementation does
not scale well since the scalar value of a vertex might be
summed up by more than one particle at once.

In order to avoid such race conditions, we use a gather
approach, i. e. vertices gather the contribution of particles.
As we have developed various gather implementations for
the scalar field computation, we observed that the perfor-
mance is significantly affected by the neighborhood search.
Therefore, we finally employ Z-index sort [IABT11], as it
is advantageous in comparison to a variety of alternatives.
However, pure Z-index sort without narrow band incorpo-
ration is generally outperformed by the scatter approach for
up to four threads, depending on the particle resolution and
surface complexity. This is due to additional steps required
for the neighborhood search. Besides, using high grid reso-
lutions and large influence radii is mandatory for obtaining

high quality surfaces. Together with the fact that the number
of contributing particles of the inner vertices are much larger
than for the surface vertices, the number of grid vertices to
process and queried particles for each vertex increases sig-
nificantly. Therefore, we incorporated our narrow band tech-
nique in order to further improve the performance and de-
crease the memory consumption. These points are the mo-
tivation to compare our method with the scatter implemen-
tation and the pure Z-index sorting method without narrow
band incorporation (see Sec. 5) .

Our algorithm is designed for parallel architectures. In or-
der to test the scaling, both the CPU version, using OpenMP,
and the GPU version, using CUDA, were implemented. No
external parallel libraries were employed except for sorting
the handlers. For the GPU version, the parallel radix sort is
employed which is provided by the CUDA software devel-
opment toolkit, while for the CPU version, a parallel imple-
mentation of the quicksort algorithm is used, which is pro-
vided by the OpenMP Multi-Threaded Template Library.

4.2. Triangulation

After computing the scalar values for MC grid vertices, the
triangulation stage starts. In order to compute the exact sur-
face intersection points, vertex values are interpolated along
the cell edges. In a 3D MC grid, an edge can be shared by
4, 2 or 1 cell, depending on whether it is an inner, a bound-
ary, or a corner edge. The computed intersection point on the
edge never changes according to the cell that is sharing the
edge. However, this point might be computed redundantly
for each sharing cell.

In order to address the issue of redundant computations,
we use a simple yet efficient method. According to this
method, a grid vertex keeps three intersection point ids, each
of them corresponds to one of the three possible edges leav-
ing the vertex and initialized as -1. Besides, a mesh struc-
ture is used which keeps all intersection points, triangles and
normals in separate arrays. Whenever an intersection point
is computed on an edge, this point is inserted into the cor-
responding array. The index of the array element, that keeps
this point, is stored in the related vertex of the edge by chang-
ing the initial value of -1. After marching to the next cell,
vertices are firstly checked for possible past computations on
shared edges, i. e. whether the intersection point id is -1 or
larger. If such a computation is determined, previously com-
puted point data is simply obtained from the corresponding
array. Normals of the intersection points are also computed
by interpolating the normals of grid vertices, and collected
in their corresponding array. Finally, it remains to determine
the triangles using the MC look-up tables, and to collect
them in their corresponding array. This type of structure is
quite appropriate to be stored in a memory efficient indexed
mesh format (e. g. wavefront OBJ format). This technique
is used to triangulate the on-surface cells which contribute
to the final visualization. The efficient extraction of these

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

Figure 5: CBD scene with 1.7 million particles. Note that thin sheets are well preserved (left and middle) due to a small cell
size equal to r/2. The right image shows the surface in high curvature regions. Even very fine details, e. g. impact points of tiny
droplets, are catched in this frame.

cell size=r cell size=r/2
scene #particles #particlessurf

#particlestotal

#verticessurf
#verticestotal

#triangles grid res. #verticessurf
#verticestotal

#triangles grid res.

Drop 360k 0.12 0.075 87k 160×73×147 0.065 351k 320×146×293
CBD 1.7m 0.13 0.1 420k 243×204×243 0.09 1.7m 485×409×486

Hemispheres up to 2m 0.17 0.18 782k 333×63×438 0.16 3.1m 667×127×876
Hebe up to 3.2m 0.09 0.08 903k 289×314×259 0.07 6.5m 578×628×518

Table 1: General information of the presented scenes. The data are given as average per frame.

scene tsim[sec] tsp[msec] tr-o[sec] tr-t[sec]
Drop 16 90 18 120
CBD 55 444 144 -

Hemispheres 63 520 168 520
Hebe 150 850 300 854

Table 2: Averaged per frame timings of simulation, surface
particle extraction, opaque and transparent rendering.

cells is performed as follows. As stated previously, comput-
ing correct scalar values for surface vertices is essential to
prevent bumpiness. These scalar values are also used to ex-
tract on-surface cells and to avoid the double layer problem
on-the-fly. In contrast to existing approaches, that traverse
all vertices, only surface vertices are traversed at this stage.
Each surface vertex is used to create a grid cell by defining
a corner point and by using the cell size information. This
cell is sent to the triangulation stage only if all eight ver-
tices have been previously marked as surface vertices. Each
cell that is sent to the triangulation stage is checked whether
it passes the triangulation criterion, i. e. whether it is on-
surface or not. Any on-surface cell is then triangulated using
the technique which has been explained in the beginning of
the section.

The triangulation process is not parallelized, since it takes
a rather small amount of time in contrast to the scalar field
computation, which is the main bottleneck of the surface
reconstruction. However, scaling the triangulation with the

surface instead of the fluid volume brings in another signifi-
cant speed-up (see Sec. 5).

Our optimized surface reconstruction method, including
the scalar field computation and the triangulation, is sum-
marized in Alg. 1.

5. Results

In order to demonstrate the utility of our method, we applied
it to four different scenarios: Hebe, Drop, CBD and Hemi-
spheres with two different cell sizes. For all scenes, the sup-
port radius is 4r. All experiments have been performed on an
Intel Xeon X5680 with six 3.33 GHz cores, 24GB RAM and
an NVIDIA Quadro 6000 graphic card. All the reconstructed
surfaces in still images and the final videos were rendered us-
ing POV-Ray [POV11]. A detailed analysis of the presented
examples are given in Tables 1 and 2.

All timings, memory consumptions and other related data
are given as average per frame. The given surface reconstruc-
tion times throughout this section present the total time as a
combination of the scalar field computation and the triangu-
lation. GPU timings include memory allocation as well as
memory transfer to and from the graphics card. All still im-
ages of the scenes are generated with a cell size of r/2.

In a first example, we analyze the performance of the pop-
ular corner breaking dam (CBD) scenerio (see Fig. 5). In this
scene, the fluid is simulated with 1.7 million particles. In the
CPU version, the surface reconstruction takes only 2.8 sec
with a cell size of r , and about 60 sec with r/2; while it takes

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

method tsf[sec] ttri[sec] memory [GB]
scatter 31.5 7.5 4.83

Z-index-1 thread 92 7.5 4.7
Z-index-6 threads 16 7.5 4.7

Z-index-GPU 6.9 7.5 3.9(CPU)+1.2(GPU)
our-1 thread 14.4 0.18 1.39
our-6 threads 2.6 0.18 1.39

our-GPU 1.0 0.18 1.2(CPU)+0.4(GPU)

Table 3: Comparison of our method to the scatter approach
and pure Z-index sorting without narrow band incorporation
using [SSP07] for the CBD scene with a cell size of r. In the
table, tsf and ttri stand for the scalar field computation and
the triangulation time, respectively.

method tsf[sec] ttri[sec] memory [GB]
scatter 703.5 63.5 22.9

Z-index-1 thread 2000 63.5 21.8
Z-index-6 threads 350 63.5 21.8

Z-index-GPU NA NA NA
our-1 thread 343.4 1.1 4.1
our-6 threads 58.5 1.1 4.1

our-GPU 14.1 1.1 3.9(CPU)+2.1(GPU)

Table 4: Comparison of our method to the scatter approach
and pure Z-index sorting without narrow band incorporation
using [SSP07] for the CBD scene with a cell size of r/2.

1.2 and 15 sec for the GPU version, respectively. In order to
demonstrate our contribution more clearly, we compared our
method with two different implementations of [SSP07] on
this scene. Tables 3 and 4 show a performance comparison of
our method with a serial scatter implementation and a sim-
ple gather implementation with Z-index sorting, but without
narrow band. When compared to the scatter approach, the
speed-up of our method with one thread is small. This is due
to additional data structures and computations which are in-
troduced for the surface vertex determination and in order
to avoid race conditions. However, the performance of the
method shows a significant improvement proportional to the
number of utilized threads since it scales well on multi-core
CPUs and GPUs. In order to show the scaling of the method
for a larger number of CPU cores, we made an experiment on
a 24-core Intel Xeon 2.66 GHz machine for this scene which
is illustrated in Fig. 6. This figure shows that the method
scales better for smaller cell sizes. The reason for this is that
in higher resolution grids, more values are computed in par-
allel which increases the domination of the parallel working
parts over serial parts. In addition to the scalar field computa-
tion, the performance of the triangulation is also significantly
improved by scaling it with the number of surface vertices
and by avoiding redundant computations. In comparison to
the original method, a speed-up of up to 60 is achieved, see
Tab. 3 and 4. Besides, as no scalar field related data is stored
for non-surface vertices, the memory consumption is signif-

threads

sp
e
e
d
 u

p

Figure 6: The scaling of the parallel scalar field computa-
tion method for the CBD scene. The method scales well with
respect to the number of utilized threads. It yields a better
scaling for smaller cell sizes (cs) because of the domination
of parallelized parts over the serial part.

icantly reduced, which allows for using even higher reso-
lution grids. Furthermore, we compared our method to the
pure Z-index sorting method without incorporating our nar-
row band technique. The triangulation time and the memory
consumption with the pure Z-index sorting method are very
similar to the scatter approach, since both approaches scale
with the volume instead of the surface. However, the scalar
field construction takes 16 sec with a cell size of r, and 350
sec with r/2 using 6 threads, which shows that the gather
implementation without narrow band needs three threads to
outperform the scatter implementation. The incorporation of
the narrow band significantly improves the gather implemen-
tation.

The next example is the Hemispheres scene where a fluid
with up to 2 million particles flows onto two half spheres
(see Fig. 7). The surface reconstruction time of the scene is
4 sec and 108 sec on the CPU and 1.7 sec and 25 sec on
the GPU for cell sizes of r and r/2, respectively. Note that
the smoothness of the thin layer flowing on the plane and
thin sheets on the hemispheres are well preserved since a
very fine grid resolution is used (see Fig. 7). This is gener-
ally challenging to achieve for millions of particles without
using the proposed optimization techniques. The analyses in
Tables 5 and 6 show that the memory consumption of this
scene is smaller than for the CBD scene, although the ratio
of the number of surface vertices to total vertices is larger.
This is due to the average per-frame resolution of the scene
which is smaller than for CBD, since in many frames of the
CBD scene, spreading splashes result in a sparsely filled MC
grid.

The third example is the Drop scene where a water drop
falls into a filled pool (see Fig. 8). For this scene, we have
used 360k particles with an average surface reconstruction
time of 0.65 sec and 10.7 sec on the CPU and 0.5 sec and 3.8

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

Figure 7: Surface reconstruction of the Hemispheres scene with a varying particle count of up to 2 million. Note that the
smoothness of the thin flowing layer (left and middle) and the fine details of the fluid over the hemispheres (left) are well-
preserved.

scene tsf-CPU 1 thread tsf-CPU 6 threads tsf-GPU ttri memCPU[MB] memGPU[MB]
Drop 3.3 sec 0.6 sec 0.37 sec 0.05 sec 271 CPU(265)+GPU(85)
CBD 14.4 sec 2.6 sec 1.0 sec 0.18 sec 1390 CPU(1201)+GPU(410)

Hemispheres 21.1 sec 3.8 sec 1.5 sec 0.27 sec 1143 CPU(980)+GPU(302)
Hebe 36.6 sec 7.1 sec 2.3 sec 0.62 sec 2575 CPU(2224)+GPU(591)

Table 5: Performance of the presented scenes for scalar field computation (tsf) and triangulation (ttri) together with memory
consumption using a cell size equal to r. All data are average-per-frame.

scene tsf-CPU 1 thread tsf-CPU 6 threads tsf-GPU ttri memCPU[MB] memGPU[MB]
Drop 61.1 sec 10.4 sec 3.5 sec 0.28 sec 415 CPU(389)+GPU(170)
CBD 343.4 sec 58.5 sec 14.1 sec 1.13 sec 4076 CPU(3888)+GPU(2130)

Hemispheres 617.3 sec 105.4 sec 21.9 sec 2.92 sec 3356 CPU(2760)+GPU(1322)
Hebe 1640.8 sec 277.1 sec 32.3 sec 6.86 sec 7532 CPU(6145)+GPU(3281)

Table 6: Performance of the presented scenes for scalar field computation (tsf) and triangulation (ttri) together with memory
consumption using a cell size equal to r/2. All data are average-per-frame.

sec on the GPU for cell sizes of r and r/2, respectively. The
Drop scene is an effective example for revealing the gener-
ation of smooth surfaces and fine details even for a small
number of particles. In this scene, thin sheets arise after the
impact and the prominent water crown is generated as well
as many splashes.

The last and the largest example is the Hebe scene which
is an example of revealing the fine details of a relatively vis-
cous fluid which is poured onto the Hebe statue and finally
collected in a box (see Fig. 9). For this scene, up to 3.2 mil-

lion particles have been reconstructed per frame. The aver-
age surface reconstruction time for the scene is 7.7 sec and
285 sec on the CPU and 4 sec and 40 sec on GPU for cell
sizes of r and r/2, respectively.

Comparison.We have applied our parallel algorithm to
the scalar field computation method of [SSP07] and [YT10],
and compared the performance with an optimal serial imple-
mentation of these methods. The performance and scaling
comparisons are given for the CBD scene with 150k par-
ticles, since using smaller number of particles enables to

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

Figure 8: Surface reconstruction of the drop scene with 360k particles. Fine details and smoothness are well-preserved even
for a low number of particles.

see the visual differences between these two methods more
clearly. In the presented scene, the cell size of r/2 is used.
The grid resolution is 186×264×210, while the ratios be-
tween surface/total particles and surface/total vertices are
0.15 and 0.12, respectively on average per frame.

Our experiments indicate that the method of [SSP07] is
approximately 2 times faster than the method of [YT10],
when comparing the optimal serial implementation of both
methods. For [SSP07], the memory requirement is reduced
by a factor of five by our method, while the speed-up is al-
most 50, see Tab. 7. In contrast, for [YT10] the speed-up
is approximately 20 (Tab. 8), which shows that the perfor-
mance of [SSP07] is 5 times faster than [YT10] after apply-
ing our algoritm. The reason of this difference is that [YT10]
requires additional, performance-critical steps. For instance,
an extra neighborhood search increases the number of mem-
ory lookups, and the traversal over a non-uniform neighbor-
hood area decreases the cache-hit rate. Besides, anisotropy
matrix computation adds extra overhead.

In terms of visual quality, both methods yield very smooth
surfaces. However, while spurious blobs in concave regions
and in between splashes are eliminated with [SSP07], our
experiments indicate that they still occur with [YT10]. Be-
sides, the underlying particle set is not covered exactly since
the position smoothing introduces new positions for parti-
cles and especially splash particles are likely to be missed
as they shift through their neighbourhood center. In addi-
tion, slight volume shrinkage occurs. In order to alleviate
this problem, we use a small position smoothing constant

method tsf[sec] ttri[sec] memory [GB]
[SSP07] 110 5 2.1

opt.-1 thread 58 0.2 0.38
opt.-6 threads 10 0.2 0.38

opt.-GPU 2.5 0.2 0.35(CPU)+0.19(GPU)

Table 7: Comparison of our optimized method using the
scalar field computation defined in [SSP07] to the original
method [SSP07] for the CBD-150k scene with a cell size of
r/2.

method tsf[sec] ttri[sec] memory [GB]
[YT10] 235 5 3.4

opt.-1 thread 150 0.2 0.82
opt.-6 threads 26 0.2 0.82

opt.-GPU 12 0.2 0.73(CPU)+0.4(GPU)

Table 8: Comparison of our optimized method using the
scalar field computation defined in [YT10] to the original
method [YT10] for the CBD-150k scene with a cell size of
r/2.

(λ) with the value of 0.3. The visual comparison of the two
methods is shown in Fig. 10.

As stated previously, our method is applicable to any
scalar field construction method. According to its perfor-
mance benefits and high-quality results, we prefer [SSP07]
over other methods.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

Figure 9: Surface reconstruction of the Hebe scene with a varying particle count of up to 3.2 million. Even for such a large
scene, the surface reconstruction is still efficient with less than 3 sec for a cell size equal to r and less than 40 sec for a cell size
equal to r/2 on average on the GPU.

Figure 10: Visual comparison between [SSP07] (left) and
[YT10] (right) on CBD-150k scene. The zoomed-in corner
is particularly included in the bottom row, so as to show the
differences in splash regions clearly.

6. Conclusion

In this paper, we presented techniques to improve the perfor-
mance of high quality surface generation for particle-based
fluids. Our method scales with the fluid surface instead of
the volume. Unnecessary scalar field computations and data
storage for grid vertices that lie far inside the fluid volume
or outside the fluid surface are avoided. It can be applied
to any scalar field construction approach that has been de-
veloped for particle-based fluids. Furthermore, we proposed
an efficient parallelization technique which scales well on
multi-core CPUs and GPUs.

Obviously, if isolated particles, i. e. particles without any
neighbor, spread too much, the outline of the MC grid
becomes very large. This causes our method to consume
more memory since one integer is still kept for all grid
cells as an index of the handlerArray in the startIndices
and one integer for all grid vertices as an index of the
sur f aceVertices, and these arrays scale with the volume.
Compared to the original algorithm, however, the memory
consumption caused by those arrays is significantly smaller.
In the future, we intend to generate smaller MC grids by
extracting isolated particles in a preprocessing step and han-
dling them directly in the renderer as spheres, i. e. their ideal
shape. Furthermore, instead of sticking to uniform grids, we
plan to utilize an adaptive grid structure where we can con-
struct higher resolution grids in the narrow band region or
in high-curvature regions, i. e. the regions that have more
detailed features. In addition, we also would like to study

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

G. Akinci et al. / Parallel Surface Reconstruction for Particle-Based Fluids

whether out-of-core techniques can be incorporated to fur-
ther improve the memory efficiency.

In the presented parallelization algorithm, we employ
general parallelization technniques that are effective on any
parallel architecture. Note that even though a speed-up of 50
is achieved on the GPU, we did not employ any GPU spe-
cific optimization. In the future, we would like to investigate
if warp partitioning techniques and data tiling strategies can
be applied, in order to reduce the number of idle threads and
the number of accesses to the global memory. Thereby, we
expect the performance to be further improved for the GPU
version.

Acknowledgements

We thank Arthur Wahl and Edgar Oswald for their help in the
development of the project. This project is supported by the
German Research Foundation (DFG) under contract number
TE 632/1-1.

References

[ALD06] ADAMS B., LENAERTS T., DUTRE P.: Particle Splat-
ting: Interactive Rendering of Particle-Based Simulation Data.
Tech. Rep. CW 453, Katholieke Universiteit Leuven, 2006. 1, 3

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L.:
Adaptively sampled particle fluids. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 papers (New York, NY, USA, 2007), ACM
Press, p. 48. 1, 2

[BB09] BROCHU T., BRIDSON R.: Robust Topological Opera-
tions for Dynamic Explicit Surfaces. SIAM Journal on Scientific
Computing 31, 4 (2009), 2472–2493. 2

[Bli82] BLINN J.: A Generalization of Algebraic Surface Draw-
ing. ACM Trans. Graph. 1, 3 (1982), 235–256. 2

[Bri03] BRIDSON R.: Computational aspects of dynamic sur-
faces. PhD thesis, Stanford University, 2003. 1, 3

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient High-Quality Volume Rendering of SPH Data. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings
Visualization / Information Visualization 2010) (2010), 1533–
1540. 1, 3

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive SPH Simulation and Rendering on the
GPU. In Proceedings of the Eurographics / SIGGRAPH Sympo-
sium on Computer Animation (SCA) (Aire-la-Ville, Switzerland,
Switzerland, 2010), pp. 55–64. 3

[HWB04] HOUSTON B., WIEBE M., BATTY C. C.: RLE sparse
level sets. In Proceedings of the SIGGRAPH 2004 conference on
sketches & applications (New York, NY, USA, 2004). 1, 3

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER
M.: A Parallel SPH Implementation on Multi-Core CPUs. In
Computer Graphics Forum (2011), vol. 30, pp. 99–112. 1, 5, 6

[IAGT10] IHMSEN M., AKINCI N., GISSLER M., TESCHNER
M.: Boundary handling and adaptive time-stepping for PCISPH.
In Workshop on Virtual Reality Interaction and Physical Simu-
lation VRIPHYS (Aire-la-Ville, Switzerland, Switzerland, 2010),
pp. 79–88. 2

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high
resolution 3D surface construction algorithm. In SIGGRAPH
’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1987),
ACM Press, pp. 163–169. 1, 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In SCA
’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2003), Eurographics Association, pp. 154–159. 2,
3, 4

[Mül09] MÜLLER M.: Fast and robust tracking of fluid surfaces.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (New York, NY, USA, 2009),
SCA ’09, ACM, pp. 237–245. 2

[MSD07] MÜLLER M., SCHIRM S., DUTHALER S.: Screen
Space Meshes. In Proceedings of ACM SIGGRAPH / EURO-
GRAPHICS Symposium on Computer Animation (SCA) (Aire-la-
Ville, Switzerland, Switzerland, 2007), pp. 9–15. 1, 3

[NM06] NIELSEN M. B., MUSETH K.: Dynamic Tubular Grid:
An efficient data structure and algorithms for high resolution
level sets. J. Scient. Comput. 26, 3 (2006), 261–299. 3

[NNSM07] NIELSEN M. B., NILSSON O., SÖDERSTRÖM A.,
MUSETH K.: Out-of-core and compressed level set methods.
ACM Transactions on Graphics, Vol. 26, No.4, 2007. 3

[POV11] POVRAY: Persistence of vision raytracer (version 3.7
rc3) [computer software]. http://www.povray.org/, October 01
2011. 7

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH. In SIGGRAPH ’09: ACM SIGGRAPH 2009
Papers (New York, NY, USA, 2009), ACM, pp. 1–6. 2

[SSP07] SOLENTHALER B., SCHLÄFLI J., PAJAROLA R.: A uni-
fied particle model for fluid-solid interactions. Computer Anima-
tion and Virtual Worlds 18, 1 (2007), 69–82. 1, 2, 3, 4, 8, 9, 10,
11

[vdLGS09] VAN DER LAAN W. J., GREEN S., SAINZ M.: Screen
Space Fluid Rendering with Curvature Flow. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2009), ACM, pp. 91–98. 3

[WH94] WITKIN A., HECKBERT P.: Using Particles to Sample
and Control Implicit Surfaces. In SIGGRAPH ’94: Computer
Graphics and Interactive Techniques 28 (New York, NY, USA,
1994), ACM, pp. 269–277. 2

[Wil08] WILLIAMS B.: Fluid surface reconstruction from parti-
cles. Master’s thesis, University Of British Columbia, 2008. 1

[YT10] YU J., TURK G.: Reconstructing Surfaces of Particle-
Based Fluids Using Anisotropic Kernels. In SCA ’10: Proceed-
ings of the 2010 ACM SIGGRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville, Switzerland, 2010), Euro-
graphics Association, pp. 217–225. 1, 2, 3, 9, 10, 11

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (New York, NY,
USA, 2005), ACM Press, pp. 965–972. 1, 2, 3, 4

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 2001), ACM Press, pp. 371–
378. 3

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

