Advanced Computer Graphics Stochastic Raytracing 1

Matthias Teschner

UNI FREIBURG

From Radiosity to Raytracing

- Radiosity equation governs light transport for diffuse surfaces. ⇒ How to describe light transport for general surfaces?
- How to solve for the light transport?
- How to compute the relevant part of the light transport towards a sensor?

Stochastic Raytracing

- Light transport towards the sensor requires to solve $L(\mathbf{p} \rightarrow \boldsymbol{\omega}_o) = L_e(\mathbf{p} \rightarrow \boldsymbol{\omega}_o) + \int_S f_r(\mathbf{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\mathbf{p}' \rightarrow -\boldsymbol{\omega}_i) G(\mathbf{p}, \mathbf{p}') dA_{p'}$
- Monte Carlo integration approximates the reflectance integral
 - E.g., $\sum_i f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \rightarrow -\boldsymbol{\omega}_i) G(\boldsymbol{p}, \boldsymbol{p}') A_{p'}$
 - Trace rays into the scene
 - Compute radiance along this ray
 - Associate an area / solid angle with each ray
 - Accumulate all contributions

Outline

- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables

Governing Equations

- Rendering equation
 - Governing equation for general global illumination methods $L(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o) + \int_S f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{x} \rightarrow -\boldsymbol{\omega}_i) V(\boldsymbol{p}, \boldsymbol{x}) \frac{\cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) \cos(-\boldsymbol{\omega}_i, \boldsymbol{n}_x)}{r_{px}^2} \mathrm{d}A_x$
- Radiosity equation
 - Governing equation for diffuse global illumination methods

$$L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = \frac{B(\boldsymbol{p})}{\pi} \quad f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) = \frac{\rho(\boldsymbol{p})}{\pi}$$
$$B(\boldsymbol{p}) = B_e(\boldsymbol{p}) + \frac{\rho(\boldsymbol{p})}{\pi} \int_S B(\boldsymbol{x}) V(\boldsymbol{p}, \boldsymbol{x}) \frac{\cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) \cos(-\boldsymbol{\omega}_i, \boldsymbol{n}_x)}{r_{px}^2} dA_x$$

A Solution Strategy - Radiosity

- Finite Element Method
- Start with a continuous form / function $B(\boldsymbol{p}) = B_e(\boldsymbol{p}) + \frac{\rho(\boldsymbol{p})}{\pi} \int_S B(\boldsymbol{x}) V(\boldsymbol{p}, \boldsymbol{x}) \frac{\cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) \cos(-\boldsymbol{\omega}_i, \boldsymbol{n}_x)}{r_{px}^2} dA_x$
- Discretization
 - $\boldsymbol{B} = \boldsymbol{B_e} + \boldsymbol{F}\boldsymbol{B}$
 - $\boldsymbol{B} = (\boldsymbol{I} \boldsymbol{F})^{-1} \boldsymbol{B}_{\boldsymbol{e}}$
- Solving for a vector with unknown radiosities $(I F)^{-1} = \sum_{k=0}^{\infty} F^k$
 - $B = B_e + FB_e + FFB_e + FFFB_e + \dots$

An Alternative Strategy

 Start with the general form of the rendering equation, e.g. in hemispherical form

 $L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p} \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) d\boldsymbol{\omega}_i$

- Solving for a function of unknown radiances $L(p \rightarrow \omega_o)$
 - I.e., radiance at all surface positions into all directions

- Operators transform a function into another one
- Scattering operator

 $(\mathbf{K}h)(\mathbf{p} \to \boldsymbol{\omega}_o) = \int_{\Omega} f_r(\mathbf{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) h(\mathbf{p} \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \mathbf{n}_p) \mathrm{d}\boldsymbol{\omega}_i$

- Applied to an incident radiance function $L(p \leftarrow \omega_i)$, exitant radiance after one bounce / scattering step is returned $L(p \rightarrow \omega_o) = (KL)(p \leftarrow \omega_i)$
- K operates on an entire function, i.e. on all incident radiances for all positions p and direction ω_i

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. thesis, Stanford University, 1997.

Propagation operator

 $(m{G}h)(m{p} \leftarrow m{\omega}_i) = h(m{p}'
ightarrow -m{\omega}_i)$ p' indicates the raycast operator applied to p

– Applied to an exitant radiance function $L(p'
ightarrow - \omega_i)$, incident radiance at p from direction ω_i is returned

 $L(\boldsymbol{p} \leftarrow \boldsymbol{\omega}_i) = (\boldsymbol{G}L)(\boldsymbol{p}' \rightarrow -\boldsymbol{\omega}_i)$

- Radiance is preserved / propagated along the line between p and p^\prime
- p and p' can be reversed, i.e. $L(p' \leftarrow -\omega_o) = (GL)(p \rightarrow \omega_o)$

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. thesis, Stanford University, 1997.

University of Freiburg – Computer Science Department – 9

FREIBURG

Light transport operator

T = KG

- Composition of scattering and propagation
- Maps an exitant radiance function to the exitant radiance function after one scattering step
- Remember: G maps exitant radiance to incident radiance propagated along a direction. Then, K maps incident radiance to exitant radiance after scattering

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. dissertation, Stanford University, 1997.

$$L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p} \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) d\omega_i$$

Can be written as

$$L(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o) + (\boldsymbol{K}\boldsymbol{G}L)(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o)$$

Light transport equation

 $L = L_e + TL$ Infinite number of equations with an infinite number of unknown exitant radiances

- T relates exitant radiance functions
- Represents the light propagation equilibrium

Light Transport Equation

 $L = L_e + \mathbf{T}L$

- Solving for the unknown radiance function $(\mathbf{I} \mathbf{T})L = L_e$
 - $L = (\mathbf{I} \mathbf{T})^{-1} L_e$
 - Neumann series
 - $L = \sum_{k=0}^{\infty} (\mathbf{T}^k L_e)$
 - $\approx L_e + \mathbf{T}L_e + \mathbf{T}\mathbf{T}L_e + \mathbf{T}\mathbf{T}\mathbf{T}L_e + \dots$

Light Transport Equation

– Discussion

— ...

- Radiance function is a sum of
 - Emitted radiance L_e
 - Emitted radiance after one scattering TL_e
 - Emitted radiance after two scatterings TTL_e

 $L \approx L_e + TL_e + TTL_e + TTTL_e + \dots$

Terms in the Neumann Series

Example contributions to terms

UNI FREIBURG

Forward Raytracing

- Send rays / propagate radiance from all light source positions into all directions $\Rightarrow L_e$
- At all intersection points p, solve the integral $L_1(p \to \omega_o) = \int_{\Omega} f_r(p, \omega_i \leftrightarrow \omega_o) GL_e \cos(\omega_i, n_p) d\omega_i$ for all direction $\omega_o \Rightarrow TL_e$
- Trace rays to propagate TL_e
- At all intersection points p, solve the integral $L_2(p \rightarrow \omega_o) = \int_{\Omega} f_r(p, \omega_i \leftrightarrow \omega_o) GL_1 \cos(\omega_i, n_p) d\omega_i$ for all direction $\omega_o \Rightarrow TTL_e$

Forward Raytracing

- At a sensor: Accumulate radiance contributions of rays after *n* scattering steps, i.e. compute $L_e + TL_e + TTL_e + ...$

University of Freiburg – Computer Science Department – 16

UNI FREIBURG

$$L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p} \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) d\omega_i$$

Can be written as

$$L(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o) + (\boldsymbol{K}\boldsymbol{G}L)(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_o)$$

Light transport equation

 $L = L_e + TL$ Infinite number of equations with an infinite number of unknown exitant radiances

- T relates exitant radiance functions
- Represents the light propagation equilibrium

Light Transport Equation

 $L = L_e + \mathbf{T}L$

- Solving for the unknown radiance function $(\mathbf{I} \mathbf{T})L = L_e$
 - $L = (\mathbf{I} \mathbf{T})^{-1} L_e$
 - Neumann series
 - $L = \sum_{k=0}^{\infty} (\mathbf{T}^k L_e)$
 - $\approx L_e + \mathbf{T}L_e + \mathbf{T}\mathbf{T}L_e + \mathbf{T}\mathbf{T}\mathbf{T}L_e + \dots$

Light Transport Equation

– Discussion

— ...

- Radiance function is a sum of
 - Emitted radiance L_e
 - Emitted radiance after one scattering TL_e
 - Emitted radiance after two scatterings TTL_e

 $L \approx L_e + TL_e + TTL_e + TTTL_e + \dots$

Backward Raytracing

- Consider rays from the sensor into the scene
- Propagate radiance from visible light sources
- − \Rightarrow part of L_e visible to the sensor
- At intersection points p with the scene, compute radiance $L(p \rightarrow \omega_o) = \int_{\Omega} f_r(p, \omega_i \leftrightarrow \omega_o) L_e(p \leftarrow \omega_i) \cos(\omega_i, n_p) d\omega_i$ that is propagated in direction ω_o towards the sensor
- \rightarrow part of TL_e visible to the sensor

Backward Raytracing

- Trace rays from the sensor into the scene

University of Freiburg – Computer Science Department – 21

UNI FREIBURG

Setting at Sensor

- How to compute $L(p_1 \rightarrow \omega_o)$ and what is its the relation to $L_e + TL_e + TTL_e + \dots$?

Setting at First-Level Intersections

$$\begin{split} L(\boldsymbol{p}_1 \to \boldsymbol{\omega}_o) &= \int_S f_r(\boldsymbol{p}_1, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}_2 \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}_1, \boldsymbol{p}_2) \mathrm{d}A_{p_2} \\ &= \int_{\text{Light Sources}} f_r(\boldsymbol{p}_1, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L_e(\boldsymbol{p}_2 \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}_1, \boldsymbol{p}_2) \mathrm{d}A_{p_2} \\ &+ \int_{\text{Scene}} f_r(\boldsymbol{p}_1, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}_2 \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}_1, \boldsymbol{p}_2) \mathrm{d}A_{p_2} \end{split}$$

- $\int_{\text{Light Sources}} \cdots$ is the part of TL_e visible to the sensor
- Computation of $\int_{\text{Scene}} \cdots$ requires $L(\mathbf{p}_2 \rightarrow -\boldsymbol{\omega}_i)$

Setting at Second-Level Intersections

$$\begin{split} L(\boldsymbol{p}_{2} \rightarrow \boldsymbol{\omega}_{o}) &= \int_{S} f_{r}(\boldsymbol{p}_{2}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}_{o}) L(\boldsymbol{p}_{3} \rightarrow -\boldsymbol{\omega}_{i}) G(\boldsymbol{p}_{2}, \boldsymbol{p}_{3}) \mathrm{d}A_{p_{3}} \\ &= \int_{\text{Light Sources}} f_{r}(\boldsymbol{p}_{2}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}_{o}) L_{e}(\boldsymbol{p}_{3} \rightarrow -\boldsymbol{\omega}_{i}) G(\boldsymbol{p}_{2}, \boldsymbol{p}_{3}) \mathrm{d}A_{p_{3}} \\ &+ \int_{\text{Scene}} f_{r}(\boldsymbol{p}_{2}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}_{o}) L(\boldsymbol{p}_{3} \rightarrow -\boldsymbol{\omega}_{i}) G(\boldsymbol{p}_{2}, \boldsymbol{p}_{3}) \mathrm{d}A_{p_{3}} \end{split}$$

- $-\int_{\text{Light Sources}} \cdots \text{ is the part of} \\ TTL_e \text{ visible to the sensor}$
- Computation of $\int_{\text{Scene}} \cdots$ requires $L(p_3 \rightarrow -\omega_i)$

Summary

Recursive evaluation of

$$\begin{split} L(\boldsymbol{p} \to \boldsymbol{\omega}_o) &= \int_S f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'} \\ &= \int_{\text{Light Sources}} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L_e(\boldsymbol{p}' \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'} \\ &+ \int_{\text{Scene}} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'} \end{split}$$

- Each recursion level computes parts of the functions L_e, TL_e, TTL_e, \dots that are visible to the sensor

Numerical Integration

- The integral $\int_S \dots$ is approximately computed with a sum of samples $\sum_i \dots$
- For each sample *i*,
 - A ray is cast into the scene
 - Intersection with the scene is computed
 - Radiance along the ray is computed

Numerical Integration

- Typically, $\int_S \ldots = \int_{\text{Scene}} \ldots + \int_{\text{Light Sources}} \ldots \approx \sum_{\text{Scene}_i} \ldots + \sum_{\text{Light Source}_i} \ldots$ is considered
- For $\Sigma_{\text{Light Source}_i} \cdots$, light source areas are sampled and rays towards those positions are processed
- For $\Sigma_{{\rm Scene}_i}\cdots$, the respective solid angle is sampled and rays towards those directions are processed

Numerical Integration

- Due to the recursive nature, the number of processed rays grows exponentially with the recursion level
- ⇒ Monte Carlo integration
 - Efficient for multidimensional integral
 - Adaptive sample distribution
 - Very flexible in terms of the number of used samples
 - Even one sample can be used to approximate an integral
 - ⇒ e.g., Path tracing
 - At each recursion level, trace a fixed number of rays to light sources and one ray into the scene (which generates a ray path)

Advanced Computer Graphics Stochastic Raytracing 2

Matthias Teschner

UNI FREIBURG

Outline

- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables

Goal

- Approximating the solution of the light transport equation $L = \sum_{k=0}^{\infty} (\mathbf{T}^k L_e)$
- Recursive evaluation of

 $L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_S f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \to -\boldsymbol{\omega}_i) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'}$

- Each recursion level computes parts of the functions L_e, TL_e, TTL_e, \dots that are visible to the sensor

Numerical Integration – Fixed Sample Size

– E.g. Riemann sum

$$-\int_{a}^{b} f(x) dx \approx \sum_{i} f(x_{i}) \Delta x \quad \Delta x = \frac{b-a}{N}$$

- More / smaller samples ⇒ better accuracy
- -d dimensional integrals require N^d samples

University of Freiburg – Computer Science Department – 32

UNI FREIBURG

Numerical Integration – Adaptive Sample Size

- E.g., Monte Carlo integration
 - $-\int_{a}^{b} f(x) dx \approx \sum_{i} f(x_{i}) \Delta x_{i}$, adaptive sample size Δx_{i}
 - More / smaller samples ⇒ better accuracy
 - d dimensional integrals work with arbitrary sample numbers
 - Sample size is only approximated ⇒ noise

UNI FREIBURG

Stochastic Raytracing - Concept

- Approximately evaluate the reflectance integral $\int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p} \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) d\omega_i$ by
 - Tracing rays into randomly sampled 2D directions
 - Computing the incoming radiances
- Integral is approximated with
 - $\sum_{i} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p} \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) \Delta \Omega_i$
 - 2 dimensional sample directions $\boldsymbol{\omega}_i = (\theta_i, \phi_i)$
 - $\Delta \Omega_i$ is an approximation of the solid angle of sample direction $\boldsymbol{\omega}_i = (\theta_i, \phi_i)$

Introduction

- Challenges
 - Approximate the integral as exact as possible
 - Trace as few rays as possible / use as few samples as possible
 - Trace relevant rays / use relevant samples
 - Rays / samples to light sources are very relevant
 (Rays / samples to occluded light sources are irrelevant)
 - For diffuse surfaces, rays / samples in normal direction are more relevant than rays / samples perpendicular to the normal
 - For specular surfaces, rays / samples in reflection direction are relevant

Properties

- Benefits
 - Processes only evaluations of the integrand at arbitrary surface points in the domain
 - Works for a large variety of integrands,
 e.g., it handles discontinuities
 - Appropriate for integrals of arbitrary dimensions
 - Allows for non-uniform sample patterns / adaptive sample sizes
Properties

- Drawbacks
 - Using *n* samples, the scheme converges to the correct result with O ($n^{\frac{1}{2}}$)
 - I.e., to half the error, 4n samples are required
 - Errors are perceived as noise,
 i.e. pixels are arbitrarily too bright or dark
 (due to the erroneous approximation of the sample size)
 - Evaluation of the integrand at a point and for a direction is expensive (ray intersection tests)

Continuous Random Variables

- Motivation: random sampling of directions
- Continuous random variables X
 - In contrast to discrete random variables, infinite number of possible values
- Canonical uniform random variable $0 \le \xi < 1$
 - Sample sets with arbitrary distributions can be computed from $\boldsymbol{\xi}$

Probability Density Function PDF p(x)

- Motivation: PDF governs the size / solid angle of a sample / sample direction
- Probability of a random variable taking certain value ranges
- $p(x) \ge 0 \quad \forall x \in [a, b]$
- $Pr(x_0 \le X \le x_1) = \int_{x_0}^{x_1} p(x) dx$

The probability, that the random variable has a certain exact value $x_0=x_1$, is 0.

- $-\int_{a}^{b} p(x) dx = 1$ The probability, that the random variable is in the specified domain, is 1.
- Example
 - Uniform PDF for $0 \le X \le 5$

$$-1 = \int_0^5 p(x) dx = p(x) \int_0^5 dx = 5 \ p(x) \qquad p(x) = \frac{1}{5}$$

Cumulative Distribution Function CDF P(x)

- Motivation: CDFs are required to generate sample sets for arbitrary PDFs from uniform sample sets
- Probability of a random variable to be less or equal to \boldsymbol{x}

$$- P(x) = Pr(X \le x) = \int_a^x p(x) dx$$

$$- P(a) = 0 \le P(x) \le 1 = P(b)$$

$$- Pr(x_0 \le X \le x_1) = P(x_1) - P(x_0)$$

Expected Value

- Motivation: expected value of an estimator function is equal to the reflectance integral
- Expected value E[f(x)] of a function f(x) is defined as the weighted average value of the function over a domain D
- $E[f(x)] = \int_D f(x) p(x) dx$ with $\int_D p(x) dx = 1$

Processes an infinite number of samples x according to a PDF p(x)

- Properties
 - E[af(x)] = aE[f(x)]
 - $E\left[\sum_{i} f(X_{i})\right] = \sum_{i} E[f(X_{i})]$ For independent random variables X_i

UNI FREIBURG

Expected Value

– Examples for uniform PDF p(x)

University of Freiburg – Computer Science Department – 42

FREIBURG

Monte Carlo Estimator - Uniform Random Variables

- Motivation: approximation of the reflectance integral
- Goal: computation of $\int_a^b f(x) dx$
- Uniformly distributed random variables $X_i \in [a, b]$
- Probability density function $p(x) = \frac{1}{b-a}$ Constant and integration to one
- Monte Carlo estimator $F_N = \frac{b-a}{N} \sum_{i=1}^N f(X_i)$
- Expected value of F_N is equal to the integral $\int_a^b f(x) dx$

$$- E[F_N] = \int_a^b f(x) \mathrm{d}x$$

Monte Carlo Estimator - Uniform Random Variables

$$E[F_N] = E\left[\frac{b-a}{N}\sum_{i=1}^N f(X_i)\right]$$
$$= \frac{b-a}{N}\sum_{i=1}^N E[f(X_i)]$$
$$= \frac{b-a}{N}\sum_{i=1}^N \int_a^b f(x)p(x)dx$$
$$= \frac{b-a}{N}\sum_{i=1}^N \int_a^b f(x)\frac{1}{b-a}dx$$
$$= \frac{1}{N}\sum_{i=1}^N \int_a^b f(x)dx$$
$$= \int_a^b f(x)dx$$

UNI FREIBURG

Monte Carlo Estimator - Uniform Random Variables

- $\mathsf{PDF} \ p(x) = \frac{1}{b-a}$
- Estimator $F_N = \frac{b-a}{N} \sum_{i=1}^N f(X_i)$
- Integral
 - $\int_{a}^{b} f(x) dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(X_{i}) = \sum_{i=1}^{N} f(X_{i}) \frac{b-a}{N} = \sum_{i=1}^{N} f(X_{i}) \frac{1}{N p(X_{i})}$
 - Function value $f(X_i)$
 - Approximate sample size $\frac{1}{N p(X_i)}$

Examples - Uniform Random Variables

- Integral $\int_0^1 5x^4 dx = 1$
- Estimator $F_N = \frac{1-0}{N} \sum_{i=1}^N 5X_i^4$ Sample size approx. 1/N
- For an increasing number of uniformly distributed random variables X_i, the estimator converges to one

$$-F_N = \sum_{i=1}^N f(X_i) \frac{b-a}{N}$$
$$F_N = (b-a) \frac{1}{N} \sum_{i=1}^N f(X_i)$$
$$= (b-a) \overline{f(x)}$$
$$E[F_N] = \int_a^b f(x) dx$$

Monte Carlo Estimator - Non-uniform Random Variables

- Monte Carlo estimator
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)}$$
 $p(X_i) \neq 0$
- $E[F_N] = E\left[\frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)}\right]$
 $= \frac{1}{N} \sum_{i=1}^N \int_a^b \frac{f(x)}{p(x)} p(x) dx$
 $= \frac{1}{N} \sum_{i=1}^N \int_a^b f(x) dx$
 $= \int_a^b f(x) dx$

Monte Carlo Estimator - Non-uniform Random Variables

- $\mathsf{PDF} p(x)$
- Estimator $F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$
- Integral
 - $\int_{a}^{b} f(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_{i})}{p(X_{i})} = \sum_{i=1}^{N} f(X_{i}) \frac{1}{N p(X_{i})}$
 - Function value $f(X_i)$
 - Approximate sample size $\frac{1}{N p(X_i)}$

Approximate Sample Size

- Sample size / distance for uniform PDF: $\approx \frac{b-a}{N} = \frac{1}{Np(X_i)}$

– Sample size for non-uniform PDF: $\approx \frac{1}{Np(X_i)}$

UNI FREIBURG

Monte Carlo Estimator - Multiple Dimensions

- E.g., $\int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, y) \mathrm{d}x \mathrm{d}y$
- Samples X_i are two-dimensional
- Uniformly distributed random samples $(x_0, y_0) \leq \mathbf{X}_i = (x_i, y_i) \leq (x_1, y_1)$
- Probability density function $p(\mathbf{X}_i) = \frac{1}{x_1 x_0} \frac{1}{y_1 y_0}$
- Monte Carlo estimator

 $F_N = \frac{(x_1 - x_0)(y_1 - y_0)}{N} \sum_{i=1}^N f(\mathbf{X}_i)$

– Approximate sample size is $\frac{(x_1-x_0)(y_1-y_0)}{N}$

Monte Carlo Estimator - Multiple Dimensions

- E.g., $\int_1^4 \int_1^4 f(x,y) dx dy$
- Uniformly distributed random samples
- Probability density function $p(\mathbf{X}_i) = \frac{1}{4-1} \frac{1}{4-1} = \frac{1}{9}$
- Monte Carlo estimator $F_N = \frac{9}{N} \sum_{i=1}^N f(\mathbf{X}_i)$

– Approximate sample size $\frac{9}{N}$

- Approximate computation of the irradiance at a point $E_i(\mathbf{p}) = \int_{2\pi^+} L_i(\mathbf{p}, \boldsymbol{\omega}) \cos\theta d\omega$ $= \int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(\mathbf{p}, \theta, \phi) \cos\theta \sin\theta d\theta d\phi$
- Estimator $F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(\mathbf{X}_i)}{p(\mathbf{X}_i)} = \frac{1}{N} \sum_{i=1}^N \frac{L_i(\mathbf{p}, \theta_i, \phi_i) \cos \theta_i \sin \theta_i}{p(\theta_i, \phi_i)}$
- Choosing a PDF This flexibility is an important aspect of Monte Carlo integration.
 - Should be similar to the shape of the integrand
 - As incident radiance is weighted with $\cos \theta$, it is appropriate to generate more samples close to the top of the hemisphere
 - $p(\theta,\phi) \propto \cos\theta$

 Probability distribution $\int_{2\pi^+} c \, \tilde{p}(\boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega} = 1 \qquad \tilde{p}(\theta, \phi) = \cos \theta$ $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} c \, \cos\theta \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi = 1$ $c \frac{2\pi}{1+1} = 1$ $c = \frac{1}{\pi}$ $p(\theta, \phi) = \frac{\cos \theta \sin \theta}{\pi}$ – Estimator $F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{L_i(\boldsymbol{p}, \theta_i, \phi_i) \cos \theta_i \sin \theta_i}{p(\theta_i, \phi_i)}$ $= \frac{\pi}{N} \sum_{i=1}^{N} L_i(\boldsymbol{p}, \theta_i, \phi_i) \qquad \approx \int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(\boldsymbol{p}, \theta, \phi) \cos \theta \sin \theta d\theta d\phi$ If θ and ϕ are sampled according to PDF $p(\theta, \phi)$ University of Freiburg – Computer Science Department – 53

FREIBURG

- Integral $\int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(\boldsymbol{p}, \theta, \phi) \cos \theta \sin \theta d\theta d\phi$
- PDF $p(\theta, \phi) = \frac{\cos \theta \sin \theta}{\pi}$
- Estimator $\frac{\pi}{N} \sum_{i=1}^{N} L_i(\boldsymbol{p}, \theta_i, \phi_i)$ = $\sum_{i=1}^{N} L_i(\boldsymbol{p}, \theta_i, \phi_i) \cos \theta_i \frac{\pi}{N \cos \theta_i}$
- Function value $L_i(\mathbf{p}, \theta_i, \phi_i) \cos \theta_i$ for direction (θ_i, ϕ_i)
- Approximate sample size / solid angle $\frac{\pi}{N\cos\theta_i}$
 - For large N
 - The PDF in terms of the solid angle is $p(\boldsymbol{\omega}_i) = rac{\cos \theta_i}{\pi}$

Monte Carlo Integration - Steps

- Choose an appropriate probability density function
- Generate random samples according to the PDF
- Evaluate the function for all samples
- Accumulate sample values weighted with their approximate sample size

Monte Carlo Estimator - Error Reduction

- Importance sampling
 - Motivation: contributions of larger sample values are more important
 - PDF should be similar to the shape of the function
 - Optimal PDF $p(x) = \frac{f(x)}{\int f(x)dx}$
 - E.g., if incident radiance is weighted with $\cos \theta$, the PDF should choose more samples close to the normal direction

Monte Carlo Estimator - Error Reduction

- Stratified sampling
 - Domain subdivision into strata
 - E.g., handling direct and indirect illumination differently

$$\begin{aligned} -L(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_{o}) &= L_{e}(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_{o}) + \int_{S} f_{r}(\boldsymbol{p}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}_{o}) L(\boldsymbol{p}' \rightarrow -\boldsymbol{\omega}_{i}) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'} \\ &= L_{e}(\boldsymbol{p} \rightarrow \boldsymbol{\omega}_{o}) \\ &+ \int_{\mathrm{Light \ Sources}} f_{r}(\boldsymbol{p}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}_{o}) L_{e}(\boldsymbol{p}' \rightarrow -\boldsymbol{\omega}_{i}) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'} \\ &+ \int_{\mathrm{Scene}} f_{r}(\boldsymbol{p}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}_{o}) L(\boldsymbol{p}' \rightarrow -\boldsymbol{\omega}_{i}) G(\boldsymbol{p}, \boldsymbol{p}') \mathrm{d}A_{p'} \end{aligned}$$

Advanced Computer Graphics Stochastic Raytracing 3

Matthias Teschner

UNI FREIBURG

- Approximate computation of the irradiance at a point $E_i(\mathbf{p}) = \int_{2\pi^+} L_i(\mathbf{p}, \boldsymbol{\omega}) \cos\theta d\omega$ $= \int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(\mathbf{p}, \theta, \phi) \cos\theta \sin\theta d\theta d\phi$
- Estimator $F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(\mathbf{X}_i)}{p(\mathbf{X}_i)} = \frac{1}{N} \sum_{i=1}^N \frac{L_i(\mathbf{p}, \theta_i, \phi_i) \cos \theta_i \sin \theta_i}{p(\theta_i, \phi_i)}$
- Choosing a PDF This flexibility is an important aspect of Monte Carlo integration.
 - Should be similar to the shape of the integrand
 - As incident radiance is weighted with $\cos \theta$, it is appropriate to generate more samples close to the top of the hemisphere
 - $p(\theta,\phi) \propto \cos\theta$

Outline

- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables
 - Inversion method
 - Rejection method
 - Transforming between distributions
 - 2D sampling
 - Examples

Motivation - Rendering Equation

– Hemispherical form

 $L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \to -\boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) d\boldsymbol{\omega}_i$

Area form

$$L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_S f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{x} \to -\boldsymbol{\omega}_i) V(\boldsymbol{p}, \boldsymbol{x}) \frac{\cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) \cos(-\boldsymbol{\omega}_i, \boldsymbol{n}_x)}{r_{px}^2} dA_x$$

Motivation - Monte Carlo Integration

- Choose an appropriate probability density function
- Generate random samples according to the PDF
- Evaluate the function for all samples
- Accumulate function values weighted with their approximate sample size

Inversion Method

- Mapping of a uniform random variable to a goal distribution
- Discrete example
 - Four outcomes with probabilities p_1, p_2, p_3, p_4 and $\sum_i p_i = 1$
 - Computation of the cumulative distribution function $P(i) = \sum_{j=1}^{i} p_j$

UNI FREIBURG

Inversion Method

- Discrete example cont.
 - Take a uniform random variable ξ
 - $P^{-1}(\xi)$ has the desired distribution
- Continuous case
 - P and P^{-1} are continuous functions
 - Start with the desired PDF p(x)
 - Derive $P(x) = \int_0^x p(x') dx'$
 - Compute the inverse $P^{-1}(x)$
 - Obtain a uniformly distributed variable
 - Compute $X_i = P^{-1}(\xi)$ which adheres to p(x)

Inversion Method - Example 1

- Power distribution $p(x) \propto x^n$
 - E.g., for sampling the Blinn microfacet model
- Computation of the PDF

$$- \int_0^1 c x^n dx = 1 \Rightarrow c \left. \frac{x^{n+1}}{n+1} \right|_0^1 = 1 \Rightarrow c = n+1$$

- PDF $p(x) = (n+1)x^n$
- CDF $P(x) = \int_0^x p(x') dx' = x^{n+1}$
- Inverse of the CDF $P^{-1}(x) = \sqrt[n+1]{x}$
- Sample generation
 - Generate uniform random samples $0 \le \xi \le 1$
 - $X = \sqrt[n+1]{\xi}$ are samples from the distribution $p(x) = (n+1)x^n$

Inversion Method - Example 2

- Exponential distribution $p(x) \propto e^{-ax}$
 - E.g., for considering participating media
- Computation of the PDF

$$- \int_0^\infty c \ e^{-ax} dx = -\frac{c}{a} \ e^{-ax} \Big|_0^\infty = \frac{c}{a} = 1$$

- PDF $p(x) = a e^{-ax}$

- CDF
$$P(x) = \int_0^x p(x') dx' = 1 - e^{-ax}$$

- Inverse of the CDF $P^{-1}(x) = -\frac{\ln(1-x)}{a}$
- Sample generation
 - Generate uniform random samples $0 \le \xi \le 1$
 - $X = -\frac{\ln(1-\xi)}{a}$ are samples from the distribution $p(x) = a e^{-ax}$

JRG

Outline

- Context
- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables
 - Inversion method
 - Rejection method
 - Transforming between distributions
 - 2D sampling
 - Examples

University of Freiburg – Computer Science Department – 67

Rejection Method

- Draws samples according to a function f(x)
 - Dart-throwing approach
 - Works with a PDF p(x) and a scalar c with $f(x) < c \cdot p(x)$
- Properties
 - f(x) is not necessarily a PDF
 - PDF, CDF and inverse CDF
 do not have to be computed
 - Simple to implement
 - Useful for debugging purposes

Rejection Method

- Sample generation
 - Generate a uniform random sample $0 \le \xi < 1$
 - Generate a sample *X* according to p(x)
 - Accept X if $\xi \cdot c \cdot p(X) \leq f(X)$

Outline

- Context
- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables
 - Inversion method
 - Rejection method
 - Transforming between distributions
 - 2D sampling
 - Examples

University of Freiburg – Computer Science Department – 70

Transforming Between Distributions

- Computation of a resulting PDF, when a function is applied to samples from an arbitrary distribution
 - Random variables X_i are drawn from $p_x(x)$
 - Bijective transformation (one-to-one mapping) $Y_i = y(X_i)$
 - How does the distribution $p_y(y)$ look like?

Transforming Between Distributions

$$- Pr\{Y \le y(x)\} = Pr\{X \le x\}$$

$$P_y(y) = P_y(y(x)) = P_x(x)$$

$$p_y(y) = \frac{p_x(x)}{|y'(x)|}$$

$$- \text{Example} \quad p_x(x) = 2x \quad 0 \le x \le 1$$

$$- y(x) = \sin x \quad x(y) = \arcsin y$$

$$- y'(x) = \cos x$$

$$- p_y(y) = \frac{p_x(x)}{|\cos x|} = \frac{2x}{|\cos x|} = \frac{2 \arcsin y}{|\cos \arcsin y|} = \frac{2 \arcsin y}{\sqrt{1-y^2}}$$

University of Freiburg – Computer Science Department – 72

UNI FREIBURG
Transforming Between Distributions

- Multiple dimensions
 - X_i is an n-dimensional random variable
 - $Y_i = T(X_i)$ is a bijective transformation
- Transformation of the PDF

$$- p_y(y) = \frac{p_x(x)}{|J_T(x)|} \quad J_T(x) = \begin{pmatrix} \frac{\partial T_1}{\partial x_1} & \cdots & \frac{\partial T_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial T_n}{\partial x_1} & \cdots & \frac{\partial T_n}{\partial x_n} \end{pmatrix}$$

UNI FREIBURG

University of Freiburg – Computer Science Department – 73

Transforming Between Distributions

- Example (polar coordinates)
 - Samples (r, θ) with density $p(r, \theta)$
 - Corresponding density p(x,y) with $x = r \cos \theta$ and $y = r \sin \theta$

$$J_T(x) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} |J_T(x)| = r(\cos^2 \theta + \sin^2 \theta) = r$$
$$- p(x,y) = \frac{1}{r}p(r,\theta) \quad p(r,\theta) = r \cdot p(x,y)$$

University of Freiburg – Computer Science Department – 74

Transforming Between Distributions

- Example (spherical coordinates)
 - $x = r\sin\theta\cos\phi$
 - $y = r\sin\theta\sin\phi$
 - $z = r \cos \theta$
 - $p(r,\theta,\phi) = r^2 \sin \theta \cdot p(x,y,z)$
- Example (solid angle)
 - $Pr\{\boldsymbol{\omega} \in \Omega\} = \int_{\Omega} p(\boldsymbol{\omega}) d\boldsymbol{\omega}$
 - $d\omega = \sin\theta \, d\theta \, d\phi$
 - $p(\theta, \phi) = \sin \theta \cdot p(\boldsymbol{\omega})$

Outline

- Context
- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables
 - Inversion method
 - Rejection method
 - Transforming between distributions
 - 2D sampling
 - Examples

University of Freiburg – Computer Science Department – 76

Concept

- Samples from a 2D joint density function p(x,y)
- Procedure
 - Compute the marginal density function $p_x(x) = \int p(x, y) dy$
 - Compute the conditional density function $p_y(y|x) = \frac{p(x,y)}{p_x(x)}$
 - Generate a sample X according to $p_x(x)$
 - Generate a sample Y according to $p_y(y|X) = \frac{p(x,y)}{p_x(X)}$
- Marginal density function
 - Integral of p(x,y) for a particular x over all y-values
- Conditional density function
 - Density function for y given a particular x

Outline

- Context
- Diffuse vs. general global illumination
- Monte Carlo integration
- Sampling of random variables
 - Inversion method
 - Rejection method
 - Transforming between distributions
 - 2D sampling
 - Examples

University of Freiburg – Computer Science Department – 78

Uniform Sampling of a Triangle

- Sampling an isosceles right triangle of area 0.5
 - u, v can be interpreted as Barycentric coordinates
 - Can be used to generate samples for arbitrary triangles

$$- p(u,v) = 2$$

- Marginal density function - $p_u(u) = \int_0^{1-u} p(u, v) \, dv = 2 \int_0^{1-u} dv = 2(1-u)$
- Conditional density $p_v(v|u) = \frac{p(u,v)}{p_u(u)} = \frac{1}{1-u}$
- Inversion method

$$- P_u(u) = \int_0^u 2 - 2u' du' = 2u - u^2$$
$$- P_v(v|u) = \int_0^v \frac{1}{1-u} dv' = \frac{v}{1-u}$$

Uniform Sampling of a Triangle

- Inversion method cont.
 - Inverse functions of the cumulative distribution functions
 - $u = 1 \sqrt{1 \xi_1}$ u is generated between 0 and 1
 - $v = \xi_2 \sqrt{1 \xi_1}$ v is generated between 0 and 1-u=(1- ξ)^{1/2}
 - Generating uniformly sampled random values ξ_1 and ξ_2
 - Applying the inverse CDFs to obtain \boldsymbol{u} and \boldsymbol{v}

Uniform Sampling of a Hemisphere

- PDF is constant with respect to a solid angle $p(\boldsymbol{\omega}) = c$
- $-\int_{2\pi^+} p(\boldsymbol{\omega}) d\boldsymbol{\omega} = 1 \implies c \int_{2\pi^+} d\boldsymbol{\omega} = 1 \implies c = \frac{1}{2\pi}$ $- p(\boldsymbol{\omega}) = \frac{1}{2\pi} \Rightarrow p(\theta, \phi) = \frac{\sin \theta}{2\pi}$ Marginal density function $-p_{\theta}(\theta) = \int_{0}^{2\pi} p(\theta, \phi) d\phi = \int_{0}^{2\pi} \frac{\sin \theta}{2\pi} d\phi = \sin \theta$ – Conditional density for ϕ $-p_{\phi}(\phi|\theta) = \frac{p(\theta,\phi)}{p_{\theta}(\theta)} = \frac{1}{2\pi}$ Inversion method

Uniform Sampling of a Hemisphere

- Inversion method cont.
 - Inverse functions of the cumulative distribution functions
 - $\theta = \arccos(1 \xi_1)$
 - $\phi = 2\pi\xi_2$
 - Generating uniformly sampled random values ξ_1 and ξ_2
 - Applying the inverse CDFs to obtain $\theta\,$ and $\phi\,$
- Conversion to Cartesian space
 - $x = \sin \theta \cos \phi = \cos(2\pi\xi_2)\sqrt{1 (1 \xi_1)^2}$
 - $y = \sin \theta \sin \phi = \sin(2\pi\xi_2)\sqrt{1 (1 \xi_1)^2}$
 - $z = \cos \theta = 1 \xi_1$
- $(x, y, z)^{T}$ is a normalized direction

University of Freiburg – Computer Science Department – 82

BURG

Uniform Sampling of a Hemisphere

– Illustration for θ

University of Freiburg – Computer Science Department – 83

UNI FREIBURG

Cosine-Weighted Sampling of a Hemisphere

- PDF is proportional to $\cos \theta$: $p(\boldsymbol{\omega}) \propto \cos \theta$

- $-\int_{2\pi^+} c \ p(\boldsymbol{\omega}) \ \mathrm{d}\boldsymbol{\omega} = 1 = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} c \ \cos\theta \sin\theta \ \mathrm{d}\theta \ \mathrm{d}\phi = c \ 2\pi \int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \ \mathrm{d}\theta = c \ 2\pi \frac{1}{2} = 1$
- $p(\theta, \phi) = \frac{1}{\pi} \cos \theta \sin \theta$
- Marginal density function
 - $p_{\theta}(\theta) = \int_{0}^{2\pi} p(\theta, \phi) d\phi = \int_{0}^{2\pi} \frac{1}{\pi} \cos \theta \sin \theta d\phi = 2 \cos \theta \sin \theta$
- Conditional density for ϕ
 - $p_{\phi}(\phi|\theta) = \frac{p(\theta,\phi)}{p_{\theta}(\theta)} = \frac{1}{2\pi}$
- Inversion method

$$- P_{\theta}(\theta) = \int_{0}^{\theta} 2\cos\theta' \sin\theta' d\theta' = 2 \left[-\frac{\cos^{2}\theta'}{2} \right]_{0}^{\theta}$$

$$= 2 \left(-\frac{\cos^{2}\theta}{2} + \frac{1}{2} \right) = \sin^{2}\theta$$

$$- P_{\phi}(\phi|\theta) = \int_{0}^{\phi} \frac{1}{2\pi} d\phi' = \frac{\phi}{2\pi}$$

$$= 0$$
University of Freiburg – Computer Science Department – 84

 $p(r, \theta, \phi)$ ϕ a(x, 0, z)

[Suffern]

Cosine-Weighted Sampling of a Hemisphere

- Inversion method cont.
 - Inverse functions of the cumulative distribution functions
 - $\theta = \arcsin(\sqrt{\xi_1})$
 - $\phi = 2\pi\xi_2$
 - Generating uniformly sampled random values ξ_1 and ξ_2
 - Applying the inverse CDFs to obtain $\,\theta\,$ and $\,\phi\,$
- Conversion to Cartesian space
 - $x = \sin\theta\cos\phi = \cos(2\pi\xi_2)\sqrt{\xi_1}$
 - $y = \sin\theta\sin\phi = \sin(2\pi\xi_2)\sqrt{\xi_1}$
 - $z = \cos \theta = \sqrt{1 \xi_1}$

- x- y- values uniformly sample a unit disk, i.e., cosine-weighted samples of the hemisphere can also be obtained by uniformly sampling a unit sphere and projecting the samples onto the hemisphere
- $-(x,y,z)^{\mathsf{T}}$ is a normalized direction

REIBUR

University of Freiburg – Computer Science Department – 85

Cosine-Weighted Sampling of a Hemisphere

– Illustration for θ

University of Freiburg – Computer Science Department – 86

UNI FREIBURG