Advanced Computer Graphics
Transformations

Matthias Teschner

I
UNI
FRE:BURG

Motivation

— Transformations are used

— To convert between arbitrary spaces,
e.g. world space and other spaces,
SuCh as object space, camera space

— Jo position and animate
objects, lights, and the virtual camera

— Transformations are applied to points, normals, rays

University of Freiburg - Computer Science Department - 2

Outline

— Coordinate spaces

— Homogeneous coordinates
— Transformations

— Transtormations in ray tracing
— Animating transformations

University of Freiburg - Computer Science Department - 3

Coordinate Spaces

— Object space
— Space in which geometric primitives are defined
— Object spaces are object-dependent

— World space

— Objects, lights are placed / transformed into world space

— Object-to-world transformations allow to arbitrarily
place objects and lights relative to each other

University of Freiburg - Computer Science Department - 4

Coordinate Spaces

— Camera space

— Space with a specific camera setting, e.g.
camera at the origin, viewing along z-axis,
y-axis is up direction

— Useful for simplified computations
(similar to the rendering pipeline)

— Camera is placed in world space with a view transformation

— |Inverse view transform converts
from world to camera space

University of Freiburg - Computer Science Department - 5

From Object to Camera Space

Camera direction
Inverse ‘
View transform = View frustum
. > \ J
V-1
. g -
M,
Camera\ cen I ' Realt _ |
position 7 [Akenine-Moeller et al.: Real-time Rendering]

- M;, M, M3, M, Vare transformation matrices

— M;, M,, M3, M, are object-to-world transforms placing objects in the scene
— V places and orientates the camera in space

— V- transforms the camera to the origin looking along the z-axis

— VM, , transforms all objects or lights from object to camera space

University of Freiburg - Computer Science Department - 6

Outline

— Coordinate spaces

— Homogeneous coordinates
— Transformations

— Transtormations in ray tracing
— Animating transformations

University of Freiburg - Computer Science Department - 8

Motivation

— Using homogeneous coordinates,

— Affine transformations can be
represented with a matrix

— Points, vectors, rays can be
transformed in a unified way
with one matrix-vector multiplication

University of Freiburg - Computer Science Department - 9

Affine Transformations

— Affine transformations of a 3D point p: p’ = T(p) = Ap + t
— Affine transformations preserve affine combinations

T(z@-@i'm Zaz p@ fOrZ(I%_l

— E.g., aline can be transformed
by transforming its control points

!

P1 P1

X = a1P1 + @2P2 x' = T(x) =a;T(p1) + x2T(p2)
P2 P2 -55-

University of Freiburg - Computer Science Department - 10

Points, Vectors, Rays

— Points specify a location (X, y, z) in space
— E.g., vertices of a triangulated object
— Vectors specity a direction (X, v, z)
— E.g., surface normals
— Rays
— A half-line specified by origin / position 0 and direction d
— Parametricform r(t) = o+ td with 0 <t < o0

— Various additional properties in ray tracers, e.g.
— Parametric range, time, recursion depth

University of Freiburg - Computer Science Department - 11

Homogeneous Coordinates of Points

— (z,y,z,w)" with w # 0 are the homogeneous
coordinates of the 3D point (£, %, 2)"

— Az, Ay, Az, dw) " represents the same point

Qe du day" (2 v 2T for g A with A # 0
— Examples

- (2,3,4,1)~(2, 3,4

- (2,4,6,1)~ (2,4, 0)

— (4, 8,12,2)~(2, 4, 6)

University of Freiburg - Computer Science Department - 12

Homogeneous Coordinates of Vectors

— For varying w, a point (z,y,zw)" is scaled and the
points (£,%,2)" represent a line in 3D space

w? w? w

— The direction of this line is characterized by (z,y,

— Forw — 0, the point (£, %, 2)" moves to infinity
iNn the direction (z,y, 2

)T
— (2,9,2,0)" is a point at infinity in the direction of (z,y,z
— (z,5,2,0)" is a vector in the direction of (z,y,2)"

)T

)T

University of Freiburg - Computer Science Department - 13

Homogeneous Representation

of Transformations
— Linear transformation
Moo Mol mo2 0' Pz
Mmoo Mo1 _’mU? Pz myg 'Mmyy mio 0 Dy
TR R 2 Py |~ Mog Mo1 Moy 0 Pz
M2p M21 M22 P 0 0 0 1 1
— Affine transformation
— Representing rotation, [Mmoo mor Mo
scale, shear, translation o T T
| | Mmoo M21 T2
— Projective components p are \ Po P12

zero for affine transformations

University of Freiburg - Computer Science Department - 14

Outline

— Coordinate spaces

— Homogeneous coordinates
— Transformations

— Transtormations in ray tracing
— Animating transformations

University of Freiburg - Computer Science Department - 15

Translation

— Point (1 0 0 to\ [Pz [Potts)
| 0 1 0 ¢ Py | | pytt,
TOP=119 0 1 p. | T vt
\ooo 1t /)\ 1/ \ 1)
— Vector (10 0 tz\ (v [v)
0O 1 0 t v Vq
V=119 01 ti fuz B v:
\o oo 1/\o/) \o)

— Inverse (T "undoes" the transform T)

T~'(t) = T(-t)

University of Freiburg - Computer Science Department - 16

Rotation

— Positive (anticlockwise)) e e
- . Ry () = > N
rotation with angle ¢ 0 sing cosg
around the x-, y-, z-axis o0
cos¢p (0 sing
,_ 0 1 0
Ry(@)=1 _ sing 0 cosg
0 0 0
cos¢p —sing 0
. sin¢ cos¢p O
0 0 0

University of Freiburg - Computer Science Department - 17

o O O = O O O

_—0 O O

Inverse Rotation

1 0 0 0

B 0 cos—¢ —sin—¢ 0

Rx(—¢) = 0 sin—¢ cos—¢p 0

0 0 0 1
1 0 0 0

B 0 cos¢ smno 0O B T

| 0 —sing coso 0 | Ry (9)
0 0 0 1

Rx_l _ RxT Ry_l _ RyT Rz_l _ RZT

— The inverse of a rotation matrix
corresponds to its transpose

University of Freiburg - Computer Science Department - 18

Compositing Transformations

— Composition is achieved by matrix multiplication
- Mz(Mip) = (M2My)p
— Note that generally M;Msy # MoM;
— The inverseis (MaM;)~! = M; ‘M3~
— Examples
— Rotation about an arbitrary axes
— Scaling with respect to arbitrary directions
— Object-to-view space transformation V-'M

University of Freiburg - Computer Science Department - 19

Outline

— Coordinate spaces

— Homogeneous coordinates
— Transformations

— Transformations in ray tracing
— Animating transformations

University of Freiburg - Computer Science Department - 20

Objects

— Transtormations can be represented in a graph or
hierarchy, e.g., for a car

ock
) Cohassie> Csaparator
(2 Goheely (T3] CahesD (73) Cahoel) (75) Cahedl

— T1 is applied to "chassis", T1 - T2 ... T1 - T5 are appliec
to the wheels

University of Freiburg - Computer Science Department - 21

Instancing

— [0 save memory

@ separator

l i separator il

University of Freiburg - Computer Science Department - 22

separator

Planes and Normals

— Planes can be represented by a surface normal n ana
a point r. All points pwith n-(p—r)=0 form a plane.

NgPx + NyPy + Nzpz + (—Ngry — nyry —ner,) =0

il T —F Wiy AF ety - @l =10

(ne ny 1z d)(pe py p= 1)" =0

(ng ny ny d)A"TA(py py p. 1) =0
— The transtormed points A(p. p, p. 1)T are on the plane

represented by (n. ny n. d)A™" = (A=Y (ne ny n. d)*)"
— |If a surface is transformed by A,

its normal is transformed by (A")!

University of Freiburg - Computer Science Department - 23

Normals

— Normals generally point outside of a surface

— |If a transformation changes the handedness
of the coordinate system, the normal n might
need to be flipped to -n

— The handedness changes if
the determinant is negative

— E.g, for areflection R, det R = —1

University of Freiburg - Computer Science Department - 24

Rays

— For ray-object intersections,
— Objects are commonly not transformed

— Instead, rays are transformed with the inverse
of the object-to-camera space transformation

— Algorithm
— Apply the inverse transform to the ray

— Compute intersection and normal
— Transform the intersection and the normal

University of Freiburg - Computer Science Department - 25

Rays

p=o+1td
T 'p=p=T lo+tT'd
p=Tp=o+1td

original ray transformed object

T transforms the object

\ p'=o+td

/. untransformed
' ‘T“/ ' object

, / X

T~ " inverse transforms
the ray

inverse transformed ray

University of Freiburg — Computer Science Department - 26

If computed in camera
space, 0is (0,0,0,1)"

[Suffern: Ray Tracing]

Outline

— Coordinate spaces

— Homogeneous coordinates
— Transformations

— Transtormations in ray tracing
— Animating transformations

University of Freiburg - Computer Science Department - 27

Animating Transformations

— Keyframe matrix animation
— For camera and objects
— Defined by a number of keyframe transformations
— Allows camera / object movements, e.g. for motion blur

— Challenge

— Linear combination of two corresponding
matrix values does not provide useful results
for general transformations

University of Freiburg - Computer Science Department - 28

Animating Translation, Scale, and Shear

— Linear interpolation of matrices, representing
translation, is meaningful

1 0 0 s, 1 0 0 t;
L 0 1 0 s, 0 1 0 t,
TAO=0=M10601 4 |T o001 ¢
0 0 0 1 000 1)
— Interpolation of components also works for scale ana
shear r 0 0 0) 1 hay hee 0
| 0y 0 O o e L e U
136 = 0 0 2z O H = her hsey 10
000 1) 0o 0 0 1)

University of Freiburg - Computer Science Department - 29

Animating Rotations

— Linear combination of matrix values does not work

— Interpolated matrix is not orthogonal,
.e. object can be distorted

— Determinant of the interpolated
matrix is not one, lengths are |
not preserved, object can be g‘
stretched, compressed or R
degenerate to a line or a point A

[Shoemake, Duff] —

University of Freiburg - Computer Science Department - 30

Animating Rotations

— A useful approach

— Convert the rotation matrices
to a quaternion representation

— Perform a spherical linear interpolation (slerp)
— Convert the interpolated quaternion to a rotation matrix
— Motivation

— Rate of change of the rotation / orientation can be linear
in the interpolation parameter when using quaternions

University of Freiburg - Computer Science Department - 31

Quaternions

— Are four-tuples q = (w, z,y,2) = w+ zi+ yj + zk
with i2=3j2=k%2=1ijk=—-1 and ij=k, ji= -k, ...

— Quaternion multiplication
ar = (quw + ¢ui + @ + ¢ k) (1w + rzi +1ryj + 7.k)

— Unit quaternions represent rotations (U is a unit vector)
q=w+zi+yj+zk)=w+(z,y,2) = cos(5) + usin(5)

— If vis a 3D vector, the product v/ =q(0,v)q™*
results in a vector V' rotated by a around u

— g" is a rotation by n times the an%le a around u

University“of Freiburg - Computer Science Department - 32

Spherical Linear Interpolation

— Slerp(q,, g,,) computes intermediate
orientations between g, and Q5

— Orientation changes are linear int

sin(1—t)#@ into
Slerp(qi,qz2,t) = f:EinQ} q1 + S5 42 [Shoemake]

d1 - qz = cost

— Still leads to discontinuous orientation changes in
case of changing rotation axes between key frames

University of Freiburg - Computer Science Department - 33

Matrix Decomposition

— If keyframe transformations are composed of
translation, rotation, and scale, the components have
to be decomposed and interpolated independently

— Projective components are not considereq,
(but could be extracted easily)

— Translation can be extracted as

mi1 Mz Mg I 1 0 0 ¢, my; myg Mz O

M= | ™21 M2 Ma3 by | _ 0 1 0 ¢, Moy Moy Moz 0
31 M3z Tnis t pe 0 0 1 ¢ pe (RS ms32 1Nn33 0

0 0 0 1 0 0 0O 0 0 0 1

University of Freiburg - Computer Science Department - 34

Rotation Extraction

— Approaches
— QR decomposition, SVD
Polar decomposition

— Polar decomposition
— Efficient to compute
— Extracts rotation R that is closest to the original transf. M
— Find R minimizing ||R — M||% subjectto RTR —-I=0
with ||R — M||% = 3, .(ri; —ms;)? being the Frobenius
matrix norm -lin case of a negative determinant

— M = R(_ I) S S is symmetric, positive definite (scale in a potentially rotated frame)
shear cannot be extracted

University of Freiburg - Computer Science Department - 35

Polar Decomposition

— Iterative computation [Higharm]
- Rog=M
- Rip1 = 3(Ri+ (Ri') ™)
— Until Rjz1 — Ry =0

University of Freiburg - Computer Science Department - 36

Summary

— Coordinate spaces (object, world, camera)

— Homogeneous coordinates
— Points, vectors, rays can be transformed in a unified way
— Matrices for affine transformations and perspective projections
— Transformations
— Translation, rotation, scale, shear, inverse, composition

— Transformations in ray tracing (instancing, normals, rays)

— Animating transformations

— Polar decomposition, quaternions,
inear and spherical linear interpolation -

University of Freiburg - Computer Science Department - 37

