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Outline

− Context
− Some concepts
− Direct illumination
− Indirect illumination
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Goal and Governing Equation

− Computation of incident radiance at a sensor
− Incident radiance at sensor position    is equal to 

exitant radiance at scene position    with                   : 

− Raycast operator      , conservation of radiance  
− Exitant radiance at scene position     is computed as: 

− Rendering equation                               
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Goal and Governing Equation
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Monte Carlo Integration

is approximated with

− randomly sampled directions
− According to a probability density function  
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Monte Carlo Integration

sample

sample size
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Monte Carlo Integration – Error 

− Estimated sample size is not equal to the 
actual sample size due to random sample selection

− Sample contributions are randomly over- or underestimated

Uniform sampling of a 3D hemisphere
Estimated sample size

Uniform random sampling of a 3D hemisphere
Actual sample size



◼University of Freiburg – Computer Science Department – 8

Monte Carlo Integration - Error

− Variance, noise: resulting radiance values are randomly 
too dark or too bright

− If a Monte Carlo approximation converges for growing 
sample numbers to the correct result, the scheme is 
unbiased, otherwise biased
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Monte Carlo Integration - Variance

[Pharr et al., 
Physically Based 
Rendering]

8 samples per pixel 1024 samples per pixel
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Rendering Equation – Recursive Problem

− Solving the rendering equation requires N samples, 
where many samples require the solution of another 
rendering equation

O ( N ) samples

O ( N·N ) samples

O ( N·N·N ) samples
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Need of a Sampling Strategy

− Sample processing is expensive
− Ray-scene intersection tests

− Samples differ in terms of relevance
− Important samples, e.g.

− Towards / from visible light sources
− From / towards sensors
− Towards / from bright parts of a scene

− Less important samples, e.g.
− After increasing number of bounces
− Towards / from dark parts in a scene
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Stratification

− Subdivision of the integration domain, e.g.

− Integral over           can directly be computed using 
− Integral over             requires the recursive 

computation of 
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Stratification

Two sample sets for two parts of the integration domain

Light source

Light source
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Stratification

− Subdivision into non-overlapping strata 
− Allows the usage of an individual technique 

for each stratum 
− Allows / requires the individual sampling of each stratum
− Avoids sample clustering in a part of the integration 

domain
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Importance Sampling

− Probability density function
− Should be proportional to the integrand

− Product of functions
− Incident radiance expensive to compute

− Optimal PDF

− Irrelevant: If the integral would be known, we are done. 
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Importance Sampling

− Large integrand values
− More samples with smaller size and reduced sampling 

inaccuracies to improve accuracy, i.e. minimize variance / 
noise 

− Small integrand values
− Less samples with larger size and larger sampling errors to 

improve efficiency
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Multiple Importance Sampling MIS

− Combine sample sets from different PDFs
Monte Carlo with M samples

Summing up N MC estimates and dividing by N

Using individual PDFs pi with individual sample 
counts Ni for each of the N MC estimates

Replacing weight 1/N with individual weighting functions wi
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Multiple Importance Sampling MIS

− Use N PDFs pi
− Generate     samples from PDF 
− Weight all contributions with functions   

− Constraints for weighting functions
The weights have to add up to one everywhere on Ω. The 
weights are irrelevant, if a sample has zero contribution.
If any of the PDFs is zero for some x, the weights for all 
other PDFs have to sum up to one.   
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MIS – Example Weightings

− Realizes stratification 
− E.g. generate samples from     and  
− Use a sample from     , if it is in    

and discard it if it is in 
− Use a sample from     , if it is in

and discard it if it is in

Light source
Light source
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MIS – Example Weightings

− Compute     MC estimates with PDFs     and average them 

− Balance heuristic [Eric Veach 1995, 1997]
− Larger weight to more accurate samples with smaller size
− Good, if any of the      is large for large    , but no     is 

proportional to     everywhere
− If any     is perfectly proportional to   , 

the balance heuristic is not optimal  
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MIS – Example Weightings

− Power heuristic [Eric Veach 1995, 1997]
− Popular choice in MIS

− Other alternatives
− Cutoff heuristic
− Maximum heuristic
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MIS – Adaptive Sample Counts

− Fixed sample counts      can be replaced by randomly 
selecting a PDF     from a discrete PDF 

− One-sample estimator
− Generate     from
− Generate       from

− Relevant, e.g. in path tracing

Choose a PDF

Draw a sample from that PDF
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MIS - Example

− Diffuse material under direct illumination
− Regular importance sampling with a PDF  

− Mixed material under 
− Multiple importance sampling with two PDFs      and 

with                                  and  

from    , e.g.                           ,       from 

r – reflection direction
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MIS - Example

Importance sampling
for a diffuse surface

Using samples from one PDF

Multiple importance sampling
for mixed material

Using two sample sets from two PDFs

Weighted averaging of two MC estimates
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− Some concepts
− Direct illumination
− Indirect illumination
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Problem

− Computation of            from the rendering equation 

Emitted light Emitted light after 1 bounce

Emitted light after n bounces with n>1
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Hemisphere Dominated by Le

− BRDF sampling
− Sampling directions from a 

PDF proportional to the BRDF
− Diffuse:

− Mixed:

− Majority of samples hit a light source, 
only few misses with zero contribution
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Small Light Source

− Majority of samples would miss in
case of BRDF sampling, inefficient

− Light sampling 
− Use area form of the 

rendering equation
− Sample positions on the light 

source instead of directions

BRDF sampling

Light sampling
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Light Sampling

− E.g., uniform light sampling
− Area of the light source
− Position     is sampled, direction     

is computed as
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Many Small Light Sources

− light sources with areas 
− Uniform sampling of all light sources
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Adaptive Sample Counts

− Random light source selection from a discrete PDF  
− One-sample estimator

− Generate     from
− Generate positions       from
− Compute
− MC estimator

− Relevant, e.g. in path tracing

Choose a PDF

Draw a sample from that PDF
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Light Source Sampling

− Random light source selection
− Based on relevance for
− Discrete PDF     should be proportional to

− Projected light source area
− Light source power 

− Sampling of each light source 
− Proportional to spatial power distribution
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Problem

− Computation of             from the rendering equation 

Emitted light Emitted light after 1 bounce

Emitted light after n bounces with n>1
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Combination of Ωdirect and Ωindirect

Multiple importance sampling
for mixed material

and a small light source

Using three sample sets from three PDFs
Weighted averaging of three MC estimates

Relevant for recursive raytracing to compute

− can already be computed
− Assume,             can also be computed
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Combination of Ωdirect and Ωindirect

− Three PDFs
− BRDF PDFs
− Light PDF 
− Discrete PDF for PDF selection, e.g. 

Select                         from Generate N samples
If a sample direction from p1 or p2 does not 
hit the light source, it contributes to 

A sample position from p3 contributes to                  . If not, then V=G=0.
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Combination of Ωdirect and Ωindirect

− MIS weights
− E.g. 

Select                         from 
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Combination of Ωdirect and Ωindirect
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Combination of Ωdirect and Ωindirect

− If a ray in direction     does not hit a light source:  

− If a ray in direction     hits a light source:    
− If a light source position     is visible from a surface 

point    , the respective direction         is in 
− If a light source position     is not visible from a surface 

point    , the respective direction         is in 
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Combination of Ωdirect and Ωindirect

Multiple importance sampling
for mixed material

and many small light sources
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Combination of Ωdirect and Ωindirect

− Three PDFs
− BRDF PDFs
− k light sources 
− Discrete PDF for PDF selection, e.g. 

Select                         from Generate N samples
If a sample direction from p1 or p2 does not 
hit the light source, it contributes to 

A sample position from p3 contributes to 
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Computation of 

− Notation:
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Recursive Formulation

− Recursion is terminated by setting            , e.g.

Emitted light 
after one 
bounce

Emitted light 
after two 
bounces

Emitted light 
after three 
bounces

Emitted light 
after more
bounces
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Path Tracing

− Taking one sample everywhere

Path tracing with next event estimation
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Path Tracing with Next Event Estimation

Path 1 Path 2 Path 3
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General Path Tracing

Generate a sample towards p1

Generate a sample from p1 into the 
entire hemisphere with pdf1 towards p2

Generate a sample from p2 into the entire hemisphere with pdf2 towards p3

Terminate, if e.g. throughput β smaller than user-defined threshold

Generate a sample towards p4
Assumes reflective 
light sources.
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General Path Tracing

1 path per pixel. n paths per pixel. Sample distribution
at first bounce converges to pdf1.

n·n paths per pixel. Sample distribution
at second bounce converges to pdf2.

n·n·n paths per pixel. Sample distribution
at third bounce converges to pdf3.
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Jittered Path Sampling per Pixel

− Various strategies
− Random
− Stratified
− Quasi random

(low-discrepancy sequences)
− Regular sampling would

cause aliasing

n samples / paths per pixel.
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Image Reconstruction

− Convolution with a normalized 
kernel function / filter W

− E.g., box filter:
− - uniform samples in one pixel i
−

−

−

9 pixels with N samples.
Pixel i with representative
position xi and samples / 

paths at positions xj
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Path Tracing – Maximum Path Length

− Fixed, user-defined
− Adaptive with Russian Roulette

− Minimum fixed length, user-defined 
− Termination probability q for additional segments 
− Random sample    : 

− Intuition
− Some samples are discarded
− Remaining samples are amplified

to account for missing contributions

Typically c=0
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Russian Roulette - Motivation
Fixed path length Adaptive path length with Russian Roulette

Sensor Light

- Biased estimator
- Always too small / dark, but consistent
- Converges to correct result
- Completely misses effects 

that require longer paths
- Example: 

All paths with zero contribution

- Unbiased estimator
- Converges to correct result
- Arbitrarily long paths potentially 

capture more effects than fixed
path lengths, although with low quality

- Example:
Most samples with zero contribution
Some very long paths with non-zero contr.
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Splitting

− Adaptive sample counts at intersections

Without splitting

n samples

n samples

1 sample

k samples

Splitting
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Path Tracing – Degrees of Freedom

−

− Path length, e.g. Russian Roulette
− PDFs at each intersection, e.g. MIS 

with light and material sampling
− Next event estimation, i.e. light 

sampling at each intersection
− Number of samples at each intersection, i.e. splitting 
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Current Variants

− Bidirectional path generation
− Motivation: Samples from the light source into the scene 

are as important as samples from the sensor into the scene
− Symmetric setting

− Metropolis sampling
− Path mutations instead of random sampling
− Small mutations in case of relevant paths
− Large mutations in case of less relevant paths  


