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Motivation

− Rendering algorithm
− Global illumination approach

− Global solution of a linear system 
− Considers global illumination

(direct and indirect)
− View-independent solution
− Limited to Lambertian surfaces

− Diffuse global Illumination
Wikipedia: Radiosity 
(Computergraphik)
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Outline

− Context
− Governing Equation
− System
− Solver
− Discussion
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Towards Image Generation

− Sources emit light 
− Surfaces absorb and reflect light
− Rendering algorithms compute light at sensors



Light is emitted 
at light sources

Light is absorbed and
scattered at surfaces

specular diffuse

Cameras 
capture light
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Towards Image Generation

Light

Material

Reflectance equation

Rendering equation

Solving the rendering equation 
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Radiosity – Rendering Algorithm

Light

Material

Reflectance equation

Rendering equation           Radiosity equation

Solving the radiosity equation 
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Outline

− Context
− Governing Equation
− System
− Solver
− Discussion



◼University of Freiburg – Computer Science Department – 8

Notation

− Incident radiance onto a point

− Exitant radiance from a point

− BRDF at a point
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Reflectance Equation

− Relation between irradiance and exitant radiance

− Irradiance is induced by radiance

− Integration over the hemisphere  reflectance equation

− Reflectance equation establishes a relation 
between incident and exitant radiance 
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Reflectance vs. Rendering Equation

− Reflectance equation relates incident and exitant 
radiance at surfaces

− Rendering equation incorporates emissive surfaces, 
i.e. light sources

− Exitant radiance is the sum of emitted and reflected 
radiance 
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Ray-Casting Operator

− Incident radiance                      at a point p is equal to the 
exitant radiance                       from another point p’

− Ray-casting operator
− Nearest intersection from p into direction     

− Radiance
−

−

− If                 does not exist,  
is user-defined, e.g. emission from sky
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Rendering Equation

−

− Establishes relations 
among exitant radiances

− Governs the computation 
of exitant radiances from 
all scene points into all 
directions  

[Akenine-Möller et al.]
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Solution of the Rendering Equation

− Exitant radiances from all scene points into all directions

Cornell box
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Rendering of the Solution

− At an arbitrarily placed and oriented sensor
− Cast a ray through position p in an image plane into direction
− Lookup 

view
plane

scene
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Outline

− Context
− Governing Equation
− System
− Solver
− Discussion
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Simplified Setting

− Lambertian material
− Exitant radiance independent from direction
− Radiance into arbitrary direction can be 

computed from radiosity
− Discretized scene representation with faces, 

e.g., triangles
− Assume constant radiosity per face

 Problem is simplified to n radiosity values for n faces
 n instances of the rendering equation govern the solution 
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Goal - System of Governing Equations

− Simplified setting results in a linear system 
with unknown radiosity values      at faces

− Radiosity      at face i depends on radiosities       at 
faces j which are visible from face i
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Hemispherical and Area Form

− Differential solid angle corresponds 
to a differential surface area

− If an infinitesimally small area          at position   
converges to zero, then the solid angle        also 
converges to zero and the relation
is correct in the limit 
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Hemispherical and Area Form

− Hemispherical form of the rendering equation

can be written in area form
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Area Form of the Rendering Equation

− Integral over all differential surface areas
obtained from the ray-casting operator

− Integral over all differential surface areas of a scene 

visibility
function
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Visibility Function

−

− Position    contributes to the integral, 
if it is visible from
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Radiosity Integral Equation

− Rendering equation

− Radiance can be computed from radiosity 
for Lambertian surfaces:

− Radiosity equation

Constant BRDF
for Lambertian
surfaces
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Kernel

−

− Radiosity equation
− Kernel weights the contribution of patch x for the 

radiosity at patch p and vice versa

K(p,x) gets larger
- if p and x are oriented

towards each other
- if p and x are closer

to each other
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− Indicates the “importance” of patch x for patch p

Kernel

Large K(p,x) Small K(p,x) Small K(p,x) K(p,x) = 0
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Discretization

− Continuous form of the radiosity equation
−

− Infinite number of equations for infinite number of unknowns
− Discretization (Finite Element Method)

− One unknown per face / triangle / finite element 
− n equations for n unknowns

Radiosity at points

Radiosity 
at faces
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Radiosity Integral Equation

− Rendering equation

− Radiance can be computed from radiosity 
for Lambertian surfaces:

− Radiosity equation

Constant BRDF
for Lambertian
surfaces
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Kernel

−

− Radiosity equation
− Kernel weights the contribution of patch x for the 

radiosity at patch p and vice versa

K(p,x) gets larger
- if p and x are oriented

towards each other
- if p and x are closer

to each other
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Discretization

− Continuous form of the radiosity equation
−

− Infinite number of equations for infinite number of unknowns
− Discretization (Finite Element Method)

− One unknown per face / triangle / finite element 
− n equations for n unknowns

Radiosity at points

Radiosity 
at faces
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From Differential Areas to Finite Areas 

− Start with, e.g., a triangulated scene representation
− Assume constant radiosity over area     :
− Assume constant reflectance over area     :    
− Integrate radiosity over a face i with area
− Radiosity equation for face i

− are radiosity and emitted radiosity per face i
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From Differential Areas to Finite Areas

− is an integral over all faces of a scene
− Can be written as

− Integral over a face j, summed over all faces
− Radiosity equation 

Division by Ai
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From Differential Areas to Finite Areas

− Constant radiosity over area     , i.e.  

− Form factor: 
− Almost discretized radiosity equation
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Form Factor – A First Approximation

− Assume constant kernel for two faces i and j: 

− Choose representative positions          on faces i and j

Non-zero for faces 
that “see” each other 

Bad for pairs of faces that see each other only partially
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Discretization of the Radiosity Equation

− Continuous form, per surface position

− Discretized form, per face / triangle

− is a source, i.e. the known emitted radiosity at face i
− are unknown radiosities at faces i and j
− are known coefficients 

Finite Element Method
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System of Linear Equations

− n equations for n unknown radiosities at n faces 

If Bei = 0 for all 
faces, the solution 
would be Bi = 0 
for all faces.    
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System of Linear Equations

Known
source 
terms.
Direct
illumi-
nation.

Unknown
radiosities.

Matrix with known coefficients,
reflectances and form factors. 
Indirect illumination. Describes,
how faces illuminate each other.
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Outline

− Context
− Governing Equation
− System
− Solver
− Discussion



◼University of Freiburg – Computer Science Department – 38

Solving the Linear System

− Typically with iterative schemes, e.g. relaxed Jacobi
− Initialize, e.g., 
− Iteratively update

− Intuition
− Changes from      to         are proportional to

− If                                                , i.e.                                      ,   
the solver has converged and 

Superscript  numbers indicate the solver iteration
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Summary

− Scene modeling / meshing
− Computation of form factors for pairs of patches
− Solve linear system
− Set up a camera 
− Project scene onto view plane / cast rays into the scene
− Lookup radiosity / reconstruct radiance per pixel
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Meshing Example

[Aayush Chopra]

Low / adaptive resolution High resolution
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Rendering of the Solution

Final rendering from an arbitrary position and orientation.

[Aayush Chopra]
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Outline

− Context
− Governing Equation
− System
− Solver
− Discussion
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Form Factor Computation

− Important and expensive
− Worst case

− Inside of a convex polygon
− All faces see each other
− Complexity of a naive form 

factor computation is qua-
dratic in the number of faces

− System matrix is fully filled 
with non-zero entries
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Form Factor Solutions

− Examples Michael F. Cohen, John R. Wallace:
Radiosity and Realistic Image Synthesis.
Academic Press Professional, Boston.
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Form Factor Properties

− Positive

− Reciprocity relation
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Form Factor Properties

− Important for the convergence of iterative solvers
− Diagonally dominant system matrix 
− Sum of magnitudes of non-diagonal entries per row 

is smaller than the magnitude of the diagonal entry
− Surface properties influence convergence
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Discretization

− Continuous form of the radiosity equation
−

− Infinite number of equations for infinite number of unknowns
− Discretization (Finite Element Method)

− One unknown per face / triangle / finite element 
− n equations for n unknowns

Radiosity at points

Radiosity 
at faces
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System Notation
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System Interpretation

− Radiosity equation per point
−

− System of per-face discretized radiosity equations
−

− overall radiosity at all faces
− radiosity at all faces due to emission
− radiosity at all faces due to the 

reflection of incident flux from all faces 
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System Solution

− Neumann series 
The inverse does not always exist. In particular, 
there is no solution for unphysical settings.
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Terms in the Neumann Series

−

− emitted radiosity  
− reflected radiosity due to emitted radiosity

(emitted radiosity after one bounce at a surface)
− reflected radiosity due to radiosity that 

was reflected due to emitted radiosity 
(emitted radiosity after two bounces at surfaces)

− … 
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Terms in the Neumann Series

−

− contribution of emitted light to the solution
− contribution of emitted light after one bounce
− contribution of emitted light after two bounces
− contribution of emitted light after three bounces
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Terms in the Neumann Series

− Example contributions to terms
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Visualizing the Neumann Series

[Pat Hanrahan]
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Terms in the Neumann Series

− Emissive patches are important
− Patches that have large form factors with respect to 

emissive patches are important
− Pairs of patches with large form factors      are 

potentially important 
− Highly reflective patches with large reflectance 

coefficients     are potentially important
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Jacobi Solver

− Jacobi with, e.g.,                :
−

− Iterations
−

−

−

−

− Intuition does not necessarily apply to other solvers
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Solver Convergence

− Radiosity contributions 
should get smaller with each iteration
− Some faces in a scene should partially absorb flux
− Faces should not generate flux, i.e.


