
1

Prescribed Velocity Gradients for Highly Viscous
SPH Fluids with Vorticity Diffusion

Andreas Peer and Matthias Teschner

Abstract—Working with prescribed velocity gradients is a promising approach to efficiently and robustly simulate highly viscous SPH
fluids. Such approaches allow to explicitly and independently process shear rate, spin, and expansion rate. This can be used to, e.g.,
avoid interferences between pressure and viscosity solvers. Another interesting aspect is the possibility to explicitly process the
vorticity, e.g. to preserve the vorticity.
In this context, this paper proposes a novel variant of the prescribed-gradient idea that handles vorticity in a physically motivated way.
In contrast to a less appropriate vorticity preservation that has been used in a previous approach, vorticity is diffused. The paper
illustrates the utility of the vorticity diffusion. Therefore, comparisons of the proposed vorticity diffusion with vorticity preservation and
additionally with vorticity damping are presented. The paper further discusses the relation between prescribed velocity gradients and
prescribed velocity Laplacians which improves the intuition behind the prescribed-gradient method for highly viscous SPH fluids.
Finally, the paper discusses the relation of the proposed method to a physically correct implicit viscosity formulation.

F

1 INTRODUCTION

THE SPH method [1] is a well-established variant for sim-
ulating fluids in computer graphics [2]. Its Lagrangian

nature allows for an efficient simulation of free-surface sce-
narios with small-scale effects, but it can also handle large-
scale scenarios, e.g. [3]. The inherent mass preservation and
improvements in volume preservation [4], [5], [6], boundary
handling [7], [8], [9], multiphase simulations [10], [11] and
surface tension effects [12], [13] make it a popular choice in
animation.

Simulating highly viscous fluids with SPH is a challeng-
ing task. As viscosity is an important stability criterion for
SPH simulations, for low viscosity fluids, several explicit
formulations have been proposed, e.g. [14], [15], [16]. How-
ever, due to the explicit nature and the associated small
timesteps, simulating highly viscous fluids is not practical.
Only recently, various implicit viscosity formulations have
been proposed. The formulation introduced by Takahashi
et al. [17] is based on the variational principle that has
been originally proposed for grids [18]. While being in the
tradition of previous grid-based implicit viscosity formula-
tions [19], [20], [21], it improves the handling of the free-
surface boundary to capture rotational motions. This allows
the simulation of realistic buckling and coiling effects.

As a versatile and efficient alternative to standard im-
plicit formulations, Peer et al. [22] propose the usage of
prescribed velocity gradients that capture many of the ef-
fects of true viscosity, and Bender and Koschier [6] adopt
this idea to prescribe shear rates. The idea of [22] focuses on
two principles. First, the viscosity solver should not interfere
with the pressure solver. Second, the viscosity solver should
approximately preserve rotational motion, i.e. vorticity. This
is in contrast to [6] which does not impose any restrictions
on vorticity. In separating shear viscosity from pressure and
vorticity, Peer et al. propose an efficient and simple model
for the simulation of highly viscous fluids that can easily

• A. Peer and M. Teschner are with University of Freiburg, Germany.

(a) Vorticity
damping

(b) Vorticity
preservation

(c) Vorticity
diffusion

Fig. 1. A viscous fluid cube on an inclined plane. All three examples are
simulated with the method of prescribed velocity gradients. However,
the examples differ in the handling of the vorticity. In case of vorticity
damping, the cube does not rotate. With vorticity preservation as in [22],
the cube rotates, but deforms. With the proposed vorticity diffusion, the
cube rotates with minimal distortion.

be integrated into existing frameworks. However, while
orthogonality to the pressure solve is a physical property
of shear viscosity, orthogonality to vorticity is not.

This aspect is illustrated in Fig. 1 where three variants of
the idea of prescribed velocity gradients are shown. First,
vorticity damping prevents viscous fluids from rotating.
Second, approximate vorticity preservation as proposed
in [22] enables rotating viscous fluids, but introduces im-
plausible distortion. Third, vorticity diffusion results in the
expected behavior of a rotating fluid without distortion. The
artifacts in case of vorticity damping and vorticity preserva-
tion are due to the fact that both variants are not physically
motivated. Realizing viscous fluids by simply minimizing
relative velocities of adjacent particles as, e.g. in XSPH [1],
[14], does not only counteract shear rates, but also vorticity.
This vorticity damping might be tolerable for low viscosity
fluids, but leads to visible artifacts for highly viscous fluids.
On the other hand, minimizing shear rates with approx-
imate vorticity preservation as proposed in [22] reduces
rotation artifacts, but introduces artificial distortions. While
the vorticity preservation is certainly motivated by existing



2

vorticity confinement methods, e.g. [23], [24], [25], [26], or
when involving interpolation to an underlying grid [27], it
is less appropriate for highly viscous fluids.

Contribution: We describe and analyze three relevant
variants to handle the vorticity in prescribed velocity gra-
dients for highly viscous fluids, i.e. vorticity damping,
vorticity preservation as in [22], and vorticity diffusion.
We show that vorticity damping and vorticity preservation
suffer from rotation and distortion issues. We propose a
novel vorticity diffusion scheme to resolve these problems.

Organization: Sec. 2 briefly introduces the general con-
cepts of explicit and implicit formulations for highly viscous
fluids. Sec. 2.2 and Sec. 2.3 introduce and discuss the relation
between prescribed velocity gradients and prescribed veloc-
ity Laplacians. Both formulations can be used to realize the
diffusion of the velocity field, while prescribed gradients
allow for a more intuitive specification of target values.
I.e., targets for shear rate, spin and expansion rate can
be separately processed. In the following, Sec. 3 discusses
three variants for the specification of target gradients. These
variants differ in the handling of vorticity. The first method
proposed in Sec. 3.1 is based on the intuition that viscous
accelerations minimize the Laplacian of the velocity field.
This variant damps the vorticity. Sec. 3.2 discusses the
target gradient proposed by Peer et al. [22]. This variant
approximately preserves the vorticity. Sec. 3.3 describes the
proposed way to specify target gradients where viscosity
is diffused. The approach is motivated and explained in
Sec. 4. Sec. 5 discusses the relation of our method to Taka-
hashi’s technique [17] which is based on a physically cor-
rect implicit viscosity formulation. In particular, conceptual
differences and performance aspects are addressed. Finally,
Sec. 6 compares the three variants of vorticity handling, i.e.
damping, preservation and the proposed diffusion. Prop-
erties of the proposed viscosity approach are illustrated.
The computational overhead compared to [22] is discussed.
Various comparisons to Takahashi’s technique [17] illustrate
practical aspects of the relation to our approach.

2 CONCEPTS FOR HIGH VISCOSITIES

In Newtonian, incompressible fluids, viscosity is handled by
the acceleration term ν∇2vi, where vi denotes the velocity
of particle i, and ν the constant for kinematic viscosity. The
acceleration is proportional to the difference of the velocity
at a particle and the mean velocity of its neighbors. The
main goal of the viscosity term is the reduction of shear
rates in the fluid flow, but in practice, it also affects the
vorticity and the expansion rate of the fluid. This section
discusses various approaches based on ν∇2vi to handle
highly viscous fluids.

2.1 Explicit and implicit formulations

Low viscous SPH fluid simulations generally work with
explicit formulations, i.e. Dvi(t)

Dt = ν∇2vi(t), assuming
spatially constant viscosity. Due to prohibitive timestep re-
strictions, however, highly viscous fluid simulations prefer
the implicit formulation Dvi(t)

Dt = ν∇2vi(t+∆t) that results
in a linear system of the form (I−∆tν∇2)vi(t+∆t) = vi(t),
e.g. [17], [18], [19], [20], [21], [28], [29], [30]. Instead of

explicitly computing a viscous velocity change per particle,
the implicit form globally computes the final velocity field.
This allows for a robust handling of high viscosities at large
timesteps. Instead of considering the current velocity vi(t)
in the system, the implicit formulation typically employs
an intermediate velocity v∗i after external accelerations and
pressure solve, i.e.

(I−∆tν∇2)vi(t+ ∆t) = v∗i . (1)

2.2 Prescribed Laplacian
An alternative to the implicit viscosity formulation is the
computation of final velocities vi(t + ∆t) that adhere to a
prescribed vector Laplacian∇2

τv
∗
i , as proposed by [22]. This

results in a linear system of the form

∇2vi(t+ ∆t) = ∇2
τv
∗
i . (2)

The notation ∇2
τv
∗
i indicates that the prescribed Laplacian

for the velocities vi(t+∆t) is derived from the intermediate
velocity field v∗i after external accelerations and pressure
solve. It generally differs from the actual Laplacian of the
velocities v∗i , e.g., ∇2

τv
∗
i = ξ∇2v∗i with 0 ≤ ξ < 1 could be

used (see also Sec. 3.1).
Please refer to [22] for a derivation of this method, where

Eq. 2 is particularly discussed in Sec. 5.

2.3 Prescribed gradient
In order to independently process shear rate, expansion
rate and vorticity, Eq. 2 can be discretized in a specific
way that reformulates the prescribed Laplacian with a
prescribed velocity gradient [22]. Using XSPH, we get
∇2vi ≈

∑
j
mj
ρj

vjiWij , with vji = vj − vi. And us-

ing the approximation vj ≈ vi +
∇vi+∇vj

2 xji, we get
∇2vi ≈

∑
j
mj
ρj

∇vi+∇vj
2 xjiWij . Now, the prescribed Lapla-

cian ∇2
τv
∗
i can be rewritten with a prescribed velocity gra-

dient ∇τv∗i as ∇2
τv
∗
i ≈

∑
j
mj
ρj

∇τv∗
i+∇τv

∗
j

2 xjiWij . Finally
using XSPH to discretize the left-hand side of Eq. 2, results
in the linear system∑

j

mj

ρj
vji(t+ ∆t)Wij =

∑
j

mj

ρj

∇τv∗i +∇τv∗j
2

xjiWij

(3)

which has been proposed in [22]. In contrast to Eq. 2,
the discretized reformulation in Eq. 3 allows to derive a
prescribed target velocity gradient ∇τv∗i from the actual
velocity gradient ∇v∗i after pressure solve and external
acceleration.

Therefore, the typical decomposition of ∇v∗i into spin
R∗i , expansion rate V∗i and shear rate S∗i is considered:

∇v∗i =
1

2

(
∇v∗i − (∇v∗i )T

)
︸ ︷︷ ︸

R∗
i

+
1

3

(
∇ · v∗i

)
I︸ ︷︷ ︸

V∗
i

+

(1

2

(
∇v∗i + (∇v∗i )T

)
− 1

3

(
∇ · v∗

)
I
)

︸ ︷︷ ︸
S∗
i

. (4)

Now, target values Rτ
i , Vτ

i , Sτi are derived from R∗i , V∗i ,
S∗i and the target gradient in Eq. 3 is computed as ∇τv∗i =
Rτ
i +Vτ

i +Sτi . Variants to specify the target values Rτ
i , Vτ

i ,
Sτi are discussed in Sec. 3.



3

3 COMPUTATION OF THE TARGET GRADIENT

There exist various ways to define the target gradient and
this section discusses three options. A comparative analysis
follows in Sec. 6.

3.1 Vorticity damping

The minimization of the velocity Laplacian over time is
an important effect of the viscosity acceleration ν∇2vi.
Therefore, one option is to prescribe the target Laplacian
as ∇2

τv
∗
i = ξ∇2v∗i with 0 ≤ ξ < 1. Using the gradient form

from Sec. 2.3, this corresponds to

∇2vi(t+ ∆t) = ξ
∑
j

mj

ρj

∇v∗i +∇v∗j
2

xjiWij . (5)

Applying the decomposition from Eq. 4, we get

∇2vi(t+ ∆t) =∑
j

mj

ρj

ξ(R∗i + V∗i + S∗i ) + ξ(R∗j + V∗j + S∗j )

2
xjiWij . (6)

Thus, minimizing the Laplacian over time corresponds to
damping spin, expansion rate and shear rate over time.
From Eq. 6 follows that in the vorticity damping case, the
target gradient is computed as

∇τvτi = ξR∗i + ξV∗i + ξS∗i . (7)

3.2 Vorticity preservation

In contrast to a uniform minimization of all components
of the velocity gradient, Peer et al. [22] propose a target
gradient that preserves the spin, i.e. Rτ

i = R∗i . Further, the
expansion rate is preserved Vτ

i = V∗i . This is motivated by
the fact that the viscosity solver should not interfere with
the result of the pressure solver. As v∗i is the velocity after
pressure solve, the expansion rate of the respective velocity
gradient ∇v∗i encodes a volume change that is induced by
the pressure solver to preserve the incompressibility of the
SPH fluid. As this volume change should be preserved,
the expansion rate should not be changed by the viscosity
solver, thus Vτ

i = V∗i . The target gradient is therefore
computed as

∇τvτi = R∗i + V∗i + ξS∗i . (8)

3.3 Vorticity diffusion

The two target gradients in Eqs. 7 and 8 differ in the han-
dling of the vorticity. The first variant damps the vorticity,
while the second one preserves it. Both variants, however,
are not physically motivated. From Dvi(t)

Dt = ν∇2vi(t), it
can be seen that viscosity diffuses momentum. By taking
the curl of this equation, it transforms into a vorticity form
Dωi(t)
Dt = ν∇2ωi(t), with ωi = ∇ × vi being the vorticity.

Here, it can be seen that viscosity also diffuses vorticity.
In contrast to the previously employed target gradient,

we propose a novel variant of the target gradient that
does not only preserve the expansion rate, but also realizes
vorticity diffusion. This approach and its implementation
are described in the following Sec. 4.

4 PRESCRIBED VELOCITY GRADIENTS FOR
VORTICITY-DIFFUSING VISCOSITY

Following the idea of the prescribed velocity gradient, we
start with a velocity field vi(t), and external and pressure
forces are computed to predict intermediate velocities v∗i .
For this intermediate velocity field, velocity gradients ∇v∗i
are computed with SPH as ∇v∗i = 1

ρi

∑
jmj(v

∗
j − v∗i ) ⊗

∇Wij [1] and Eq. 4 is used to extract spin R∗i , expansion
rate V∗i and shear rate S∗i from the velocity gradient ∇v∗i .

Now, the target gradient ∇τv∗i = Rτ
i + Vτ

i + Sτi is
computed in a novel way. While target expansion rate Vτ

i

and target shear rate Sτi are computed as proposed in [22]
with Vτ

i = V∗i and Sτi = ξS∗i , the target vorticity Rτ
i is

computed from a diffusion process. The general idea of the
proposed vorticity-diffusing viscosity solver is depicted in
Alg. 1, while details of the vorticity diffusion to compute
Rτ
i are described in Sec. 4.1.

Algorithm 1 Vorticity-diffusing viscous SPH fluid solver
compute external and pressure forces
update velocity: vi(t)→ v∗i
compute velocity gradient ∇v∗i
decompose velocity gradient into R∗i , V∗i and S∗i
compute target shear and target expansion rate S∗i →
Sτi ,V

∗
i → Vτ

i

diffusion process to compute target vorticity R∗i → Rτ
i

compute the target gradient ∇vτi = Rτ
i + Vτ

i + Sτi
solve velocity reconstruction system
update velocity: v∗ → v(t+ ∆t)
update position: x(t)→ x(t+ ∆t)

4.1 Target vorticity based on diffusion
As already outlined in Sec. 3.3, viscosity diffuses vorticity
according to Dωi(t)

Dt = ν∇2ωi(t). In order to consider this
effect in the proposed target vorticity Rτ

i , we propose to
solve the system

∇2ωτi = ξ∇2ω∗i (9)

with 0 ≤ ξ ≤ 1 for all particles i. The value ω∗i is extracted
from the spin tensor R∗i using

R∗ =
1

2

 0 −ω∗z ω∗y
ω∗z 0 −ω∗x
−ω∗y ω∗x 0

 , ω∗ =

ω∗xω∗y
ω∗z

 . (10)

and the same relation is used to generate the target spin
tensor Rτ

i from ωτi . Considering the system in Eq. 9 is
motivated by the idea that a diffusion process minimizes
the Laplacian over time (see Sec. 3.1).

4.2 Solving the system
For solving the system in Eq. 9, we discretize both sides with
XSPH: ∑

j

mj

ρj
ωτjiWij = ξ

∑
j

mj

ρj
ω∗jiWij (11)

This system can be rewritten according to [22] as

1

ρi

∑
j

mjω
τ
ijWij = ξ

1

ρi

∑
j

mjω
∗
ijWij (12)



4

which can be transformed into the symmetric form∑
j

mjω
τ
ijWij = ξ

∑
j

mjω
∗
ijWij (13)

if mj = mi. Rewriting the equation as

ωτi (
∑
j

mjWij −miWii) +
∑
j 6=i

−mjWijω
τ
j

= ξ
∑
j

mjω
∗
ijWij (14)

gives the coefficients of the respective system Aωτ = b as
aii = ρi −miWii and aij = −mjWij . The source vector b
is composed of bi = ξ

∑
jmjω

∗
ijWij .

5 DISCUSSION

5.1 Conceptual differences to Takahashi’s
approach [17]
Takahashi et al. [17] is an implicit viscosity formulation
for SPH which is adapted from [18]. While [17] solves
vi = v∗i + ∆t∇ · νi

(
∇vi + (∇vi)T

)
, which reduces to

Eq. 1 for incompressible and constant viscosity fluids in the
continuous case, our technique solves the system in Eq. 2
(see [22]). In contrast to [17], the approach in [22] does not
interfere with the pressure solver and both solvers do not
affect each other. Like [22], our approach also eliminates
interference between pressure and viscosity.

On the other hand, it is interesting to note that Eq. 1 and
Eq. 2 converge towards each other for infinite viscosity. If
we divide Eq. 1 by ν and ν runs to infinity

lim
ν−>∞

(1

ν
I−∆t∇2

)
vi(t+ ∆t) = lim

ν−>∞

1

ν
v∗i , (15)

we end up

∇2vi(t+ ∆t) = 0. (16)

which corresponds to Eq. 2 for ∇2
τv
∗
i = ξ∇2v∗i with ξ = 0.

This might be an indicator that vorticity diffusion is also
a problem in approaches that are based on Eq. 1. The
experiment discussed in Sec. 6.11 and shown in Fig. 10
addresses this issue. Here, two highly viscous cubes collide.
While the cubes start rotating due to the collision using
our approach, the induced vorticity is instantly damped out
by [17].

5.2 Performance
The system in [17] is fully-coupled, leading to a size of
3N × 3N with N being the particle number. Furthermore,
each equation considers first- and second-ring neighbors,
leading to up to 320 non-zero entries per row. Therefore, the
complexity of a solver iteration is 3N · 320 = 960N . Our
method, on the other side, solves six systems of size N ×N
and all these systems share the same system matrix. Fur-
thermore, only first-ring neighbors are required, resulting
in about 30 unknowns per row. Thus, the complexity per
solver iteration is 6N · 30 = 180N , reducing the complexity
by more than a factor of five compared to Takahashi’s
approach. Furthermore, as we solve the same system six
times, any preconditioner or factorization of the system
matrix has to be computed only once.

In addition to the reduced complexity per solver it-
eration, our approach typically requires fewer iterations
than [17] for similar material properties. This is emphasized
by all comparative experiments in Sec. 6.

6 RESULTS

In this section, we illustrate the properties of the proposed
target-gradient approach that considers vorticity diffusion
(Sec. 3.3). We particularly focus on comparisons with the
two alternative variants for prescribing the velocity gra-
dient, namely vorticity damping (Sec. 3.1) and vorticity
preservation (Sec. 3.2).

In all presented experiments, we use SPH [1], [2] with a
cubic spline kernel [31] with an influence radius of twice the
particle spacing. Pressure and pressure forces are computed
with IISPH by solving a pressure Poisson equation [5].
The maximum overall deviation of the fluid volume in all
scenarios is less than 0.1%. Solids are sampled with particles.
One- and two-way coupling of fluid and solids, as well
as surface tension, is realized with the methods of Akinci
et al. [8], [12]. Number-density formulations are used for
fluids with multiple phases [10]. Fluid-air interfaces are re-
constructed with dual contouring [32]. Our implementation
is fully parallelized [33]. All experiments are computed on
a 16-core Intel Xeon workstation with 3.10 GHz using 50
frames per second.

6.1 Cube in a rotational force field

This scenario illustrates a highly viscous fluid cube in a
rotational force field. The cube consists of 8k particles.
The particle spacing is 50mm. The timestep is 5ms which
corresponds to 4 substeps, i.e. simulation steps per frame.
ξ is set to zero. Fig. 2 shows the scenario and Tab. 1 shows
performance details. The scenario illustrates that the correct
handling of spin is an issue for viscosity with vorticity
damping and vorticity preservation, and that our proposed
approach with added vorticity diffusion significantly im-
proves the spin handling.

vorticity vorticity vorticity
damping preservation diffusion

meshing 6 ms 6 ms 6 ms
ext. forces 4 ms 4 ms 4 ms
pressure 6 ms 6 ms 6 ms
pre-processing 12 ms 16 ms 16 ms
viscosity 36 ms 36 ms 30 ms
vorticity - - 30 ms

overall 64 ms 68 ms 92 ms

pressure 1 it. 1 it. 1 it.
viscosity 19 it. 17 it. 14 it.
vorticity - - 14 it.

TABLE 1
Cube in a rotational force field. Performance measurements are given
per frame. The solver iterations for pressure, viscosity and vorticity are

average values per substep.

The measurements in Tab. 1 indicate the significant
computational overhead in case of vorticity diffusion. The
overhead is difficult to specify in a general way. On one



5

(a) Vorticity
damping

(b) Vorticity
preservation

(c) Vorticity
diffusion

Fig. 2. Cube in a rotational force field. With vorticity damping, the
cube does not rotate. With vorticity preservation, the cube rotates, but
deforms. With the proposed vorticity diffusion, the cube rotates with
minimal distortion.

hand, there is an additional system solve. On the other hand,
the meshing, the pressure solve and the pre-processing
for the viscosity solver is similar in all variants. The pre-
processing for vorticity preservation and vorticity diffusion
is more expensive as it requires the computation of the
velocity gradient per particle. We have also observed that
the handling of the vorticity diffusion seems to slightly
improve the convergence of the viscosity solver as indicated
by the solver iterations for viscosity.

6.2 Cube on an inclined plane

This scenario illustrates a highly viscous fluid cube under
gravity on an inclined plane. The cube consists of 8k par-
ticles. The particle spacing is 50mm. The timestep is 0.5ms
which corresponds to 40 substeps per frame. ξ is set to zero.
Fig. 1 shows the scenario and Tab. 2 shows performance
details. In contrast to the previous scenario, fluid-solid in-
teraction is added which requires a smaller timestep. Again,
spin handling is an issue for existing techniques [22], while
the proposed vorticity diffusion improves the spin handling.

vorticity vorticity vorticity
damping preservation diffusion

meshing 60 ms 60 ms 60 ms
ext. forces 40 ms 40 ms 40 ms
pressure 60 ms 60 ms 60 ms
pre-processing 160 ms 190 ms 190 ms
viscosity 800 ms 530 ms 400 ms
vorticity - - 750 ms

overall 1120 ms 880 ms 1500 ms

pressure 1 it. 1 it. 1 it.
viscosity 44 it. 26 it. 20 it.
vorticity - - 37 it.

TABLE 2
Cube on an inclined plane. Performance measurements are given per

frame. The solver iterations for pressure, viscosity and vorticity are
average values per substep.

Comparing Tab. 1 and Tab. 2 indicates that the boundary
handling negatively affects the convergence of the viscosity
and vorticity solvers. The tables also show that the relative
computational overhead of the additional vorticity solver
varies compared to the variants without vorticity diffusion.

Fig. 3. A creature walking in mud. The creature model is courtesy of Eric
Mootz.

Fig. 4. Multiple phases. Lava mixes with water.

6.3 Interaction with scripted geometry
The scenario in Fig. 3 is simulated with the proposed vor-
ticity diffusion. It shows the interaction of a highly viscous
fluid with scripted geometry. The particle count is 2.9M, the
spacing is 35mm and the timestep is 1ms. ξ is set to 0.5.
The average computation time per frame is 43s. On average,
2.3 pressure iterations, 1 vorticity iteration and 7 viscosity
iteration are computed. The low number of vorticity itera-
tions indicates that spin handling is less challenging in this
scenario.

6.4 Multiple phases
Fig. 4 illustrates a scenario where a highly viscous fluid
interacts with a solid and a low viscous fluid. The scene
consists of 800k particles with a spacing of 20mm. The
timestep is 2ms. The scenario is simulated with vorticity
diffusion. ξ is set to 0.4 for the lava. The average com-
putation time per frame is 12s. On average, the scenario
requires 12.9 pressure iterations, 18.3 vorticity iterations and
31.4 viscosity iterations.

6.5 Large-scale scenario
Fig. 5 shows a large-scale scenario simulated with vorticity
diffusion. It consists of 8M particles with a spacing of
100mm. ξ is set to 0.2. The timestep is 4ms and the average
computation time per frame is 393s. 8 pressure iteration,
160 vorticity iterations and 45 viscosity iterations have been
computed on average.



6

Fig. 5. Melting Eiffel tower. The model is courtesy of Pranav Panchal.

Fig. 6. Multiple phases with two-way coupled solids. A swimming ship is
hit by highly viscous spheres. The ship model is courtesy of splatypi at
www.blendswap.com

The scene starts with an undeformed model under grav-
ity on an inclined plane. A significant spin is introduced
during the deformation of the object resulting in a large
number of iterations for diffusing the vorticity.

6.6 Multiple phase with two-way coupled solids
In the scenario in Fig. 6, highly viscous material interacts
with a ship that swims in water. The scene consists of 24M
particles including water and viscous spheres. The particle
spacing is 60mm. The scene is simulated with a timestep of
1ms. ξ is set to 0.7 for the viscous spheres. The computation
time per frame is 109s. The pressure computation required
5 iterations, vorticity diffusion 3.6 iterations and viscosity
took 9.4 iterations on average.

6.7 Comparison of vorticity preservation, damping and
diffusion for the Eiffel tower
The Eiffel tower in Fig. 5 has been simulated with the pro-
posed vorticity diffusion. To illustrate the practical relevance
of our approach, we have simulated the same scenario with
vorticity preservation and vorticity damping as illustrated
in Fig. 7. The three variants lead to significantly different
results, while the vorticity diffusion in Fig. 5 shows the
most plausible behavior. Please refer to the accompanying
video to assess the differences in the dynamics for all three
variants. Analogous to the scenario in Fig. 5, the scenarios

vorticity vorticity vorticity
diffusion damping preservation

viscosity iter. 45 78 62
vorticity iter. 160 - -

TABLE 3
Solver iterations for the scenarios in Figs. 5 and 7.

Fig. 7. Top: Vorticity damping. Bottom: Vorticity preservation.

in Fig. 7 consist of 8M particles with a spacing of 100mm. ξ
is set to 0.2. Tab. 3 summarizes the solver iterations for all
three variants.

6.8 Comparison of vorticity preservation, damping,
and diffusion for the same value of ξ using Armadillos

The comparisons in the top row in Fig. 8 illustrate the
relevance of vorticity diffusion in the case of time-varying
spin. If spin changes over time, simulations with the same
value of ξ differ for vorticity damping, preservation and
diffusion. While vorticity damping and in particular vortic-
ity preservation result in artificial, less plausible distortions,
such errors are minimized with vorticity diffusion. This is
particularly visible at the tail and the ears of the Armadillo
in Fig. 8. Please also refer to the accompanying video to as-
sess the differences in the dynamics. The Armadillo consists
of 50k particles with a spacing of 25mm. ξ is set to 0.1. Tab. 4
summarizes the solver iterations for all three variants.

6.9 Comparison of vorticity preservation, damping, dif-
fusion for the same value of ξ using non-rotating cubes

In this scenario, we compare vorticity damping, preserva-
tion and diffusion for a falling cube without a significant



7

vorticity vorticity vorticity
damping preservation diffusion

viscosity iter. 30 27 28
vorticity iter. - - 8

TABLE 4
Solver iterations for the scenario in the top row of Fig. 8.

Fig. 8. Top: Vorticity damping, preservation, diffusion (left to right) for
the Armadillo. Bottom: Vorticity damping, preservation, diffusion (left to
right) for a non-rotating cube.

change of spin over time. As expected and illustrated in the
bottom row of Fig. 8, there are less relevant differences in the
simulation results. The cube consists of 8k particles with a
spacing of 50mm. ξ is set to 0.5. Tab. 5 summarizes the solver
iterations for all three variants. As spin does not change over
time, the vorticity diffusion requires a minimum number of
iterations.

6.10 Comparisons of three viscous fluids with varying
values of ξ
The simulations in Fig. 9 show that our approach can be
used to simulate a wide range of viscous materials. Each
Armadillo consists of 50k particles with a particle spacing of
25mm. Tab. 6 summarizes the solver iterations. Analogous
to [22], our approach is less appropriate for low viscous
fluids such as water and also for rigid-like materials for
which the number of solver iterations would significantly
grow.

As a rule of thumb, values of ξ below 0.1 result in
rigid-like materials, values of ξ around 0.4 represent highly
viscous, but melting fluids such as mud, and values of ξ

vorticity vorticity vorticity
damping preservation diffusion

viscosity iter. 20 14 12
vorticity iter. - - 4

TABLE 5
Solver iterations for the scenario in the bottom row of Fig. 8.

ξ 0.1 0.5 0.9

viscosity iter. 28 16 10
vorticity iter. 8 7 7

TABLE 6
Solver iterations for the scenario in Fig. 9.

Fig. 9. Different values of ξ. From left to right: ξ = 0.1, ξ = 0.5, ξ = 0.9.

Fig. 10. Colliding cubes. Left: Our approach. Right: Takahashi’s ap-
proach [17].

above 0.7 should be used for medium viscous fluids that
dissolve fast, like honey.

6.11 Comparison with Takahashi [17], cubes
We have outlined in Sec. 5.1 that Takahashi’s formula-
tion [17] and Peer’s formulation [22] converge towards
each other for extremely viscous fluids. This can be an
indicator that [17] has problems with vorticity diffusion.
The two experiments in Fig. 10 show two colliding fluids.
While the fluids start rotating after the collision using our
approach, the fluids do not rotate with [17]. Please refer
to the accompanying video to assess the differences in the
dynamics. Each scenario consists of 16k particles with a
particle spacing of 50mm. Our approach requires 13 vor-
ticity iterations and 4 viscosity iterations for ξ = 0, while
Takahashi’s technique [17] requires 32 iterations for µ = 109

and ρ0 = 1000.

6.12 Comparison with Takahashi [17], buckling and
coiling
Fig. 11 shows that both approaches, Takahashi’s [17] and
ours, can capture coiling effects. Takahashi’s method seems
to produce ”nicer” patterns for lower viscosities, while the
differences to our method are less obvious for higher viscosi-
ties. As already discussed in Sec. 5.2, our method is faster.
Further, Takahashi’s scheme seems to introduce an artificial
melting effect at the boundary which does not occur with
our approach. This might be due to the fact that pressure
and viscosity solver do not interfere in our approach. Each
scenario in Fig. 11 consists of 5k particles with a spacing of
50mm. The top row of Fig. 11 shows Takahashi’s approach
with µ = 104 and ρ0 = 1000, while our approach runs with
ξ = 0.5. Takahashi’s approach requires 20 iterations, while
our approach requires 3 vorticity iterations and 8 viscosity
iterations. The bottom row of Fig. 11 shows Takahashi’s
approach with µ = 105 and ρ0 = 1000, while our approach
runs with ξ = 0.1. Takahashi’s approach requires 38 itera-
tions, while our approach requires 3 vorticity iterations and
17 viscosity iterations.



8

Fig. 11. Buckling and coiling for fluids with varying viscosity. Top: low
viscosity. Bottom: high viscosity. Left: Takahashi’s approach [17]. Right:
Our approach.

7 CONCLUSION

We have presented a novel variant of prescribed velocity
gradients for highly viscous SPH fluids. In contrast to
alternative variants that damp or preserve vorticity, the
proposed variant diffuses vorticity in a physically motivated
way. Therefore, a diffusion process is employed to compute
the target vorticity. This target vorticity is encoded in the
target velocity gradient and the final velocity field is recon-
structed accordingly. We have performed comparisons of
three different variants for the vorticity processing in order
to illustrate artifacts in case of damping and preservation
and to show the plausible handling of rotations in case of
the proposed vorticity diffusion. Additional scenarios have
shown the flexibility of the approach. It can be used in
combination with one- or two-way coupled solids and for
interacting multiphase fluids.

REFERENCES

[1] J. Monaghan, “Smoothed particle hydrodynamics,” Annual review
of astronomy and astrophysics, vol. 30, pp. 543–574, 1992.

[2] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH fluids in computer graphics,” in Eurographics 2014 - State
of the Art Reports, S. Lefebvre and M. Spagnuolo, Eds. The
Eurographics Association, 2014.

[3] J. Cornelis, M. Ihmsen, A. Peer, and M. Teschner, “IISPH-FLIP for
incompressible fluids,” in Computer Graphics Forum, vol. 33, no. 2.
Wiley Online Library, 2014, pp. 255–262.

[4] B. Solenthaler and R. Pajarola, “Predictive-corrective incompress-
ible SPH,” in ACM transactions on graphics (TOG), vol. 28, no. 3.
ACM, 2009, p. 40.

[5] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and
M. Teschner, “Implicit incompressible SPH,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 3, pp. 426–435, Mar.
2014.

[6] J. Bender and D. Koschier, “Divergence-free SPH for incompress-
ible and viscous fluids,” IEEE Transactions on Visualization and
Computer Graphics.

[7] M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner, “Boundary
handling and adaptive time-stepping for PCISPH,” in Proceedings
VRIPHYS. VRIPHYS, 2010, pp. 79–88.

[8] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner,
“Versatile rigid-fluid coupling for incompressible SPH,” ACM
Transactions on Graphics (TOG), vol. 31, no. 4, p. 62, 2012.

[9] H. Schechter and R. Bridson, “Ghost SPH for animating water,”
ACM Transactions on Graphics (TOG), vol. 31, no. 4, p. 61, 2012.

[10] B. Solenthaler and R. Pajarola, “Density contrast SPH interfaces,”
in Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium
on computer animation. Eurographics Association, 2008, pp. 211–
218.

[11] B. Ren, C. Li, X. Yan, M. C. Lin, J. Bonet, and S.-M. Hu, “Multiple-
fluid SPH simulation using a mixture model,” ACM Transactions
on Graphics (TOG), vol. 33, no. 5, p. 171, 2014.

[12] N. Akinci, G. Akinci, and M. Teschner, “Versatile surface tension
and adhesion for SPH fluids,” ACM Transactions on Graphics (TOG),
vol. 32, no. 6, p. 182, 2013.

[13] X. He, H. Wang, F. Zhang, H. Wang, G. Wang, and K. Zhou,
“Robust simulation of sparsely sampled thin features in SPH-
based free surface flows,” ACM Transactions on Graphics (TOG),
vol. 34, no. 1, p. 7, 2014.

[14] J. Monaghan, “On the problem of penetration in particle meth-
ods,” Journal of Computational physics, vol. 82, no. 1, pp. 1–15, 1989.

[15] J. P. Morris, P. J. Fox, and Y. Zhu, “Modeling low reynolds number
incompressible flows using SPH,” Journal of computational physics,
vol. 136, no. 1, pp. 214–226, 1997.

[16] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid
simulation for interactive applications,” in Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation.
Eurographics Association, 2003, pp. 154–159.

[17] T. Takahashi, Y. Dobashi, I. Fujishiro, T. Nishita, and M. C. Lin,
“Implicit formulation for SPH-based viscous fluids,” in Computer
Graphics Forum, vol. 34, no. 2. Wiley Online Library, 2015, pp.
493–502.

[18] C. Batty and R. Bridson, “Accurate viscous free surfaces for
buckling, coiling, and rotating liquids,” in Proceedings of the 2008
ACM SIGGRAPH/Eurographics symposium on computer animation.
Eurographics Association, 2008, pp. 219–228.

[19] J. Stam, “Stable fluids,” in Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 121–128.

[20] M. Carlson, P. J. Mucha, R. B. Van Horn III, and G. Turk,
“Melting and flowing,” in Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM,
2002, pp. 167–174.

[21] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, “Multiple interacting
liquids,” in ACM Transactions on Graphics (TOG), vol. 25, no. 3.
ACM, 2006, pp. 812–819.

[22] A. Peer, M. Ihmsen, J. Cornelis, and M. Teschner, “An implicit vis-
cosity formulation for SPH fluids,” ACM Transactions on Graphics
(TOG), vol. 34, no. 4, p. 114, 2015.

[23] J. Steinhoff and D. Underhill, “Modification of the Euler equations
for vorticity confinement: application to the computation of inter-
acting vortex rings,” Physics of Fluids (1994-present), vol. 6, no. 8,
pp. 2738–2744, 1994.

[24] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method
for smoke, water and explosions,” in ACM Transactions on Graphics
(TOG), vol. 24, no. 3. ACM, 2005, pp. 910–914.

[25] X. Zhang, R. Bridson, and C. Greif, “Restoring the missing vor-
ticity in advection-projection fluid solvers,” ACM Transactions on
Graphics (TOG), vol. 34, no. 4, p. 52, 2015.

[26] M. Macklin and M. Müller, “Position based fluids,” ACM Transac-
tions on Graphics (TOG), vol. 32, no. 4, p. 104, 2013.

[27] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin,
“The affine particle-in-cell method,” ACM Transactions on Graphics
(TOG), vol. 34, no. 4, pp. 51:1–51:10, 2015.

[28] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw, “Directable photorealistic
liquids,” in Proceedings of the 2004 ACM SIGGRAPH/Eurographics



9

symposium on Computer animation. Eurographics Association,
2004, pp. 193–202.

[29] D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran,
and P. Kavehpour, “A material point method for viscoelastic
fluids, foams and sponges,” in Proceedings of the 14th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM,
2015, pp. 157–163.

[30] B. Zhu, M. Lee, E. Quigley, and R. Fedkiw, “Codimensional non-
Newtonian fluids,” ACM Transactions on Graphics (TOG), vol. 34,
no. 4, p. 115, 2015.

[31] J. Monaghan, “Smoothed particle hydrodynamics,” Reports on
progress in physics, vol. 68, no. 8, p. 1703, 2005.

[32] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of
hermite data,” ACM Transactions on Graphics (TOG), vol. 21, no. 3,
pp. 339–346, 2002.

[33] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner, “A parallel
SPH implementation on multi-core CPUs,” in Computer Graphics
Forum, vol. 30, no. 1. Wiley Online Library, 2011, pp. 99–112.

Andreas Peer received his MSc degree in com-
puter science from the University of Freiburg in
2013. He is a research assistant and a PhD
candidate in the computer graphics group at the
University of Freiburg. His research interests in-
clude physically based animations, with a partic-
ular focus on fluid simulations.

Matthias Teschner received the PhD degree
in electrical engineering from the University of
Erlangen-Nuremberg in 2000. He is professor
of computer science and head of the computer
graphics group at the University of Freiburg.
From 2001 to 2004, he was research asso-
ciate at Stanford University and at the ETH
Zurich. His research interests include physically
based simulation, computer animation, render-
ing, and computational geometry with applica-
tions in robotics, medical simulation and enter-

tainment technology. He regularly serves on program committees of
major graphics conferences including Eurographics, Pacific Graphics,
IEEE Vis, and ACM SIGGRAPH / Eurographics SCA. He serves as an
associate editor for Computers & Graphics.


