Advanced Computer Graphics Introduction

Matthias Teschner

UNI FREIBURG

Computer Graphics

Modeling - Rendering - Simulation

© Warner Bros. Scanline VFX V-Ray

Outline

- Organization
- Concepts
- Applications
- History

Graphics Courses

- Key course
 - Image processing and computer graphics (modeling, rendering, simulation)
- Specialization courses
 - Advanced computer graphics (global illumination)
 - Simulation in computer graphics (solids and fluids)
- B.Sc. / M.Sc. project, lab course, B.Sc. / M.Sc. thesis
 - Simulation track, rendering track
 - By appointment per email, semester-aligned

Seminars / Projects / Theses in Graphics

Semester	Simulation Track	Rendering Track
Winter	Simulation Course	
Summer	Key Course Lab Course - Simple fluid solver Simulation Seminar	Key Course Lab Course - Simple Ray Tracer Rendering Seminar
Winter	Master Project - PPE fluid solver Rendering Seminar	Rendering Course Master Project - Monte Carlo RT Simulation Seminar
Summer	Master Thesis Research-oriented topic	Master Thesis Research-oriented topic

UNI FREIBURG

Course Goals

- Concepts for image synthesis / global illumination approaches
- Governing equation and solution techniques
 - Radiometric quantities
 - Rendering equation
 - Radiosity
 - Monte Carlo ray tracing
- Requirements:
 - Key course in graphics and image processing

 Slide sets and video recordings on https://cg.informatik.uni-freiburg.de/teaching.htm

University of Freiburg – Computer Science Department – 9

Kevin Suffern

Ray Tracing

from the Ground Up

lUр

Kevin Suffern Ray Tracing from the Ground Up A K Peters

Material

 Matt Pharr, Wenzel Jakob, Greg Humphreys Physically Based Rendering Morgan Kaufmann http://www.pbr-book.org/

 Philip Dutre, Kavita Bala, Philippe Bekaert Advanced Global Illumination
 A K Peters

 Peter Shirley, R. Keith Morley Realistic Ray Tracing A K Peters

UNI FREIBURG

Andrew Glassner
 Principles of Digital Image Synthesis

Available online from http://www.realtimerendering.com

– Eric Veach

Robust Monte Carlo Methods for Light Transport Simulation

PhD Thesis, Stanford University, 1997

Available online from https://graphics.stanford.edu/papers/veach_thesis/thesis.pdf

Peter Shirley
 Raytracing in one Weekend
 Raytracing – The Next Week
 Raytracing – The Rest of Your
 Life

Available online from https://raytracing.github.io/

Exercises

- Development of ray tracing components
- Check web page for information and example frameworks
- Voluntary

Exam

- Written
- Based on slide sets and recordings
- Relevant material will be summarized
- Text exam on our web page

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Light

- Modeled as energy parcels / photons that travel
 - Along geometric rays (radiance L)
 - At infinite speed
- Emitted by light sources
- Scattered / absorbed at surfaces
- Scattered / absorbed by participating media
- Absorbed / measured by sensors

Light travels along rays Light is generated at light sources Incoming light is scattered and absorbed at surfaces Participating media scatters and absorbs light Sensors absorb light

> UNI FREIBURG

Color

- Photons are characterized by a wavelength within the visible spectrum
- Distribution of wavelengths \Longrightarrow spectrum \Longrightarrow color

 $\Phi_\lambda(\lambda_3)$

 $\Phi_{\lambda}(\lambda)$: number of photons per time with a wavelength in a range $\Delta\lambda_{i}$ around λ_{i} .

Governing Equations

- Light transport is governed by surfaces and by participating media
- Interactions of light with surfaces and volumes are described by governing equations
 - Rendering equation
 - Volume rendering equation

Light at Surfaces – Rendering Equation

 Governing equation for reflected light at surfaces into a particular direction given incident light from all directions

$$L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \qquad \qquad L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \qquad L_{o}(\boldsymbol{p}, \boldsymbol{\omega}_{o}) = \int_{\Omega} f_{r}(\boldsymbol{p}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \cos \theta_{i} d\omega_{i}$$
Rendering equation:
Outgoing light into direction $\boldsymbol{\omega}_{o}$ is a sum of incident light from all directions weighted with material properties $f_{r}(\boldsymbol{p}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o})$

In

Light in Volumes

- Governing equations for light changes along rays through participating media, e.g. haze or fog
- Setting

$$L(\boldsymbol{p}_1, \boldsymbol{\omega}) = L(\boldsymbol{p}, \boldsymbol{\omega}) + s \frac{\mathrm{d}L}{\mathrm{d}s}$$

- Absorption
- Emission
- Out-scattering
- In-scattering

Light Transport

 Governing equations enable the computation of light at all points in space into all direction

Reflected light due to material properties

Rendering of the Result

- At an arbitrarily placed and oriented sensor

- Cast rays into the scene
- Lookup light that is transported along these rays

Example: Cornell box

UNI FREIBURG

Rendering Algorithms

 Goal: Solving the entire light transport in a scene as accurate as possible

Radiosity

- Computes reflected light at all surface points into all directions
- Typical simplifications: No participating media, diffuse surfaces, equal reflected light per finite-size surface patch, e.g. triangle
- Linear system with unknown reflected light per surface patch

Ray Tracing

- Computation of light transport along selected line segments / rays
- Minimal setup
 - Consideration of rays from the scene towards the sensor (viewing rays)
 - Consideration of rays from the light source towards visible scene elements (shadow rays)

[Wikipedia: Ray Tracing]

Ray Tracing - Challenge

Path 4

Computation of outgoing radiance from surface towards camera is the **main goal of a ray tracer**

Path 1, 2, 3 ...

Incoming / outgoing radiance at all other paths is required to compute radiance at path 4

Path 3

Two surfaces illuminate each other. Outgoing radiance from q towards pdepends on outgoing radiance from p towards q which depends on ...

- Accurate modeling of the light interaction with surfaces and participating media
- Parameterizing realistic light sources and materials
- Computing the light transport for as many rays as possible
- In case of limited resources, choose relevant rays with larger radiances

- Capturing all direct and indirect illumination from all directions
 - Less realistic images consider few and simple light sources

https://imgur.com/gallery/MXbNt University of Freiburg – Computer Science Department – 30 UNI FREIBURG

- Realistic reflection properties of materials
 - Surfaces are not perfectly diffuse or specular

Next Limit / Maxwell Render http://support.nextlimit.com/display/maxwelldocs/IOR+files

Emitted light

University of Freiburg – Computer Science Department – 32

UNI FREIBURG

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Areas

- Movies and commercials
- Architecture
- Automotive
- Flight and car simulators
- Computer games

Architecture

Mies van der Rohe Farnsworth House (Artist Alessandro Prodan) Delta Tracing

[www.mentalimages.com]

Automotive

zerone cgi GmbH and Daimler AG [www.mentalimages.com]

University of Freiburg – Computer Science Department – 36

UNI FREIBURG

Commercials

– Spellwork Pictures

Modeling

FREIBURG

Commercials

– Spellwork Pictures

Animation

Animation + Rendering

UNI FREIBURG

Commercials

– Spellwork Pictures

UNI FREIBURG

Outline

- Organization
- Concepts
- Applications
- History
- Summary

- 1965: Rasterized lines (Bresenham)
- 1967: Rasterized flat-shaded polygons (Wylie)
- 1973: Phong illumination model
- 1974: Depth buffer (Catmull)
- 1977: Shadow volumes (Crow)
- 1978: Shadow maps (Williams)

Ray Tracing

- Ray casting
 - 1968: viewing and shadow rays, non-recursive (Appel)
- Recursive ray tracing
 1980: ideal reflection, refraction (Whitted)
- Rendering equation 1986: general description of light interaction at surfaces (Kajiya): $L_o(\mathbf{p}, \boldsymbol{\omega}_o) = L_e(\mathbf{p}, \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\mathbf{p}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) L_i(\mathbf{p}, \boldsymbol{\omega}_i) \cos \theta_i d\omega_i$
- Stochastic ray tracing
 1986: Monte-Carlo integration for approximately solving the rendering equation (Kajiya), e.g. path tracing

Ray Casting and Rasterization

– Solve the visibility problem

Ray Casting computes ray-scene intersections to estimate *q* from *p*.

Rasterizers apply transformations to *p* in order to estimate *q*. *p* is projected onto the sensor plane.

BURG

Ray Tracing and Rasterization

- Ray tracing
 - Can potentially compute entire light transport in a scene
 - Natural incorporation of numerous visual effects with unified concepts
 - Trade-off between quality and performance
- Rasterization
 - Focus on light transport along viewing rays
 - Specialized realizations of global illumination effects
 - Well-established, parallelizable algorithms
 - Popular in interactive applications

Some Ray Tracing History

- Ray generation
- Ray traversal
- Intersection
- Shading
- Frame buffer

Some Ray Tracing History

– Arthur Appel: Some techniques for shading machine renderings of solids, 1968.

University of Freiburg – Computer Science Department – 46

UNI FREIBURG

Recursive Ray Tracing

- Ray generation
- Ray traversal
- Intersection
- Shading
- Frame buffer

Recursive Ray Tracing

– Turner Whitted: An Improved Illumination Model for Shaded Display, 1980.

Stochastic Ray Tracing

In

 Consider randomly sampled reflection / refraction rays to approximately solve the rendering equation

$$L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \qquad \qquad L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \qquad L_{o}(\boldsymbol{p}, \boldsymbol{\omega}_{o}) = \int_{\Omega} f_{r}(\boldsymbol{p}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \cos \theta_{i} d\omega_{i}$$
Rendering equation:

$$L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i}) \qquad \qquad L_{i}(\boldsymbol{p}, \boldsymbol{\omega}_{i})$$
Incoming light from direction $\boldsymbol{\omega}_{i}$ \boldsymbol{p}
Position \boldsymbol{p}
Position $\boldsymbol{\omega}_{i}$ \boldsymbol{p}
Position $\boldsymbol{\omega}_{i}$ \boldsymbol{p}
Position $\boldsymbol{\omega}_{i}$ $\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}$

Ray Tracing

– More light transport paths \rightarrow more visual effects, realism and improved accuracy

Viewing rays

Recursive stochastic ray tracing

UNI FREIBURG

[Thomas Kabir: Wikipedia Raytracing]

Viewing and

shadow rays

Ray Tracing - Capabilities

- Reflection
- Refraction
- Soft shadows
- Caustics
- Diffuse interreflections
- Specular interreflections
- Depth of field
- Motion blur

[sean.seanie, www.flickr.com] rendered with POVray 3.7

UNI FREIBURG

Ray Tracing - Challenges

- Ray-primitive intersections
 - Spatial data structures for accelerated ray traversal
 - Dynamic scenes are particularly challenging
- Number of rays (quality vs. costs)
 - More rays typically improve the rendering quality
- Recursion depth (quality vs. costs)
 - Dependent on the recursion depth, effects are captured or not, e.g. transparency or caustics

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Aspects for High-quality Image Synthesis

- Radiometric quantities
- Reflection properties of surfaces / materials
- Rendering equation
- Radiosity
- Monte Carlo ray tracing
- Ray-primitive intersections (see key course)
- Data structures for ray traversal

Announcement

- Monday, 10:15, Advanced Computer Graphics
- Tuesday, 12:15, Simulation in Computer Graphics
- Wednesday, 10:15, Rendering Seminar
- Wednesday, 12:15, Animation Seminar
- Thursday, 10:15, Proseminar Graphik
- Monday, Oct 28, 14:15, Simulation Tutorial
- Monday, Oct 28, 16:15, Rendering Tutorial
- No tutorials today and next week