
To appear in ACM TOG 34(4).

An Implicit Viscosity Formulation for SPH Fluids

Andreas Peer∗ Markus Ihmsen Jens Cornelis Matthias Teschner

University of Freiburg

Figure 1: Interaction of a highly viscous fluid with complex moving solids. Up to 780k particles are used. The computation time is 30s per
frame.

Abstract

We present a novel implicit formulation for highly viscous fluids
simulated with Smoothed Particle Hydrodynamics SPH. Compared
to explicit methods, our formulation is significantly more efficient
and handles a larger range of viscosities. Differing from existing
implicit formulations, our approach reconstructs the velocity field
from a target velocity gradient. This gradient encodes a desired
shear-rate damping and preserves the velocity divergence that is in-
troduced by the SPH pressure solver to counteract density devia-
tions. The target gradient ensures that pressure and viscosity com-
putation do not interfere. Therefore, only one pressure projection
step is required, which is in contrast to state-of-the-art implicit Eu-
lerian formulations. While our model differs from true viscosity
in that vorticity diffusion is not encoded in the target gradient, it
nevertheless captures many of the qualitative behaviors of viscous
liquids. Our formulation can easily be incorporated into complex
scenarios with one- and two-way coupled solids and multiple fluid
phases with different densities and viscosities.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Physically-based animation, fluid simulation,
Smoothed Particle Hydrodynamics, viscosity

1 Introduction

Simulating highly viscous fluids such as honey, mud, toothpaste or
dough as shown in Fig. 1 is involved. Explicit approaches require
small timesteps, e.g., [Monaghan 1989; Foster and Metaxas 1996;
Morris et al. 1997], while implicit formulations need to solve a lin-
ear system, e.g., [Stam 1999; Carlson et al. 2002; Rasmussen et al.
2004; Batty and Bridson 2008]. As implicit formulations work with
significantly larger timesteps, they are commonly preferred over ex-
plicit formulations.

In highly viscous fluids, viscosity and incompressibility constraints
can interfere. This is particularly true for bulk viscosity that influ-
ences the divergence of the velocity field. In explicit formulations
with small timesteps, competing constraints might be neglected. In
implicit formulations with large timesteps, however, this issue has

∗e-mail:peera@cs.uni-freiburg.de

to be addressed. In this context, viscosity formulations for incom-
pressible Eulerian fluids commonly assume that the input velocity
field is divergence-free. As the resulting velocity field is not neces-
sarily divergence-free, two pressure projection steps are performed,
e.g. [Losasso et al. 2006; Batty and Bridson 2008].

Contribution: This paper proposes a novel implicit formulation
for highly viscous SPH fluids that particularly addresses the inter-
ference of pressure and viscosity computation. Therefore, a tar-
get velocity gradient is employed that does not only encode the
desired viscosity, but also preserves arbitrary velocity divergences
that might have been introduced by an SPH pressure solver. In con-
trast to incompressible Eulerian techniques, SPH pressure solvers,
e.g. implicit incompressible SPH (IISPH) [Ihmsen et al. 2014a;
Ihmsen et al. 2014b], commonly introduce some divergence to the
velocity field to counteract density deviations. Our formulation ex-
plicitly preserves density corrections that have been computed in
the preceding pressure projection. This also means that only one
pressure projection step is required, which is in contrast to state-
of-the-art implicit Eulerian formulations. The proposed formula-
tion is approximate and departs from physical models in two ways.
It is parameterized with a non-physical constant, and the vorticity
diffusion is not encoded in the formulation of the target velocity
gradient, but considered in the reconstruction process of the final
velocity field. Experiments illustrate the close relation of our ap-
proach to true viscosity, its computational efficiency and also the
large range of viscosities that can be handled. Complex scenarios
with one- and two-way coupled solids and multiple fluid phases are
presented.

2 Related work

Lagrangian techniques: Viscosity is an important stability as-
pect in SPH fluid simulations. The typically required discretiza-
tion of the Laplacian, however, is numerically challenging in SPH.
[Müller et al. 2003] addressed this issue by introducing a specially
designed kernel function. Alternatively, approximations of the sec-
ond derivative by combining the first derivative with a finite differ-
ence approximation have been proposed [Morris et al. 1997], with
Monaghan’s artificial viscosity [Monaghan 1989] being a popular
choice. Further, XSPH [Monaghan 1992; Monaghan 1989] im-
plements a popular approximation of the Laplacian of the velocity
field which is, e.g., employed in [Schechter and Bridson 2012] and
[Macklin and Müller 2013]. For non-Newtonian fluids, viscosity

1



To appear in ACM TOG 34(4).

forces can also be derived from the deformation tensor, e.g., [Paiva
et al. 2006; Paiva et al. 2009; de Souza Andrade et al. 2014].

Although the usage of the Laplacian is the physically correct con-
cept for incompressible fluids, there exist alternative approximate
approaches to smooth the velocity field. E.g., [Stora et al. 1999]
and [Steele et al. 2004] compute a viscosity force from relative
velocities. Such approximate techniques significantly improve the
stability of low viscous SPH fluids, but are less efficient for highly
viscous fluids.

In the context of highly viscous fluids, the discussed explicit vis-
cosity formulations suffer from small timesteps and are also prone
to overshooting. Our approach differs in several aspects to address
these issues. First, we use an implicit formulation which allows
for significantly larger timesteps. Overshooting cannot occur. Sec-
ond, we correctly account for desired velocity divergences that are
computed by SPH pressure solvers to counteract density errors,
whereas existing formulations typically assume a divergence-free
velocity field. This is especially relevant for high viscosities and
large timesteps.

The only implicit formulation for viscosity in SPH so far is [Taka-
hashi et al. 2015], which adapts the Eulerian formulation of [Batty
and Bridson 2008] for SPH. In contrast, our novel formulation bases
on a target velocity gradient and does not interfere with the pressure
solver. Thus, viscosity solver and pressure solver do not negatively
affect each other. Our viscosity formulation does not require a final
pressure solve which possibly perturbs the result of the viscosity
solver.

Eulerian techniques: First approaches simply discretized the
Laplacian [Foster and Metaxas 1996] and used explicit formula-
tions, while a first implicit viscosity update has been introduced by
[Stam 1999]. [Carlson et al. 2002] extended the implicit viscos-
ity step to account for variable viscosity and for complex-shaped
free surfaces. [Carlson et al. 2002] could also simulate melting ma-
terials, where the solid boundary handling was improved in [Fält
and Roble 2003]. However, [Rasmussen et al. 2004] noted that the
Laplacian-based formulation of [Carlson et al. 2002] is inconsistent
for variable viscosities. Instead, they derived a consistent formula-
tion using the strain-rate tensor. Due to the obtained non-symmetric
system, they proposed an explicit-implicit scheme which could sim-
ulate impressive melting sequences.

Later, [Losasso et al. 2006] and [Batty and Bridson 2008] made the
important observation that both, the Laplacian and the strain-rate
formulations, only work on divergence-free velocity fields. There-
fore, they perform pressure projections before and after the viscos-
ity computation. [Batty and Bridson 2008] also improved the han-
dling of free surfaces by avoiding an erroneous damping of rota-
tional components. In contrast to previous works, their variational
approach preserves rotational motions. They showed realistic coil-
ing and buckling effects. Lastly, spatially adaptive [Batty and Hous-
ton 2011] and dimension-reduced [Batty et al. 2012] approaches
have been proposed. For the later, also promising Lagrangian ap-
proaches, e.g., [Bergou et al. 2010], exist.

In contrast to all discussed Eulerian methods, our Lagrangian ap-
proach does not require any special treatment of the free surface to
allow for rotational fluid movement. Further, our viscosity formula-
tion does not only work on divergence-free velocity fields. As our
formulation preserves arbitrary divergences that might have been
introduced by the SPH pressure projection to account for density
errors, a single pressure solve suffices. Differing from all discussed
Eulerian formulations, we compute a desired velocity gradient that
encodes viscous effects, does not affect rotation rates, and preserves
divergence. From this velocity gradient, the respective velocity

field is reconstructed.

Viscosity in multiphase fluids: In multiphase simulations, dis-
continuities at fluid interfaces have to handled. In Lagrangian ap-
proaches, this is typically done by averaging the viscosity constants,
e.g., [Müller et al. 2005b; Solenthaler et al. 2007; Ren et al. 2014].
For Eulerian methods, [Hong and Kim 2005] proposed to extrapo-
late ghost velocities across the interface to counteract distortions in
the velocity gradient caused by variable viscosities. The proposed
implicit scheme could handle high viscosities and large viscosity
differences. Later, [Losasso et al. 2006] showed how to handle vis-
cosity at interfaces of fluids with different densities. They demon-
strated impressive interactions of fluids with varying density and
viscosity. Using the particle level set method, [Losasso et al. 2006]
introduced additional costs for multiphase simulations, since on the
interface between phases, a distinct level set for each phase has to
be advected.

In contrast, our viscosity formulation is incorporated in [Solen-
thaler and Pajarola 2008] to handle multiple phases. It does not
impose additional costs for multiple phases with different densities
and viscosities. We solve the viscosity system for each phase inde-
pendently and rely solely on pressure and cohesion forces for the
interaction between phases.

Fluid-solid blending and viscoelastic fluids: Various ap-
proaches base on the observation that an infinitely viscous fluid is
similar to a solid. These approaches generally blend fluid and solid
dynamics according to the desired amount of viscosity, which can
be achieved in various ways. E.g., the elastic solid update equa-
tion can be integrated into the fluid update [Keiser et al. 2005],
shape matching can be used to derive rigid-body motions for ad-
jacent particles [Takamatsu and Kanai 2011], forces can be com-
puted which counteract the deviation of the predicted deformation
from a given target deformation [Dagenais et al. 2012], or particle
positions can be iteratively corrected in order to restore a previous
particle configuration [Takahashi et al. 2014]. Recently, a hybrid
Eulerian-Lagrangian Material Point Method has been proposed for
simulating snow [Stomakhin et al. 2013]. The technique was later
incorporated into a FLIP solver [Zhu and Bridson 2005] to achieve
melting effects [Stomakhin et al. 2014].

These approaches are closely related to viscoelastic fluids, where
additional elastic forces are introduced [Miller and Pearce 1989;
Terzopoulos et al. 1991]. Alternatively, the Navier-Stokes equa-
tions are augmented with a term accounting for elastic forces, e.g.
[Goktekin et al. 2004] for grids, [Wojtan and Turk 2008] for FEM or
[Rafiee et al. 2007; Chang et al. 2009; Chang et al. 2011] for SPH.
[Clavet et al. 2005] simulated viscoelastic material with spring-
based viscosity forces that, however, do not consider shear rates.

In contrast to all these approaches, our method solely relies on the
plain Navier-Stokes equation for fluids. Our approach does not ac-
count for rigid motion and elasticity. We also note that the topic of
viscoelastic fluids opens towards the large topic of particle-based
deformables, e.g., [Desbrun and Gascuel 1996; Müller et al. 2004;
Becker et al. 2009; Gerszewski et al. 2009; Macklin et al. 2014],
whose discussion is beyond the scope of this paper.

Position-based methods: Our approach can be classified in two
different ways. On one hand, the method is implicit as we solve a
linear system for unknown velocities at the next timestep. On the
other hand, we do not employ a classical force-based formulation
with a standard physical parameter to build the linear system. In-
stead, we formulate a set of constraints that should be fulfilled at
the next timestep which is typical for recent position-based meth-

2



To appear in ACM TOG 34(4).

ods PBD, e.g. [Bender et al. 2014b]. Another similarity to PBD
is the usage of a non-standard parameter. Although our approach
qualitatively damps shear rates in a viscous way, we employ a non-
standard parameter in the range between zero and one. If con-
sidered as related to PBD, our approach could also be seen as a
contribution to the development of PBD from geometric towards
physical motivations. While early PBD, e.g. [Müller et al. 2005a;
Rivers and James 2007], exclusively focused on geometric motiva-
tions, recent PBD research tends to focus on physical motivations.
E.g., position-based fluids PBF [Macklin and Müller 2013] preserve
incompressibility with a constraint that is linearly proportional to
classical pressure and the computed displacements are clearly re-
lated to pressure forces. In the context of position-based elastic ma-
terial, [Bender et al. 2014a] employs classical continuum-based for-
mulations to compute strain energies. The paper further discusses
the close relation of computed displacements to elastic forces com-
puted with classical FEM. Similar in sense, our formulation im-
poses velocity constraints to damp shear rates which is the physical
effect of shear viscosity.

3 Method

Viscosity forces are commonly computed from the divergence of
a viscous stress tensor. The stress tensor τ is computed from the
strain-rate tensor D which is the symmetric part of the velocity
gradient ∇v, i.e., D = 1

2
(∇v + (∇v)T ). Viscosity forces aim at

minimizing all entries of the strain-rate tensor, where the actual ef-
fect depends on various aspects. It depends on the viscosity model,
on the parameters that are employed in the computation of the stress
tensor from the strain-rate tensor and on the timestep. This makes
it rather involved to use viscosity forces for highly viscous fluids.

Instead of using explicit viscosity forces, we propose a novel im-
plicit formulation. Based on a desired velocity gradient at the next
timestep, we compute momentum-preserving velocities that corre-
spond to the predicted gradient. Our scheme does not only predict
a velocity gradient that obtains highly viscous material, but it also
preserves the corrections of density deviations induced by the pres-
sure solver. In contrast to existing schemes, pressure and viscosity
solvers do not interfere. Velocity changes due to pressure forces are
computed first. Then, the viscosity solver computes velocities that
account for viscosity, but do not influence the rate of change of the
volume. A final pressure solve, which possibly perturbs the result
of the viscosity solver, is not required.

The following description starts with the employed decomposition
of the velocity gradient. Then, we show how to compute the desired
velocity gradient. Finally, we show how to reconstruct the particle
velocities from the desired velocity gradients, i.e., how to compute
momentum-preserving velocities to obtain a velocity field with the
specified gradient at the next timestep.

3.1 Decomposition of the velocity gradient

We consider the decomposition of the velocity gradient into three
components: the spin tensor R, the expansion-rate tensor V and
the shear-rate tensor S:

∇v =
1

2

(
∇v − (∇v)T

)
︸ ︷︷ ︸

R

+
1

3

(
∇ · v

)
I︸ ︷︷ ︸

V

+

(1

2

(
∇v + (∇v)T

)
− 1

3

(
∇ · v

)
I
)

︸ ︷︷ ︸
S

. (1)

The spin tensor R describes the rate of rotation at a particle, i.e.,
the vorticity. The expansion-rate tensor V describes the density

change at a particle that has been computed by our pressure solver.
This tensor can be used to realize bulk viscosity. It is typically not
equal to zero in our IISPH implementation and preserved by the
viscous solver. The shear-rate tensor S describes the rate of shear
strain at a particle. This tensor is generally adapted to realize shear
viscosity. Note that the expansion-rate and shear-rate tensors add
to the strain-rate tensor D = V + S. Our approach, however,
requires the decomposition into expansion rate and shear rate. The
divergence of the velocity field in V and S is computed as the trace
of the velocity gradient: ∇ · v = tr(∇v).

3.2 Prediction of the velocity gradient

Our approach estimates the velocity gradient ∇v at time t and
its decomposition for all particles. The resulting components are
adapted and summed-up to obtain a predicted velocity gradient
∇τv at time t + ∆t. We distinguish different cases that basically
depend on the particle density. Time and particle indices are omit-
ted in this section to simplify the notation.

Particle density above rest density. Based on the decomposition of
the current velocity gradient ∇v = R + V + S, the predicted
gradient at the next timestep is computed as

∇τv = R + V + ξS (2)

with 0 ≤ ξ ≤ 1 being our parameter for shear viscosity. If ξ = 1,
the shear rate does not change, corresponding to minimal shear vis-
cosity. For ξ = 0, the shear-rate tensor vanishes in the predicted
velocity gradient, corresponding to a fluid with maximum shear vis-
cosity. Intermediate values for ξ allow for different strengths of the
desired shear viscosity. Note again that this formulation only af-
fects the shear rate, while the rate of rotation and volume changes
are not affected.

Preserving the expansion-rate tensor V is one of the key aspects
in our formulation. SPH pressure solvers usually compute a veloc-
ity field that is not perfectly divergence-free [Becker and Teschner
2007; Solenthaler and Pajarola 2009; Macklin and Müller 2013;
Ihmsen et al. 2014a]. Instead, some divergence is introduced to
eliminate small density deviations. Therefore, the tensor V is not
necessarily equal to zero. As the divergence computed by the pres-
sure solver aims at minimizing the density error, we would like to
preserve this divergence, i.e., the expansion-rate tensor V. On one
hand, this corresponds to zero bulk viscosity. On the other hand,
however, it does not interfere with the result of the pressure solver.
Therefore, our approach computes velocities that do not negatively
affect the density error.

Physical viscosity diffuses vorticity. As our formulation preserves
R, this diffusion is not encoded in the predicted velocity gradient.
The diffusion is, however, incorporated in the reconstruction pro-
cess of the velocity field (see Section 3.3 and Eq. (4)).

Particle density below rest density. Here we consider two sub-cases.
If the divergence of the velocity field is negative, the predicted gra-
dient is computed as in the previous case: ∇τv = R+V+ ξS. If,
however, the divergence is positive, we introduce maximum bulk
viscosity by eliminating V from the predicted gradient:

∇τv = R + ξS. (3)

This formulation addresses an issue with negative pressure that is
usually not considered in SPH pressure solvers. If the particle den-
sity is below rest density, this formulation aims at stopping adja-
cent particles from moving farther away by introducing maximum
bulk viscosity. This reduces an artificial volume gain that otherwise
could occur in our approach. The effect of this formulation is illus-
trated in Fig. 2. Note that this formulation is similar to forces from

3



To appear in ACM TOG 34(4).

Figure 2: Illustration of the divergence correction. In the left im-
age, V is not altered. The density, color coded from white (rest
density) to blue (below 70% rest density), drops. In the right im-
age, V is removed from the target gradient if the particle density is
below rest density to avoid the erroneous volume gain.

negative pressures. Adjacent particles, however, are not attracted,
but only prevented from moving farther away.

3.3 Reconstruction of the velocity field

The final velocities vi(t + ∆t) are reconstructed from the target
gradient∇τvi. Therefore, the first-order Taylor approximation

vi(t+ ∆t) = vj(t+ ∆t) +
∇τvi +∇τvj

2
xij (4)

is considered for two particles i and j resulting in a linear system
with unknown velocities. Here, xij = xi − xj denotes the dis-
tance vector between the two particles. The average of the gradi-
ents ∇τvi and ∇τvj is used to guarantee momentum-preserving
velocity changes at the particles. It also accounts for the diffusion
of the rotation rate that is particularly present in highly viscous flu-
ids. Employing Eq. (4) results in a novel implicit formulation for
highly viscous fluids. Details of the linear system are described in
Section 4.

3.4 Viscous SPH fluid solver

The proposed solver first computes an intermediate velocity v∗

without considering pressure and viscosity. In the second stage, an
updated intermediate velocity v∗∗ is computed from pressure. We
use IISPH [Ihmsen et al. 2014a]. However, alternative solvers, e.g.,
WCSPH [Becker and Teschner 2007], PCISPH [Solenthaler and
Pajarola 2009] or PBF [Macklin and Müller 2013] could also be
used. In the last stage, the proposed viscosity solver computes the
final velocity v(t+ ∆t) and particles are advected with v(t+ ∆t).
The viscosity solver does not affect the density correction induced
by the pressure solver. Thus, in contrast to other techniques, a final
pressure solve can be omitted. Algorithm 1 summarizes the pro-
posed viscous SPH fluid solver.

Algorithm 1 Viscous SPH fluid solver
compute gravity and cohesion force
update velocity: v(t)→ v∗

compute pressure and pressure force
update velocity: v∗ → v∗∗

solve viscosity system
update velocity: v∗∗ → v(t+ ∆t)
update position: x(t)→ x(t+ ∆t)

4 Implementation

Velocity gradient: According to Algorithm 1, the viscosity
solver starts with the velocity gradient ∇v∗∗i to compute the final

velocities vi(t+∆t). Following Monaghan’s second golden rule of
SPH [Monaghan 1992], we use the symmetric gradient expression

∇v∗∗i =
1

ρi

∑
j

mj

(
v∗∗j − v∗∗i

)
⊗∇Wij , (5)

with ρ and m being density and mass of the indexed particle, re-
spectively. j is the set of particles within the support of particle
i. ∇Wij = ∇W (xi − xj) is the kernel gradient that depends on
the particle positions x. Equation (5) reliably computes the gradi-
ent even at free surfaces and interfaces between different phases.
It further correctly results in a zero gradient for constant fields.
The velocity gradient ∇v∗∗i is modified to obtain the target gra-
dient∇τv∗∗i as described in Section 3.2.

Linear system: Now, we aim at reconstructing the velocity field
vi(t + ∆t) from this target gradient. Therefore, the relation in
Eq. (4) is considered which would result in the following SPH for-
mulation:

vi(t+ ∆t) =
∑
j

Vj
(
vj(t+ ∆t) +

∇τv∗∗i +∇τv∗∗j
2

xij
)
Wij .

(6)

Vj =
mj
ρj

is the volume of particle j. The accuracy of this ap-
proximation, however, is significantly deteriorated at free surfaces
due to the incomplete neighborhood. Therefore, we consider the
normalized SPH interpolation

qi =

∑
j VjqjWij∑
j VjWij

(7)

for an arbitrary fluid quantity qi and apply it to Eq. (6). To avoid the
rather expensive computation of

∑
j VjWij , we propose an approx-

imate, more efficient normalization. All particles have the same
mass m0 and we assume that IISPH preserves a constant volume
V0 for all particles. Now, Eq. (7) can be transformed into

qi ≈
∑
j V0qjWij∑
j V0Wij

=

∑
jm0qjWij∑
jm0Wij

≈ 1

ρi

∑
j

mjqjWij (8)

which avoids the computation of
∑
j VjWij . Now, the normalized

form of Eq. (6) can efficiently be computed with

vi(t+ ∆t) =
1

ρi

∑
j

mj

(
vj(t+ ∆t) +

∇τv∗∗i +∇τv∗∗j
2

xij
)
Wij .

(9)

This equation is considered at all particles, resulting in a linear sys-
tem of unknown velocities vi(t + ∆t). In order to identify the
coefficients aij of the the respective system matrix A, we use the
relation

∑
j VjqjWij = ViqiWii +

∑
j 6=i VjqjWij and rewrite

Eq. (9) as(
1− mi

ρi
Wii

)
vi(t+ ∆t)− 1

ρi

∑
j 6=i

mjvj(t+ ∆t)Wij =

1

ρi

∑
j

mj
∇τv∗∗i +∇τv∗∗j

2
xijWij . (10)

This formulation is symmetrized by multiplication with ρi, yielding(
ρi −miWii

)
vi(t+ ∆t)−

∑
j 6=i

mjvj(t+ ∆t)Wij =

∑
j

mj
∇τv∗∗i +∇τv∗∗j

2
xijWij . (11)

4



To appear in ACM TOG 34(4).

Now, we have three linear systems Avx = bx, Avy = by,
Avz = bz with vx,vy,vz being the vector of all x-, y-, z-
components of v(t+∆t) and bx,by,bz being the vector of all x-,
y-, z-components of the right-hand side of Eq. (11), respectively.
The components of A are aii = ρi −miWii and aij = −mjWij

according to the left-hand side of Eq. (11).

These three symmetric systems can be solved with various solvers.
We use Conjugate Gradient and initialize the solver with v∗∗. This
prevents the generation of constant offsets, thus eliminating the
problem that velocities are, e.g., damped out during free fall as men-
tioned in [Carlson et al. 2002]. We stop solving a system when the
maximum residual is below a user-defined threshold typically in the
order of 10−5ρ0, with ρ0 being the rest density of the fluid. The di-
vision by rest density reverts the change in magnitude introduced
by multiplying the system with the density in Eq. (11) and ensures
that the threshold is independent from the fluid density.

Boundary handling: The boundary handling is generally accom-
plished during the IISPH pressure solve with [Akinci et al. 2012b]
as described in [Ihmsen et al. 2014a]. We further propose two types
of additional boundary handling during the viscosity solve. Sticky
boundaries damp shear rates between fluid and solid particles, while
separating boundaries do not.

Sticky boundaries: Motivated by materials, such as honey, that tend
to stick to solid objects, the sum of neighboring particles j in Eq. (9)
is split into a sum of fluid neighbors j /∈ b and a sum of boundary
neighbors b.

vi(t+ ∆t) =
1

ρi

∑
j /∈b

mj

(
vj(t+ ∆t) +

∇τv∗∗i +∇τv∗∗j
2

xij
)
Wij

+
1

ρi

∑
b

mbv
∗∗
b Wib. (12)

This change only affects the right-hand side of the linear system in
Eq. (11) and does not influence the efficiency of the solver.

Separating boundaries: With separating boundary conditions, the
viscous fluid can flow freely, but not into the boundary. We there-
fore consider the divergence of a fluid particle i with respect to
boundary particles b in each solver iteration l:

∇ · vli =
∑
b

mb

(
vli − v∗∗b

)
∇Wib (13)

with vli being the velocity of particle i after l solver iterations. This
divergence has to be larger or equal to zero in order to avoid fluid
velocities into the boundary. If the divergence is negative, we search
for a velocity v̂li with zero divergence with respect to the boundary,∑
bmb

(
v̂li − v∗∗b

)
∇Wib = 0. The unknown velocity can be com-

puted as

v̂li =
ni

ni · ni

∑
b

mbv
∗∗
b ∇Wib (14)

with ni =
∑
bmb∇Wib which can be interpreted as the surface

normal of the considered boundary particles. Adjusting the velocity
in each solver iteration avoids fluid flow into the boundary. It is
unfortunately not sufficient to adjust the final velocities. Thus, plain
Conjugate Gradient does not work with separating boundaries and
we fall back to Jacobi in this case.

Multiple phases: We incorporate the approach of [Solenthaler
and Pajarola 2008] into IISPH to simulate multiple phases. Then,
the viscosity system is solved independently for each phase. The
interaction between the phases is accomplished via pressure and
cohesion forces as in [Akinci et al. 2012b].

5 Discussion

Interpretation of the system: The left-hand side of Eq. (10)
approximates the negative Laplacian of the unknown velocities
vi(t+∆t). Interestingly, the right-hand side approximates the same
negative Laplacian, but with known values incorporating the target

gradient. This can be seen after substituting
∇τv∗∗

i +∇τv∗∗
j

2
xij with

vi(t+∆t)−vj(t+∆t) according to Eq. (4). Thus, the right-hand
side constitutes a target Laplacian built from the target gradient.
I.e., Eq. (10) actually estimates velocities that meet an approxi-
mated target Laplacian. So, the formulation is conceptually differ-
ent to the standard implicit formulation (I−∆tµ∇2)vi(t+∆t) =
v∗∗i . Instead, Eq. (10) can be interpreted as ∇2vi(t + ∆t) =
∇2τv∗∗i with ∇2τv∗∗i being the desired Laplacian that is approxi-
mated from the target velocity gradient ∇τv∗∗i which is computed
from known velocities v∗∗i .

Parameter: The parameter ξ is a non-standard parameter and does
not correspond to dynamic or kinematic viscosity. Nevertheless, ξ
is physically motivated. It governs the damping of the shear rate in
the fluid, thus it governs viscosity.

It is also important to note that ξ depends on the timestep and the
resolution which is illustrated in Section 6, but not further addressed
in this paper. Our approach shares this issue with PBD, where the
time dependency of parameters is not handled as timesteps typi-
cally do not significantly vary in a scenario (e.g., [Bender et al.
2014b]). One of the first papers that discuss resolution-dependent
parameters in SPH is, e.g., [Akinci et al. 2013]. However, timestep
dependencies are not addressed.

Limitations: The proposed concept does not explicitly alter spin.
Furthermore, it preserves divergence, i.e., incompressibility and
shear viscosity are decoupled which is novel. The discretized
implementation, however, employs various numerical approxima-
tions. E.g., an SPH approximation is used for the velocity gradient
∇τv∗∗i , and Eq. (4) employs a Taylor approximation with an av-
eraged velocity gradient. This results in numerical errors in spin,
divergence, target gradient, and momentum. These errors, how-
ever, are rather small as indicated by the large timesteps and the
high viscosities that can be obtained with our approach. In this
context, Section 6 discusses an experiment that shows that errors
in the preservation of incompressibility are negligible. The error in
spin also accounts for the physical effect of vorticity diffusion in
highly viscous fluids.

Zero viscosity, i.e. non-destructive velocity reconstruction works in
our approach, as the solver is initialized with v∗∗i and performs zero
iterations, if the actual and the target velocity gradient are equal.
However, due to the smoothing of the velocity field in the recon-
struction process, our approach should not be used for low viscous
fluids such as water.

Our approach is rather expensive for rigid-like materials where it
requires many solver iterations. It counteracts shear rates, but has
no notion of shear. Thus, it suffers from drifting shear that can-
not be corrected. So, conceptually, viscoelastic models should be
preferred for rigid-like objects.

Physical viscosity diffuses vorticity. This aspect is omitted in the
formulation of the predicted velocity gradient. Although the aver-
aging of the velocity gradients in Eq. (4) accounts for such a dif-
fusion, the relation of the introduced diffusion to the diffusion in
other viscosity approaches or in true viscosity remains unclear.

5



To appear in ACM TOG 34(4).

Figure 3: Realistic buckling and coiling with up to 100k particles
and an average computation time of 5s per frame.

6 Results

This section illustrates the properties of the proposed viscosity
solver. For the presented experiments, the proposed viscosity
solver is combined with an IISPH pressure solver [Ihmsen et al.
2014a]. We employ the cubic spline kernel [Monaghan 2005] with
a smoothing length of twice the particle distance. The maximum
overall volume deviation in all scenarios is below 0.1%. This vol-
ume deviation is guaranteed by the IISPH pressure solver and gen-
erally not negatively influenced by the proposed viscosity solver.
[Becker and Teschner 2007] is used for surface tension. One-way
and two-way coupled boundary handling is realized with [Akinci
et al. 2012b; Ihmsen et al. 2010]. Our implementation is fully
parallelized [Ihmsen et al. 2011]. Surfaces are reconstructed with
[Mootz 2014] and [Ju et al. 2002]. Alternatively, [Akinci et al.
2012a] could be used. The images and video sequences were ren-
dered with Houdini’s Mantra renderer [Side Effects Software 2013]
with 50 frames per second. All experiments have been computed
on a 24-core 2.70 GHz Intel Xeon workstation.

Buckling and coiling: The setting in Fig. 3 illustrates that the
proposed viscosity solver captures the spontaneous buckling and
coiling effects that characterize highly viscous fluids. The timestep
is 0.002s for a particle spacing of 0.04m. Neighborhood and pres-
sure require 25ms per step, viscosity requires 195ms with an aver-
age of 50 solver iterations.

Viscosity range: Fig. 4 shows two frames at the same time of
simulations with different viscosity parameters. The timestep is
0.001s for a particle spacing of 0.012m. The computation time of
the viscous solver scales with the viscosity parameter ξ. The ac-
companying video illustrates that the approach can handle highly
viscous material. The experiment in Fig. 4 also illustrates the fact
that the result and thus, the efficiency of the pressure solver are
not negatively affected by the viscosity solver. While the viscos-
ity solver requires significantly differing iterations for different vis-
cosity parameters, the efficiency of the pressure solve does not de-
pend on the viscosity. The viscosity solver requires 25 iterations
for ξ = 0.8 and 87 iterations for ξ = 0.2, while the pressure solver
requires 5 iterations in both settings.

Rotation rate and density error: The proposed viscosity solver
properly handles rotation rates and does not affect the density error.
This is illustrated in Fig. 5 with two colliding objects in a zero-
gravity environment. The timestep is 0.001s for a particle spacing
of 0.02m. The viscosity parameter is ξ = 0.5, resulting in 17 iter-
ations per viscous solve. The IISPH pressure solve requires 3 iter-
ations. Fig. 6 illustrates the densities before and after the viscous
solve for the same scenario. The graph indicates that the density
deviation introduced by the viscosity solver is negligible.

Figure 4: Different viscosities. Both scenarios consist of 1.3M par-
ticles. In the low viscous scenario with ξ = 0.8, the average com-
putation time per frame is 11s, while the highly viscous setting with
ξ = 0.2 required an average computation time per frame of 37s.

Figure 5: Rotation rates are properly handled. The scene consists
of 140k particles. The average computation time per frame is 1.7s

Time-varying viscosity: Fig. 7 illustrates a scenario with time-
varying viscosity. The scene is simulated with ξ = 0 for some time
for all Armadillos. Then, for the blue Armadillo, ξ is raised from
0 to 0.99 instantaneously. For the yellow and the red Armadillo,
ξ is linearly raised from 0 to 0.99 within 3s and 15s, respectively.
The scenario illustrates that rigid-like objects and fluids with mod-
erately low viscosity can be simulated with our approach. However,
as discussed in Section 5, our approach is less appropriate for low
viscous fluids such as water. For rigid-like material, our viscosity
solver is certainly less efficient than viscoelastic solvers.

Boundary handling: Fig. 8 illustrates sticky and separating
boundary conditions. The timestep is 0.002s for a particle spac-
ing of 0.025m. The viscosity is ξ = 0.5. For sticky boundaries,
the viscous solver requires 17 iterations. As Conjugate Gradient is
not used for separating boundaries, this setting requires 230 Jacobi
iterations. Sticky boundaries would also require 230 Jacobi itera-
tions, illustrating the obvious fact that Conjugate Gradient with 17
iterations is more efficient for sticky boundaries.

Complex boundaries: The scenario in Fig. 1 illustrates the one-
way coupled interaction with complex moving boundaries. The

0 50 100 150 200
1000.5

1001.0

1001.5

1002.0

frame

av
g

de
ns

ity before after

Figure 6: Densities before and after the viscosity solve for the first
two hundred frames of the scene in Fig. 5. It can be seen that the
effect of our viscous solver on the density error is negligible.

6



To appear in ACM TOG 34(4).

Figure 7: Objects with time-varying viscosity: 0 ≤ ξ ≤ 0.99. The
average computation time per frame is 18s for 390k particles.

Figure 8: Sticky (left) and separating (right) boundary handling.
In both scenarios, 100k particles are used.

timestep is 0.0004s for a particle spacing of 0.02m. With ξ = 0.5,
the viscous solver requires 12 iterations.

Two-way coupling: Fig. 9 shows a scene where a viscous fluid
and a fracturing solid are two-way coupled. The timestep is 0.0005s
for a particle spacing of 0.014m. With a viscosity of ξ = 0.8, the
viscous solver requires 9 iterations.

Multiple phases: The proposed viscosity solver is particularly
appropriate for multiple phases as shown in Fig. 10 with five inter-
acting phases with a viscosity range from ξ = 1 to ξ = 0. Water
can be simulated with ξ = 1 or by simply omitting the viscous
solve. The interfaces between different phases are accurately han-
dled, as surface particles of a phase only consider velocities of par-
ticles from the same phase in the predicted velocity gradient. The
densities in Fig. 10 range from 100 kg

m3 to 2000 kg
m3 . Depending on

the viscosity parameter, the viscous solve requires between 12 and
140 iterations. For a particle distance of 0.05m, a timestep of 0.001s
is required.

Large-scale scenarios: Fig. 11 shows a scene with 11M parti-
cles. The particle distance is 0.25m with a timestep of 0.04s. Pres-
sure and viscosity require up to 10 and 30 iterations, respectively.

Explicit and implicit viscosity solvers: A thorough perfor-
mance comparison of the proposed viscosity solver with existing
approaches is beyond the scope of this paper and also not possi-
ble within the given constraints. E.g., our approach guarantees a
maximum volume deviation, while others have no notion of the ac-
tual volume deviation. Our approach requires one pressure solve,
others require two. It is also involved to parameterize different ap-
proaches such that the resulting dynamic viscous behaviors match.
To at least indicate that our approach is superior to explicit formu-

Figure 9: Two-way coupling. The fluid consists of 570k particles.
The computation time is 21s per frame.

Figure 10: Multiple phases with up to 3.1M particles. The average
computation time per frame is 79s.

lations, we show a comparison with artificial viscosity [Monaghan
1989] in Fig. 12.

A second scenario for comparing our approach with an explicit vis-
cosity formulation is illustrated in Fig. 13. The fluid is initialized
in a static cylinder. Then, the cylinder starts rotating with constant
velocity. After the fluid velocity field has reached an equilibrium
state, the cylinder stops rotating. The experiment has been per-
formed with artificial viscosity [Monaghan 1989] for µ = 50 (oil)
and with the proposed viscosity approach for ξ = 0 and ξ = 0.9.
Artificial viscosity and our approach with ξ = 0.9 have been simu-
lated in two resolutions.

For all settings, the same velocity field (Fig. 13 (c)) is achieved
for the rotating cylinder and the same velocity field (Fig. 13 (b)) is
achieved after stopping the cylinder. This means that our approach
conceptually corresponds to shear viscosity, i.e., velocity changes
are induced as long as shear rates are present in the fluid.

The actual viscosity, i.e., the speed at which the equilibrium is
reached, differs in all experiments and we did not investigate, how
to map our non-physical constant ξ to dynamic viscosity µ. Obvi-
ously, implicit approaches have the capability to obtain the equilib-
rium faster than explicit approaches as the shear rates - introduced
by accelerating and stopping the cylinder - are propagated within
solver iterations instead of per simulation step. In particular, the
equilibrium is immediately achieved for ξ = 0 within one timestep.
This property is also a reason why low viscosities are difficult to re-
alize with implicit solvers.

Fig. 14 shows that the viscosity varies in all five settings. This is
obvious for µ = 50, ξ = 0 and ξ = 0.9. The images also illustrate
that our approach results in different viscosities for the same pa-
rameter, when timestep and resolution change. I.e., the constant ξ
depends on timestep and resolution which is not further investigated

7



To appear in ACM TOG 34(4).

Figure 11: Large-scale scenario with 11M particles and ξ = 0.5.
The average computation time per frame is 144s.

Figure 12: Comparison of artificial viscosity [Monaghan 1989]
on the left-hand side with our approach on the right-hand side. 8k
particles with a spacing of 0.05m are used in both experiments. The
overall computation is 20min for the explicit formulation, while our
implicit formulation required 11s and also results in a more vis-
cous fluid. This difference is mainly due to the obvious fact that the
explicit formulation required a rather small timestep of 0.00002s,
while our formulation could be simulated with a timestep of 0.01s.

in this paper. It is further interesting to note that the differences in
Fig. 14 (a) and (b) indicate that the effect of Monaghan’s explicit
formulation also depends on timestep and resolution for a constant
dynamic viscosity parameter.

(a) (b) (c)

Figure 13: Fluid in an invisible cylinder with color-coded veloc-
ities (a). Blue and white particles have min and max velocities,
respectively. Half of the fluid is not visualized to illustrate the em-
ployed sensor plane where blue and red indicate min and max ve-
locities, respectively. The fluid is initialized in a static cylinder cor-
responding to the velocity field in (b). Then, the cylinder starts ro-
tating which results in the velocity field in (c). Stopping the cylinder
finally results in the original velocity field (b).

Discussion: This paper proposes a novel efficient and versatile
concept for simulating highly viscous fluids, but it does not intro-
duce a novel material model. As the minimization of the shear rate
is standard in most viscosity solvers, e.g. [Batty and Bridson 2008;
Takahashi et al. 2015], it is beyond the scope of this paper to ana-
lyze the relation of the employed material model to real-world ex-
periments.

(a) (b) (c) (d) (e)

Figure 14: Intermediate velocity fields for different settings at the
same time after starting the cylinder rotation: (a) artificial viscosity
µ = 50, (b) artificial viscosity µ = 50 at half resolution and with
doubled timestep, (c) our viscosity ξ = 0.9, (d) our viscosity ξ =
0.9 at half resolution and with doubled timestep, (e) our viscosity
ξ = 0. These intermediate states differ due to different viscosities.
Note that all experiments finally reach the same equilibrium state
shown in Fig. 13 (c).

7 Conclusion and future work

We have presented a novel implicit formulation for highly viscous
SPH fluids that is based on prescribing a target gradient and recon-
structing the corresponding velocity field. By ensuring that the tar-
get gradient only changes the shear rate, but not the divergence, our
viscosity formulation preserves the density correction induced by
the SPH pressure solver. This is achieved by decomposing the gra-
dient into expansion-rate, shear-rate and spin tensors. Our formu-
lation does not require a divergence-free velocity field as input. It
can be added to common SPH solvers as a post-processing step. By
integrating our formulation into a state-of-the-art SPH solver such
as IISPH, a maximum volume deviation, typically below 0.1%, can
be guaranteed independent from the grade of viscosity.

We showed that our formulation is significantly more efficient than
explicit methods. It also achieves a larger range of viscosities. The
versatility of our approach was demonstrated by simulating a wide
range of viscous materials. We also showed that it can be easily
integrated into one- and two-way coupling scenarios as well as into
multiphase simulations, which illustrates the usability of our for-
mulation.

Future work could address some potential improvements. Since our
method heavily damps shear rates, particle movement is strongly re-
stricted. Therefore, even after several simulation seconds, the pat-
tern of the initial particle sampling is still visible. This is especially
problematic for regular sampling patterns. Investigation into ran-
dom sampling patterns, such as Poisson disk sampling, could be
interesting.

In our implementation, we solve the linear system with Conjugate
Gradient. This works well for sticky boundary condition, but can-
not be used for separating boundary conditions, where intermedi-
ate results have to be adjusted in each solver iteration. Fortunately,
most of the viscous materials tend to stick to solid boundaries. Still,
an investigation into a more efficient solver for the proposed sepa-
rating boundary conditions could be worthwhile.

Acknowledgements

This project is supported by the German Research Foundation
(DFG) under contract number TE 632/1. We would like to thank
Christoph Gissler and Andreas Henne for supporting the project
and the reviewers for providing impulses that helped to improve the
manuscript. The Armadillo and Bunny models are courtesy of the
Stanford Computer Graphics Laboratory. The hand mixer model is
courtesy of Daniel Isler. The bottle model is courtesy of genx473
at www.blendswap.com.

8



To appear in ACM TOG 34(4).

References

AKINCI, G., IHMSEN, M., AKINCI, N., AND TESCHNER, M.
2012. Parallel surface reconstruction for particle-based fluids.
Computer Graphics Forum 31, 6, 1797–1809.

AKINCI, N., IHMSEN, M., AKINCI, G., SOLENTHALER, B., AND
TESCHNER, M. 2012. Versatile rigid-fluid coupling for incom-
pressible SPH. ACM Transactions on Graphics (TOG) 31, 4,
62.

AKINCI, N., AKINCI, G., AND TESCHNER, M. 2013. Versatile
surface tension and adhesion for SPH fluids. ACM Trans. Graph.
32, 6 (Nov.), 182:1–182:8.

BATTY, C., AND BRIDSON, R. 2008. Accurate viscous free sur-
faces for buckling, coiling, and rotating liquids. In Proceedings
of the 2008 ACM SIGGRAPH/Eurographics symposium on com-
puter animation, Eurographics Association, 219–228.

BATTY, C., AND HOUSTON, B. 2011. A simple finite volume
method for adaptive viscous liquids. In Proceedings of the 2011
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, ACM, 111–118.

BATTY, C., URIBE, A., AUDOLY, B., AND GRINSPUN, E. 2012.
Discrete viscous sheets. ACM Transactions on Graphics (TOG)
31, 4, 113.

BECKER, M., AND TESCHNER, M. 2007. Weakly compressible
SPH for free surface flows. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, 209–217.

BECKER, M., IHMSEN, M., AND TESCHNER, M. 2009. Coro-
tated SPH for deformable solids. In Proceedings of the Fifth
Eurographics conference on Natural Phenomena, Eurographics
Association, 27–34.

BENDER, J., KOSCHIER, D., CHARRIER, P., AND WEBER, D.
2014. Position-based simulation of continuous materials. Com-
puters & Graphics 44, 0, 1 – 10.

BENDER, J., MÜLLER, M., OTADUY, M. A., TESCHNER, M.,
AND MACKLIN, M. 2014. A survey on position-based simula-
tion methods in computer graphics. Computer Graphics Forum
33, 6, 228–251.

BERGOU, M., AUDOLY, B., VOUGA, E., WARDETZKY, M., AND
GRINSPUN, E. 2010. Discrete viscous threads. ACM Transac-
tions on Graphics (TOG) 29, 4, 116.

CARLSON, M., MUCHA, P. J., VAN HORN III, R. B., AND TURK,
G. 2002. Melting and flowing. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, 167–174.

CHANG, Y., BAO, K., LIU, Y., ZHU, J., AND WU, E. 2009. A
particle-based method for viscoelastic fluids animation. In Pro-
ceedings of the 16th ACM Symposium on Virtual Reality Soft-
ware and Technology, ACM, 111–117.

CHANG, Y., BAO, K., ZHU, J., AND WU, E. 2011. High viscosity
fluid simulation using particle-based method. In VR Innovation
(ISVRI), 2011 IEEE International Symposium on, IEEE, 199–
205.

CLAVET, S., BEAUDOIN, P., AND POULIN, P. 2005. Particle-
based viscoelastic fluid simulation. In Proceedings of the 2005
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, ACM, 219–228.

DAGENAIS, F., GAGNON, J., AND PAQUETTE, E. 2012. A
prediction-correction approach for stable SPH fluid simulation
from liquid to rigid. Proceedings of the Computer Graphics In-
ternational 2012.

DE SOUZA ANDRADE, L. F., SANDIM, M., PETRONETTO, F.,
PAGLIOSA, P. A., AND PAIVA, A. 2014. SPH fluids for vis-
cous jet buckling. In 27th SIBGRAPI Conference on Graphics,
Patterns and Images, SIBGRAPI 2014, SBC, 65–72.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed particles:
A new paradigm for animating highly deformable bodies. In Pro-
ceedings of the Eurographics Workshop on Computer Animation
and Simulation ’96, Springer-Verlag, Eurographics, 61–76.

FÄLT, H., AND ROBLE, D. 2003. Fluids with extreme viscosity.
In ACM SIGGRAPH 2003 Sketches & Applications, ACM, 1–1.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graphical models and image processing 58, 5, 471–483.

GERSZEWSKI, D., BHATTACHARYA, H., AND BARGTEIL, A. W.
2009. A point-based method for animating elastoplastic solids.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ACM, 133–138.

GOKTEKIN, T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. 2004.
A method for animating viscoelastic fluids. ACM Transactions
on Graphics (TOG) 23, 3, 463–468.

HONG, J.-M., AND KIM, C.-H. 2005. Discontinuous fluids. ACM
Transactions on Graphics (TOG) 24, 3, 915–920.

IHMSEN, M., AKINCI, N., GISSLER, M., AND TESCHNER,
M. 2010. Boundary handling and adaptive time-stepping for
PCISPH. In Proceedings VRIPHYS, VRIPHYS, 79–88.

IHMSEN, M., AKINCI, N., BECKER, M., AND TESCHNER, M.
2011. A parallel SPH implementation on multi-core CPUs. Com-
puter Graphics Forum 30, 1, 99–112.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2014. Implicit incompressible SPH.
IEEE Transactions on Visualization and Computer Graphics 20,
3 (Mar.), 426–435.

IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., KOLB, A.,
AND TESCHNER, M. 2014. SPH fluids in computer graphics. In
Eurographics 2014-State of the Art Reports, The Eurographics
Association, 21–42.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002.
Dual contouring of hermite data. ACM Transactions on Graphics
(TOG) 21, 3, 339–346.

KEISER, R., ADAMS, B., GASSER, D., BAZZI, P., DUTRÉ, P.,
AND GROSS, M. 2005. A unified Lagrangian approach to solid-
fluid animation. In Point-Based Graphics, 2005. Eurograph-
ics/IEEE VGTC Symposium Proceedings, IEEE, 125–148.

LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R. 2006.
Multiple interacting liquids. ACM Transactions on Graphics
(TOG) 25, 3, 812–819.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
ACM Transactions on Graphics (TOG) 32, 4, 104.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T.-Y.
2014. Unified particle physics for real-time applications. ACM
Transactions on Graphics (TOG) 33, 4, 104.

9



To appear in ACM TOG 34(4).

MILLER, G., AND PEARCE, A. 1989. Globular dynamics: A con-
nected particle system for animating viscous fluids. Computers
& Graphics 13, 3, 305–309.

MONAGHAN, J. 1989. On the problem of penetration in particle
methods. Journal of Computational physics 82, 1, 1–15.

MONAGHAN, J. J. 1992. Smoothed particle hydrodynamics. An-
nual review of astronomy and astrophysics 30, 543–574.

MONAGHAN, J. J. 2005. Smoothed particle hydrodynamics. Re-
ports on progress in physics 68, 8, 1703.

MOOTZ, E., 2014. emPolygonizer5. http://www.mootzoid.
com/.

MORRIS, J. P., FOX, P. J., AND ZHU, Y. 1997. Modeling low
reynolds number incompressible flows using SPH. Journal of
computational physics 136, 1, 214–226.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, 154–159.

MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA, M. 2004. Point based animation of elastic,
plastic and melting objects. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, 141–151.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. In ACM SIGGRAPH 2005 Papers, ACM, New York,
NY, USA, SIGGRAPH ’05, ACM, 471–478.

MÜLLER, M., SOLENTHALER, B., KEISER, R., AND GROSS, M.
2005. Particle-based fluid-fluid interaction. In Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM, 237–244.

PAIVA, A., PETRONETTO, F., LEWINER, T., AND TAVARES, G.
2006. Particle-based non-Newtonian fluid animation for melting
objects. In Computer Graphics and Image Processing, 2006.
SIBGRAPI’06. 19th Brazilian Symposium on, IEEE, 78–85.

PAIVA, A., PETRONETTO, F., LEWINER, T., AND TAVARES,
G. 2009. Particle-based viscoplastic fluid/solid simulation.
Computer-Aided Design 41, 4, 306–314.

RAFIEE, A., MANZARI, M., AND HOSSEINI, M. 2007. An in-
compressible SPH method for simulation of unsteady viscoelas-
tic free-surface flows. International Journal of Non-Linear Me-
chanics 42, 10, 1210–1223.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO, S.,
SUMNER, N., GEIGER, W., HOON, S., AND FEDKIW, R. 2004.
Directable photorealistic liquids. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, Eurographics Association, 193–202.

REN, B., LI, C., YAN, X., LIN, M. C., BONET, J., AND HU, S.-
M. 2014. Multiple-fluid SPH simulation using a mixture model.
ACM Transactions on Graphics (TOG) 33, 5, 171.

RIVERS, A. R., AND JAMES, D. L. 2007. Fastlsm: Fast lattice
shape matching for robust real-time deformation. In ACM SIG-
GRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH
’07, ACM.

SCHECHTER, H., AND BRIDSON, R. 2012. Ghost SPH for ani-
mating water. ACM Transactions on Graphics (TOG) 31, 4, 61.

SIDE EFFECTS SOFTWARE, 2013. Houdini. http://www.
sidefx.com/.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density con-
trast SPH interfaces. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics symposium on computer animation, Eu-
rographics Association, 211–218.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Transactions on Graphics
(TOG) 28, 3, 40.

SOLENTHALER, B., SCHLÄFLI, J., AND PAJAROLA, R. 2007.
A unified particle model for fluid–solid interactions. Computer
Animation and Virtual Worlds 18, 1, 69–82.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 121–128.

STEELE, K., CLINE, D., EGBERT, P. K., AND DINERSTEIN, J.
2004. Modeling and rendering viscous liquids. Computer Ani-
mation and Virtual Worlds 15, 3-4, 183–192.

STOMAKHIN, A., SCHROEDER, C., CHAI, L., TERAN, J., AND
SELLE, A. 2013. A material point method for snow simulation.
ACM Transactions on Graphics (TOG) 32, 4, 102.

STOMAKHIN, A., SCHROEDER, C., JIANG, C., CHAI, L.,
TERAN, J., AND SELLE, A. 2014. Augmented MPM for phase-
change and varied materials. ACM Transactions on Graphics
(TOG) 33, 4, 138.

STORA, D., AGLIATI, P.-O., CANI, M.-P., NEYRET, F., GAS-
CUEL, J.-D., ET AL. 1999. Animating lava flows. In Graphics
Interface (GI’99) Proceedings, GI, 203–210.

TAKAHASHI, T., NISHITA, T., AND FUJISHIRO, I. 2014. Fast sim-
ulation of viscous fluids with elasticity and thermal conductivity
using position-based dynamics. Computers & Graphics 43, 0,
21 – 30.

TAKAHASHI, T., DOBASHI, Y., FUJISHIRO, I., NISHITA, T., AND
LIN, M. C. 2015. Implicit formulation for SPH-based viscous
fluids. Computer Graphics Forum 34, 2.

TAKAMATSU, K., AND KANAI, T. 2011. A fast and practical
method for animating particle-based viscoelastic fluids. Interna-
tional Journal of Virtual Reality 10, 1, 29.

TERZOPOULOS, D., PLATT, J., AND FLEISCHER, K. 1991. Heat-
ing and melting deformable models. The Journal of Visualization
and Computer Animation 2, 2, 68–73.

WOJTAN, C., AND TURK, G. 2008. Fast viscoelastic behavior
with thin features. ACM Transactions on Graphics (TOG) 27, 3,
47.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Transactions on Graphics (TOG) 24, 3, 965–972.

10

http://www.mootzoid.com/
http://www.mootzoid.com/
http://www.sidefx.com/
http://www.sidefx.com/

