Advanced Computer Graphics Sampling

Matthias Teschner

Computer Science Department University of Freiburg

Albert-Ludwigs-Universität Freiburg

FREIBURG

Outline

- introduction
- sampling strategies
- Iow-discrepancy sequences
- mapping samples to a disk, sphere, hemisphere
- reconstruction
- camera effects

Pixel

- radiance at a pixel is reconstructed from discrete point samples of the continuous image function
- there is no area associated with a point sample
- pixel positions are represented with integer values (x, y)
- point samples in the range of [x-0.5, x+0.5) and
 [y-0.5, y+0.5) contribute to the pixel at position (x, y)
- in implementations, e.g. PBRT, offsets are commonly used, i.e.

d = c

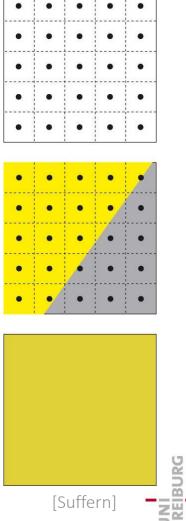
c = d + 0.5

- mapping from continuous c to integer d:
- mapping from integer d to continuous c:
- i.e. [x, x+1) and [y, y+1)

contribute to the pixel at position (x, y)

Introductory Example

- regular sampling
 - subdivide the pixel area into a regular grid
 - trace a ray per grid cell
- box filter
 - compute the average incident radiance
- effect
 - reduced aliasing due to a higher sampling rate
 - computationally expensive
- goal
 - efficient sampling patterns and filter with reduced aliasing



Good Sampling Characteristics

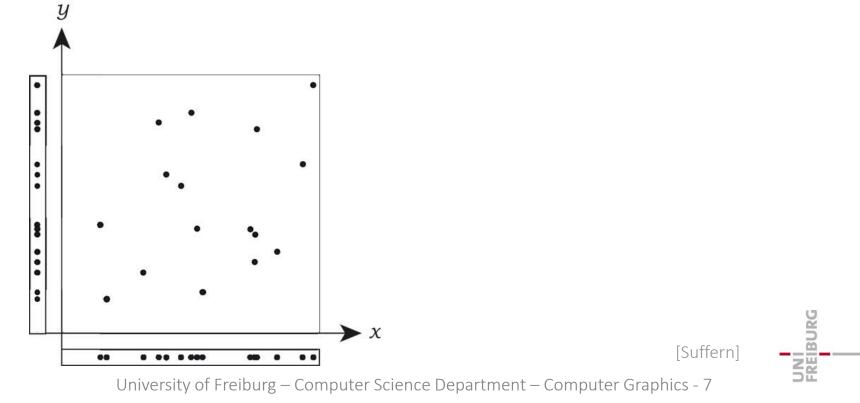
- uniform distribution over the area
- uniform distribution of the projections in x- and y-direction
- maximal minimum distance between samples
 - avoids over- and undersampling of partial areas
- but:
- no regular spacing in x- and / or y-direction
- minimal number of samples with acceptable noise
- number of required samples depends on the application
 - sampling of a pixel area
 - sampling of time for motion blur
 - sampling of the lens area for depth of field
 - sampling of a solid angle for glossy reflection

Outline

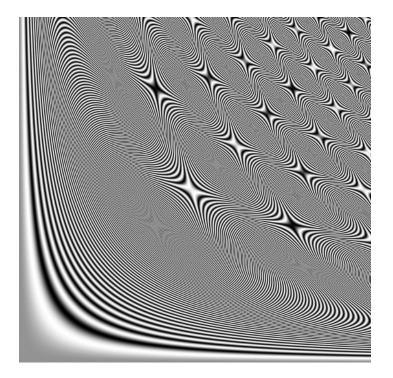
- introduction
- sampling strategies
- Iow-discrepancy sequences
- mapping samples to a disk, sphere, hemisphere
- reconstruction
- camera effects

Random Sampling

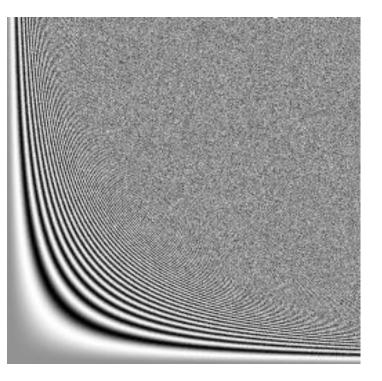
- replaces aliasing with noise
- requires less samples compared to regular sampling
- non-uniform sampling of partial areas and projections



Random Sampling



regular sampling

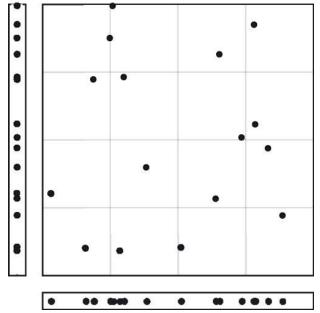


25 random samples

[Suffern]

Stratified Sampling

- pixel area is subdivided into n x n strata
- one sample per stratum
- stratified (jittered) sampling reduces clustering of samples, non-uniform sampling of areas and missing of small details

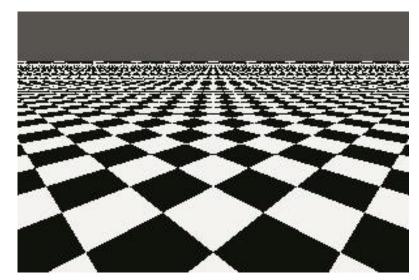


BURG

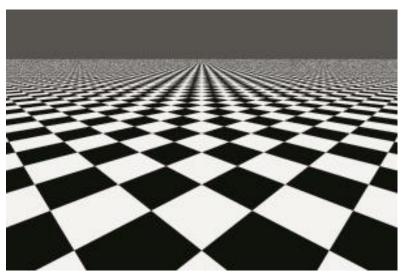
University of Freiburg – Computer Science Department – Computer Graphics - 9

[Suffern]

Stratified Sampling



regular sampling



64 stratified jittered samples

[Suffern]

Stratified Sampling in Higher Dimensions

- potentially generates n^d samples with d being the number of degrees of freedom for stratification
 - pixel area \Rightarrow d = 2
 - pixel area + time \Rightarrow d = 3
 - pixel area + time + lens area \Rightarrow d = 5
- instead of generating n⁵ samples, only n² + n + n² samples are generated and randomly combined
- similarly, indices in different sample sets can be randomly shuffled
 - to avoid that the same sample combinations are used for different pixels

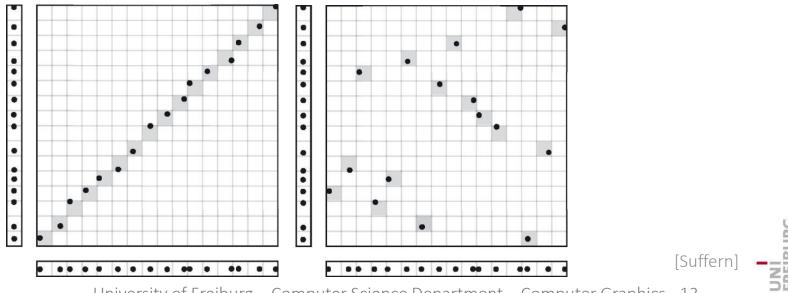
Half-jittered Sampling

- stratified (jittered) sampling can generate up to four 2D samples at the same position
- solution: choose samples closer to the center of each stratum

```
e.g.
for i=0 to n<sub>x</sub>-1
for j=0 to n<sub>y</sub>-1
    k = i · n<sub>x</sub> - 1
    x<sub>k</sub> = randfrom((i+0.25)/n<sub>x</sub>, (i+0.75)/n<sub>x</sub>)
    y<sub>k</sub> = randfrom((j+0.25)/n<sub>y</sub>, (j+0.75)/n<sub>y</sub>)
```

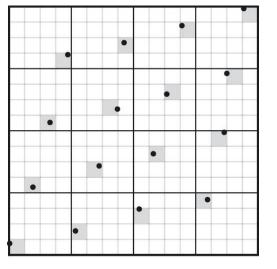
n-Rooks / Latin Hypercube Sampling (LHS)

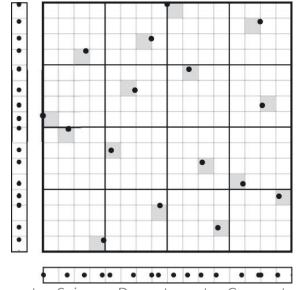
- generate one jittered sample per row and column
- randomly shuffle the samples in x- or y-direction
- uniform distribution of the projections in x- and y-direction
- can generate an arbitrary number of stratified samples



Multi-jittered Sampling

- initial distribution in a sub grid according to n-rooks
- shuffling in x- and y-direction
- improved distribution over the area
- uniform distribution of the projections in x- and y-direction





University of Freiburg – Computer Science Department – Computer Graphics - 14

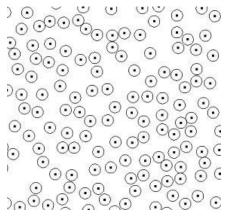
BURG

ittern

Poisson Disk Sampling

- generate a sequence of random samples
- reject a sample, if it is too close to an existing sample
- rather expensive to compute (dart-throwing)

```
i = 0
while i < N
    x<sub>i</sub> = randfrom [0,1)
    y<sub>i</sub> = randfrom [0,1)
    reject = false
    for j=0 to i-1
        if (x<sub>i</sub> - x<sub>j</sub>)<sup>2</sup> + (y<sub>i</sub> - y<sub>j</sub>)<sup>2</sup> < d<sup>2</sup>
            reject = true
            break
    if not reject
        i = i+1
```

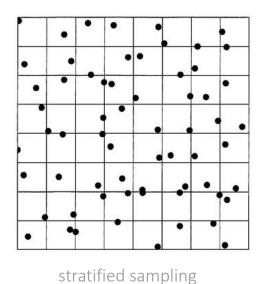


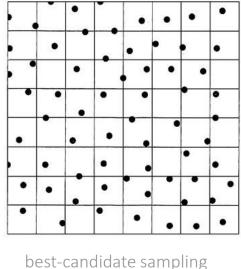
[www.geeks3d.com]

FREIBURG

Best-Candidate Sampling

- generate a larger number of random candidate samples within the entire sampling area
- choose the candidate farthest to previously computed samples





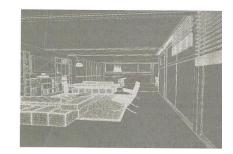
[Pharr, Humphreys]

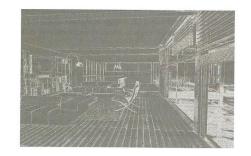
UNI FREIBURG

Adaptive Sampling

- generate additional samples per pixel
 - if rays hit more than one shape
 - if radiance values of samples differ significantly

rendered image





adaptive sampling if more than one object intersects the rays of a pixel adaptive sampling if the radiance per pixel varies significantly

[Pharr, Humphreys]

Outline

- introduction
- sampling strategies
- Iow-discrepancy sequences
- mapping samples to a disk, sphere, hemisphere
- reconstruction
- camera effects

Low-Discrepancy Sequences

- good sample sets are characterized by low discrepancy
 - a given fraction of the sampling region, e.g. [0,1]^d, should contain the same fraction of sample points
 - difference between the actual region and the region represented by the samples is referred to as discrepancy
 - $B = \{ [0, v_1] \times [0, v_2] \times \ldots \times [0, v_n] \} \quad 0 \le v_i \le 1$ $P = \{ x_1, x_2, \ldots, x_n \}$

fraction of samples

inside the box

partial boxes located at the origin

point samples

star discrepancy

 Iow-discrepancy sequence of samples ⇒ samples are uniformly distributed

 $D_N^*(B,P) = \sup_{b \in B} \left| \frac{\sharp \{x_i \in b\}}{N} - \lambda(b) \right|$

max

University of Freiburg – Computer Science Department – Computer Graphics - 19

fraction of

the volume

Hammersley Sampling

- non-negative integers k can be represented as
 k = a₀ + a₁p + a₂p² + + a_rp^r with p being a prime and integers a_i ∈ [0, p − 1]
- $\Phi_p(k) = rac{a_0}{p} + rac{a_1}{p^2} + \ldots + rac{a_r}{p^{r+1}}$ radical inverse function
- $\Phi_2(k)$ for k = 0, 1, 2, ... is a Van der Corput sequence
- for primes p_1, \ldots, p_{d-1} , the *k*-th *d*-dimensional Hammersley point of a set with *n* points is $\left(\frac{k}{n}, \Phi_{p_1}(k), \Phi_{p_2}(k), \ldots \Phi_{p_{d-1}}(k)\right)$ $k = 0, 1, 2, \ldots, n-1$

 $p_1 < p_2 < \ldots < p_{d-1}$

Hammersley Sequence, p=2

k	binary	binary radical inverse	radical inverse	φ ₂ (k)
1	1	.1	1/2	0.5
2	10	.01	1/4	0.25
3	11	.11	1/2+1/4	0.75
4	100	.001	1/8	0.125
5	101	.101	1/2+1/8	0.635
6	110	.011	1/4+1/8	0.325
7	111	.111	1/2+1/4+1/8	0.875
8	1000	.0001	1/16	0.0625

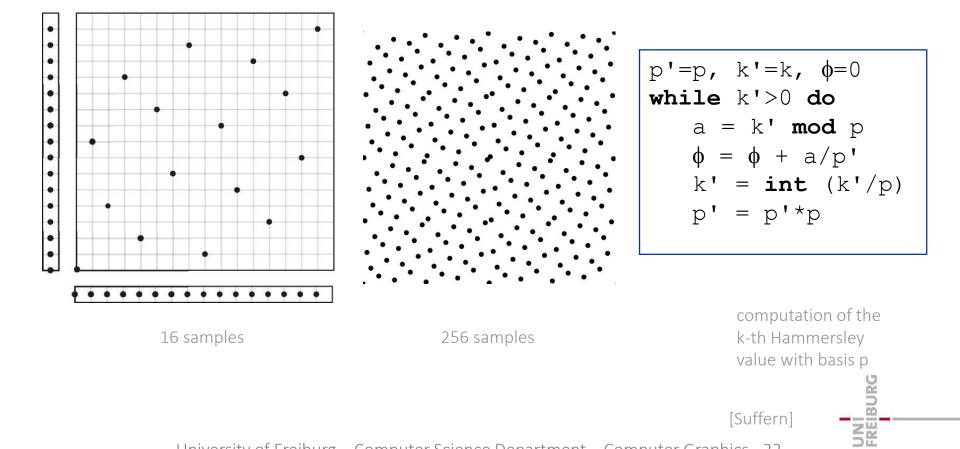
 $D_N^* = O\left(\frac{\log N}{N}\right)$

University of Freiburg – Computer Science Department – Computer Graphics - 21

UNI FREIBURG

Hammersley Sampling in 2D

•
$$\left(\frac{k}{n}, \Phi_2(k)\right)$$
 $k = 0, 1, 2, \dots, n-1$

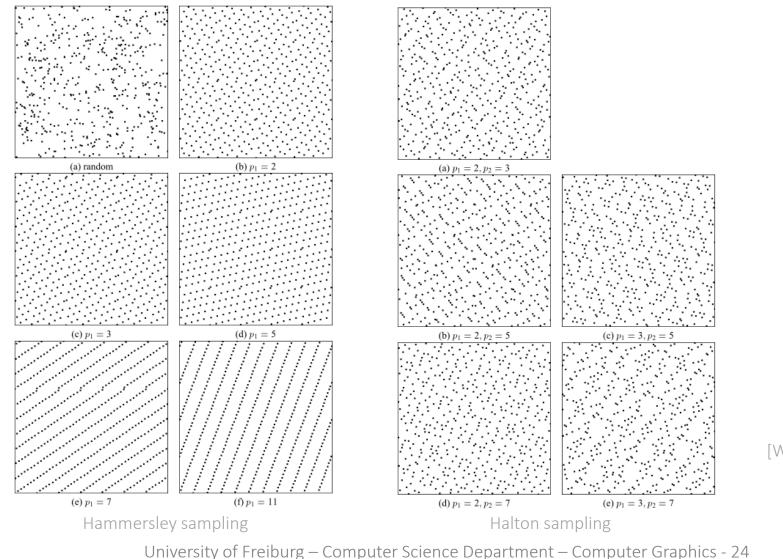


[Suffern]

Halton Sampling in 2D

- allows to successively generate additional samples (in contrast to Hammersley)
- $D_N^* = O\left(\frac{(\log N)^d}{N}\right)$
- $(\Phi_{p_1}(k), \Phi_{p_2}(k))$ $k = 0, 1, 2, \dots$

Hammersley vs. Halton - 2D Area



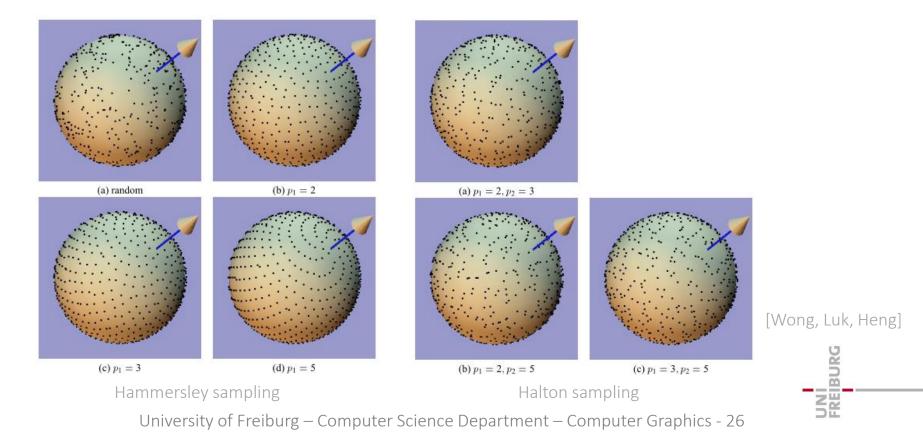
[Wong, Luk, Heng]

Outline

- introduction
- sampling strategies
- Iow-discrepancy sequences
- mapping samples to a disk, sphere, hemisphere
- reconstruction
- camera effects

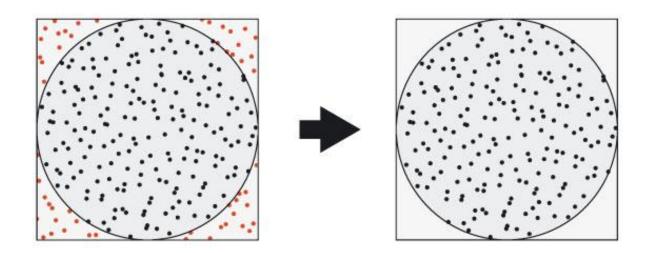
Sphere - Hammersley vs. Halton

• $\left(\frac{k}{n}, \Phi_p(k)\right) \to (\phi, t) \in [0, 2\pi) \times [-1, 1]$ $\rightarrow (\sqrt{1-t^2}\cos\phi, \sqrt{1-t^2}\sin\phi, t)$



Disk - Rejection Sampling

- sample points outside a disk are rejected
- no distortion
- but differing number of remaining samples



[Suffern]

Disk - Concentric Map

- mapping from square to disk
- minimal distortion
- number of samples is preserved



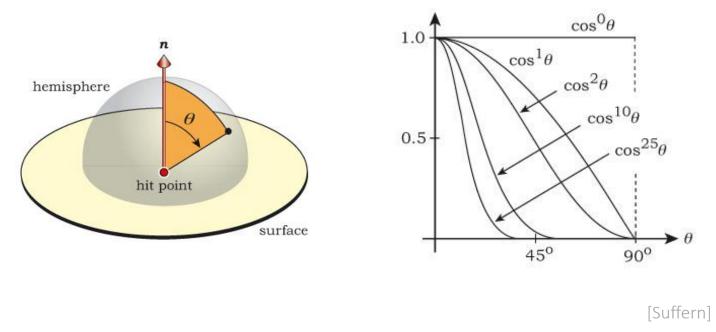
[Suffern]

BURG

N N N N N

Hemisphere

- mapping from square to hemisphere with a cosine power density distribution
- surface density of samples varies with θ according to $d = \cos^m \theta$



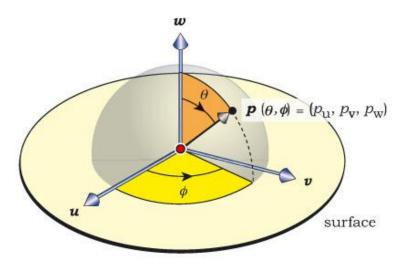
University of Freiburg – Computer Science Department – Computer Graphics - 29

UNI FREIBURG

Hemisphere

mapping:

 $(x \in [0,1), y \in [0,1)) \to \left(\phi = 2\pi x, \theta = \cos^{-1}[(1-y)^{1/(m+1)}]\right)$



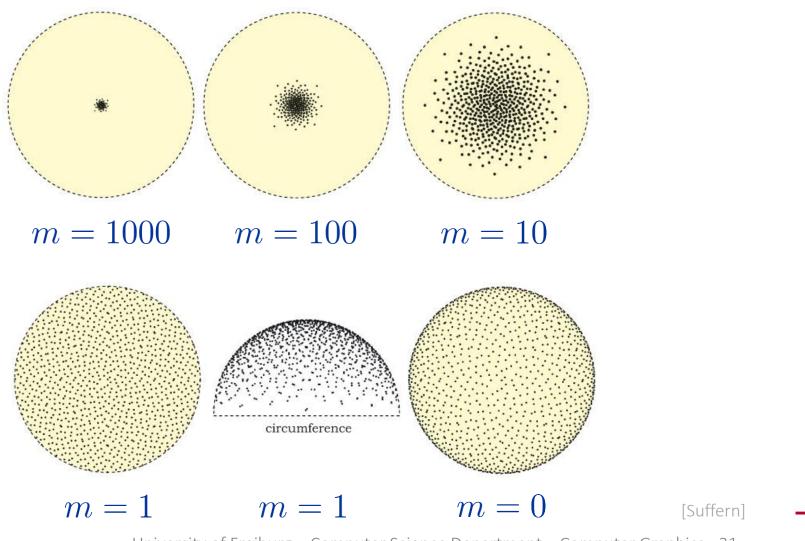
local orthonormal basis at the center of the hemisphere

$\mathbf{p} = \sin\theta\cos\phi\mathbf{u} + \sin\theta\sin\phi\mathbf{v} + \cos\theta\mathbf{w}$

[Suffern]

BURG

Hemisphere Sampling



University of Freiburg – Computer Science Department – Computer Graphics - 31

RG

Applications

- area sampling is used to sample pixel areas
- hemisphere sampling is used for global illumination effects
- disk sampling is used for the depth-of-field effect

Outline

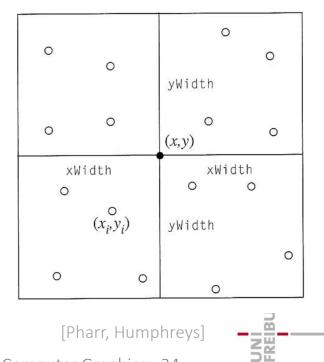
- introduction
- sampling strategies
- Iow-discrepancy sequences
- mapping samples to a disk, sphere, hemisphere
- reconstruction
- camera effects

Filtering Principle

 pixel values are reconstructed from the radiance values of adjacent samples

$$\mathbf{I}(x,y) = \frac{\sum_{i} f(x-x_i, y-y_i) \mathbf{L}(x_i, y_i)}{\sum_{i} f(x-x_i, y-y_i)}$$

 f is a filter function that weights the influence of a sample (x_i, y_i) according to its distance to (x, y)



the extent can be larger than the pixel size

University of Freiburg – Computer Science Department – Computer Graphics - 34

extent

width

Box- / Triangle Filter

- computationally efficient
- bad reconstruction characteristics

box filter applied to a step function (a)

(b)

[Pharr, Humphreys]

University of Freiburg – Computer Science Department – Computer Graphics - 35

0.5 0.5 $-1.5 \quad -1 \quad -0.5$ 0.5 -1.5 -1 -0.5 1.5 0.5 1.5 1 1 box filter triangle filter

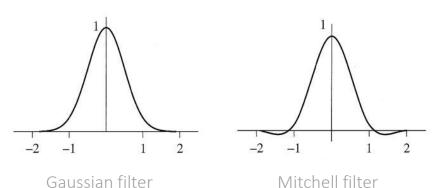
box filter applied to a sinusoidal function with inicreasing frequency \Rightarrow introduces post-aliasing

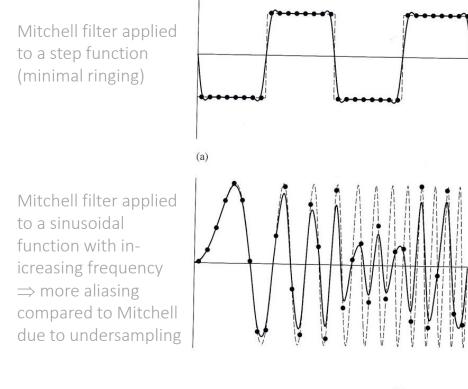
Gaussian- / Mitchell Filter

- reasonably good reconstruction
- introduces blurring
- e.g. , 1D filter

$$f(x) = e^{-\alpha x^2} - e^{-\alpha w^2}$$

offset according to the filter width w



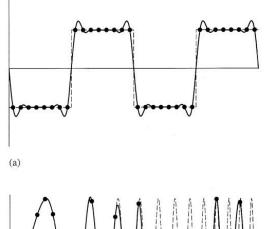


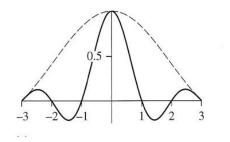
[Pharr, Humphreys]

Truncated Sinc Filter

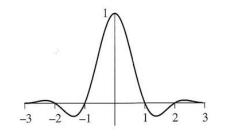
- reasonably good reconstruction
- introduces blurring

Sinc filter applied to a step function (some ringing)

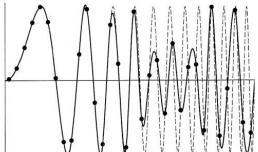




sinc filter



Lanczos sinc filter (sinc times windowing function) Sinc filter applied to a sinusoidal function with inicreasing frequency ⇒ aliasing due to undersampling



[Pharr, Humphreys]

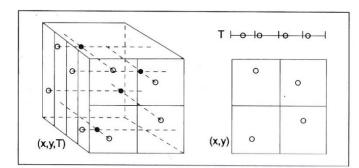
- sampling strategies for pixel area, disk, hemisphere help to reduce aliasing or to replace it with noise
 - stratified sampling
 - Poisson disk sampling
 - low discrepancy sequences
 - mapping to disk, hemisphere, sphere
- reconstruction of pixel values from sample radiances
 - box
 - Mitchell
 - truncated sinc

Outline

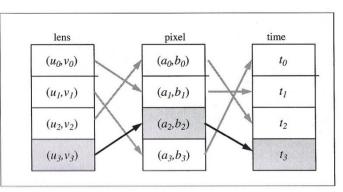
- introduction
- sampling strategies
- Iow-discrepancy sequences
- mapping samples to a disk, sphere, hemisphere
- reconstruction
- camera effects

Multidimensional Sampling

- sampling the pixel area
 - captures the continuous radiance function
- sampling a time period
 - captures motion blur effects
- sampling a disk
 - captures depth-of-field effects



sampling of pixel and time



sampling of lens, pixel and time

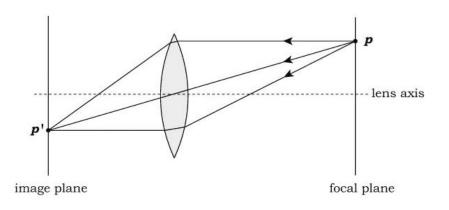
[Shirley, Morley]

UNI FREIBURG

Thin Lens

instead of a pinhole camera, we model a thin lense

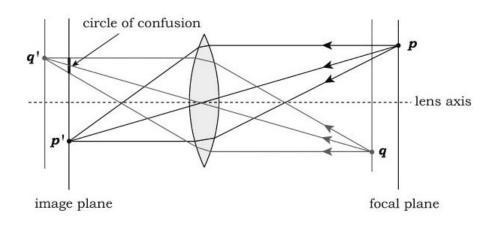
- every point **p** on the focal plane has a corresponding point **p'** on the image plane
- every ray that goes through p and the lens also goes through p'
- a ray through the center of the lens is not refracted



[Suffern]

Circle of Confusion

- q is not on the focal plane
- rays that go through q and the lens do not intersect at a point on the image plane
- instead, the intersections with the image plane form the circle of confusion



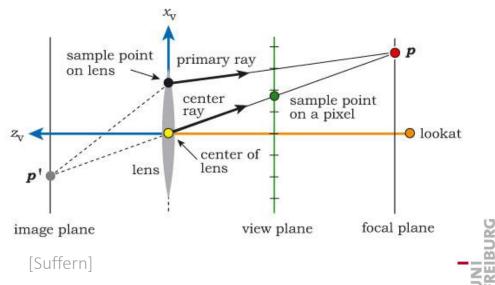
[Suffern]

Depth-of-Field

- is the range of distances to the lens in which the scene is in focus,
 i.e. the circle of confusion is smaller than the area of a pixel
- in cameras, the aperture is used to adapt the depth-of-field
 - narrow aperture \Rightarrow large range of distances that are in focus
 - wide aperture \Rightarrow small range of distances that are in focus

Simplified Model

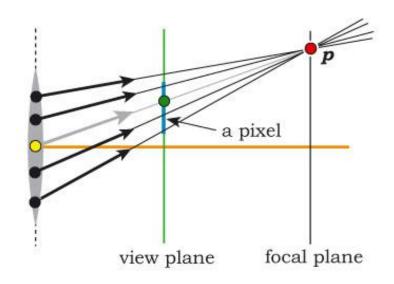
- lens is modeled as disk placed at the eye position
- focal plane is defined by the user
- p is computed using a center ray from the center of a disk through a sample point in the view plane
- rays from the sampled disk through p are generated
- if these rays hit an object on the focal plane, the object is perfectly reconstructed



Simplified Model

- center ray
 - computes p
 - does not return a radiance
- primary rays
 - start at a sample of the disk
 - into the direction of p
 - return a radiance that

 is associated with the pixel
 sample that has been used
 for the center ray



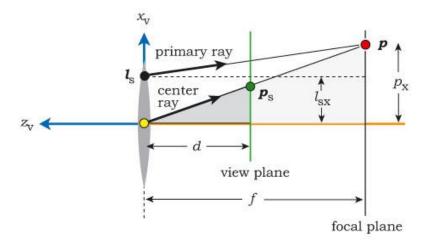
For a real lens, the black rays would be refracted. The rays would intersect at a point on the real image plane behind the lens.

size of the disk governs the blurring effect

[Suffern]

Implementation

- in view / camera space
 - a ray is computed for a lens sample I_s into the direction $d=p-I_s$



 $\mathbf{p} = (\mathbf{p}_{\mathbf{s}_x} \frac{f}{d}, \mathbf{p}_{\mathbf{s}_y} \frac{f}{d}, -f)$ $\mathbf{d} = (\mathbf{p}_x - \mathbf{l}_{\mathbf{s}_x}, \mathbf{p}_y - \mathbf{l}_{\mathbf{s}_y}, -f)$

• ray equation $\mathbf{r}(t) = \mathbf{l_s} + t \frac{\mathbf{d}}{\|\mathbf{d}\|}$

[Suffern]

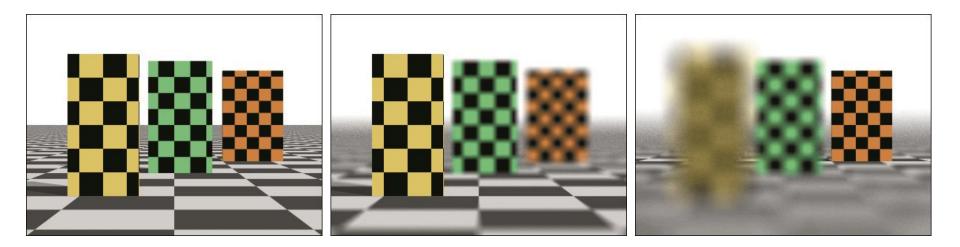
BURG

Sampling

- sampling of the pixel area
- either
 - generate a center ray per pixel sample
 - sample the disk per center ray
- or
 - sample the disk
 - associate one disk sample with one pixel sample
 - i.e., use different center rays for all disk samples

Results

- 100 random pixel and disk samples
- one-to-one mapping of pixel and disk samples
- varying size of the disk



[Suffern]