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Outline

-Context

-Some concepts

-Direct illumination

-Indirect illumination
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Goal and Governing Equation

-Computation of incident radiance at a sensor

-Incident radiance at sensor position    is equal to 
exitant radiance at scene position    with                   : 

-Raycastoperator      , conservation of radiance  

-Exitant radiance at scene position     is computed as: 

-Rendering equation                               
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Goal and Governing Equation
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Monte Carlo Integration

is approximated with

- randomly sampled directions

-According to a probability density function  
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Monte Carlo Integration

sample

sample size
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Monte Carlo Integration ɀError 

-Estimated sample size is not equal to the 
actual sample size due to random sample selection

-Sample contributions are randomly over - or underestimated

Uniform sampling of a 3D hemisphere
Estimated sample size

Uniform random sampling of a 3D hemisphere
Actual sample size
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Monte Carlo Integration - Error

-Variance, noise: resulting radiance values are randomly 
too dark or too bright

-If a Monte Carlo approximation converges for growing 
sample numbers to the correct result, the scheme is 
unbiased, otherwise biased
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Monte Carlo Integration - Variance

[Pharr et al., 
Physically Based 
Rendering]

8 samples per pixel 1024 samples per pixel
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Rendering Equation ɀRecursive Problem

-Solving the rendering equation requires N samples, 
where many samples require the solution of another 
rendering equation

O ( N ) samples

O ( N·N) samples

O ( N·N·N) samples
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Need of a Sampling Strategy

-Sample processing is expensive
-Ray-scene intersection tests

-Samples differ in terms of relevance

-Important samples, e.g.
-Towards / from visible light sources

-From / towards sensors

-Towards / from bright parts of a scene

-Less important samples, e.g.
-After increasing number of bounces

-Towards / from dark parts in a scene
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Stratification

-Subdivision of the integration domain, e.g.

-Integral over           can directly be computed using 

-Integral over             requires the recursive 
computation of 
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Stratification

Two sample sets for two parts of the integration domain

Light source

Light source
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Stratification

-Subdivision into non -overlapping strata 

-Allows the usage of an individual technique 
for each stratum 

-Allows / requires the individual sampling of each stratum

-Avoids sample clustering in a part of the integration 
domain
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Importance Sampling

-Probability density function

-Should be proportional to the integrand

-Product of functions

-Incident radiance expensive to compute

-Optimal PDF

-Irrelevant: If the integral would be known, we are done. 
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Importance Sampling

-Large integrand values

-More samples with smaller size and reduced sampling 
inaccuracies to improve accuracy, i.e. minimize variance / 
noise 

-Small integrand values

-Less samples with larger size and larger sampling errors to 
improve efficiency



ÂUniversity of Freiburg ɀComputer Science Department ɀ18

Multiple Importance Sampling MIS

-Combine sample sets from different PDFs

Monte Carlo with M samples

Summing up N MC estimates and dividing by N

Using individual PDFs pi with individual sample 
counts Ni for each of the N MC estimates

Replacing weight 1/N with individual weighting functions wi
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Multiple Importance Sampling MIS

-Use N PDFs pi

-Generate     samples from PDF 

-Weight all contributions with functions   

-Constraints for weighting functions
The weights have to add up to one everywhere on ƴ. The 
weights are irrelevant, if a sample has zero contribution.

If any of the PDFs is zero for some x, the weights for all 
other PDFs have to sum up to one.   
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MIS ɀExample Weightings

-Realizes stratification 

-E.g. generate samples from     and  

-Use a sample from     , if it is in    
and discard it if it is in 

-Use a sample from     , if it is in
and discard it if it is in

Light source
Light source
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MIS ɀExample Weightings

-Compute     MC estimates with PDFs     and average them 

-Balance heuristic [Eric Veach 1995, 1997]

-Larger weight to more accurate samples with smaller size

-Good, if any of the      is large for large    , but no     is 
proportional to     everywhere

-If any     is perfectly proportional to   , 
the balance heuristic is not optimal  
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MIS ɀExample Weightings

-Power heuristic [Eric Veach 1995, 1997]

-Popular choice in MIS

-Other alternatives

-Cutoff heuristic

-Maximum heuristic



ÂUniversity of Freiburg ɀComputer Science Department ɀ23

MIS ɀAdaptive Sample Counts

-Fixed sample counts      can be replaced by randomly 
selecting a PDF     from a discrete PDF 

-One-sample estimator

-Generate     from

-Generate       from

-Relevant, e.g. in path tracing

Choose a PDF

Draw a sample from that PDF
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MIS - Example

-Diffuse material under direct illumination

-Regular importance sampling with a PDF  

-Mixed material under 

-Multiple importance sampling with two PDFs      and 
with                                  and  

from    , e.g.                           ,       from 

rɀreflection direction
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MIS - Example

Importance sampling
for a diffuse surface

Using samples from one PDF

Multiple importance sampling
for mixed material

Using two sample sets from two PDFs

Weighted averaging of two MC estimates
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Problem

-Computation of            from the rendering equation 

Emitted light Emitted light after 1 bounce

Emitted light after n bounces with n>1


