Advanced Computer Graphics

Rendering Equation

Matthias Teschner

Computer Science Department
University of Freiburg
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
Reflection and Rendering Equation

- reflection equation at point p for reflective surfaces
 - $L_o(p, \omega_o) = \int_{2\pi} f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i \, d\omega_i$
 - incident radiance - weighted with the BRDF - is integrated over the hemisphere to compute the outgoing radiance
 - expresses energy balance between surfaces
 - outgoing radiance from a surface can be incident to another surface

- rendering equation at point p for reflective surfaces
 - $L_o(p, \omega_o) = L_e(p, \omega_o) + \int_{2\pi} f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i \, d\omega_i$
 - adds emissive surfaces to the reflection equation
 - exitant radiance is the sum of emitted and reflected radiance
 - expresses the steady state of radiance in a scene including light sources
Ray-Casting Operator

- in general, the incoming radiance is not only determined by light sources, but also by outgoing radiance of reflective surfaces
- incident radiance $L_i(p, \omega_i)$ can be computed by tracing a ray from p into direction ω_i
- ray-casting operator $r_c(p, \omega_i)$
 - nearest hit point from p into direction ω_i
 - $L_i(p, \omega_i) = L_o(r_c(p, \omega_i), -\omega_i)$
 - if no surface is hit, radiance from a background or light source can be returned
Rendering Equation with Ray-Casting Operator

- using the ray-casting operator,
 $$L_o(p, \omega_o) = L_e(p, \omega_o) + \int_{2\pi} f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i d\omega_i$$
 can be rewritten as
 $$L_o(p, \omega_o) = L_e(p, \omega_o) + \int_{2\pi} f_r(p, \omega_i, \omega_o) L_o(r_c(p, \omega_i), -\omega_i) \cos \theta_i d\omega_i$$

- goal: computation of the outgoing radiance $L_o(p, \omega_o)$ at all points p into all directions ω_o
 - towards the camera to compute the image
 - towards other surface points to account for indirect illumination
Forms of the Rendering Equation

- **hemisphere form**
 \[L_o(p, \omega_o) = L_e(p, \omega_o) + \int_{2\pi+} f_r(p, \omega_i, \omega_o) L_o(r_c(p, \omega_i), -\omega_i) \cos \theta_i d\omega_i \]

- **area form**
 - \(p \) is a sample point on a surface \(dA \)
 - visibility function
 \[\forall(p, p') : V(p, p') = \begin{cases} 1 & \text{if } p \text{ and } p' \text{ see each other} \\ 0 & \text{if } p \text{ and } p' \text{ do not see each other} \end{cases} \]
 - solid angle vs. area
 \[d\omega_i = \frac{\cos \theta' \, dA}{\|p' - p\|^2} \]
 - \(\cos \theta' = n' \cdot -\omega_i \)
 \[L_o(p, \omega_o) = L_e(p, \omega_o) + \int_A f_r(p, \omega_i, \omega_o) L_o(p', -\omega_i) \frac{\cos \theta_i \cos \theta'}{\|p' - p\|^2} V(p, p') \, dA \]
Forms of the Rendering Equation

- the area form works with a visibility term
 - useful for direct illumination from area lights
- the hemisphere form works with the ray-casting operator
 - useful for indirect illumination
Solving the Rendering Equation

- recursively cast rays into the scene
- maximum recursion depth due to absorption of light
- for point lights, directional lights, perfect reflection and transmission, the integrals reduce to simple sums
 - radiance from only a few directions contributes to the outgoing radiance
- for area lights and indirect illumination, i.e. diffuse-diffuse light transport, Monte Carlo techniques are used to numerically evaluate the multi-dimensional integrals
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
Introduction

- approximately evaluate the integral
 \[\int_{2\pi} f_r(p, \omega_i, \omega_o) L_o(r_c(p, \omega_i), -\omega_i) \cos \theta_i d\omega_i \]
 by
 - randomly sampling the hemisphere
 - tracing rays into the sample directions
 - computing the incoming radiance from the sample directions

- challenge
 - approximate the integral as exact as possible
 - trace as few rays as possible
 - trace relevant rays
 - for diffuse surfaces, rays in normal direction are more relevant than rays perpendicular to the normal
 - for specular surfaces, rays in reflection direction are relevant
 - rays to light sources are relevant
Properties

- benefits
 - processes only evaluations of the integrand at arbitrary points in the domain
 - works for a large variety of integrands, e.g., it handles discontinuities
 - appropriate for integrals of arbitrary dimensions

- drawbacks
 - using n samples, the scheme converges to the correct result with $O(n^{1/2})$, i.e. to half the error, 4n samples are required
 - errors are perceived as noise, i.e. pixels are arbitrarily too bright or dark
 - evaluation of the integrand at a point is expensive
Continuous Random Variables

- continuous random variables X (in contrast to discrete random variable)
- canonical uniform random variable $0 \leq \xi < 1$
 - samples from arbitrary distributions can be computed from ξ
- probability density function (PDF) $p(x)$
 - the probability of a random variable taking certain value ranges
 $$Pr(x_0 \leq X \leq x_1) = \int_{x_0}^{x_1} p(x) \, dx$$
 - The probability, that the random variable has a certain exact value, is 0.
 - $p(x) \geq 0 \quad \forall x \in [a, b]$
 - $\int_a^b p(x) \, dx = 1$ - The probability, that the random variable is in the specified domain, is 1.
- cumulative distribution function (CDF) $P(x)$
 - describes the probability of a random variable to be less or equal to x
 $$Pr(X \leq x) = P(x) \quad Pr(x_0 \leq X \leq x_1) = P(x_1) - P(x_0)$$
 - $0 \leq P(x) \leq 1$
Expected Value

- motivation: expected value of an estimator function is equal to the integral in the rendering equation
- expected value $E_p[f(x)]$ of a function $f(x)$ is defined as the weighted average value of the function over a domain D
 \[
 E_p[f(x)] = \int_D f(x) \, p(x) \, dx \quad \text{with} \quad \int_D p(x) \, dx = 1
 \]
- properties
 - $E[af(x)] = aE[f(x)]$
 - $E[\sum_i f(X_i)] = \sum_i E[f(X_i)]$ for independent random variables X_i
- example for uniform p
 \[
 E_p[\cos(x)] = \int_0^\pi \cos(x) \, \frac{1}{\pi} \, dx = \frac{1}{\pi} (-\sin \pi + \sin 0) = 0
 \]
motivation: quantifies the error of a Monte Carlo algorithm

variance V of a function is the expected deviation of the function from its expected value $V[f(x)] = E[(f(x) - E[f(x)])^2]$

properties
- $V[af(x)] = a^2V[f(x)]$
- $V[f(x)] = E[(f(x))^2] - E[f(x)]^2$
- $\sum_i V[f(X_i)] = V[\sum_i f(X_i)]$ for independent random variables X_i
Monte Carlo Estimator

Uniform Random Variables

- motivation: approximation of the integral in the rendering equation
- goal: computation of $\int_a^b f(x) \, dx$
- uniformly distributed random variables $X_i \in [a, b]$
- probability density function $p(x) = \frac{1}{b-a}$ (constant and integration to one)
- Monte Carlo estimator $F_N = \frac{b-a}{N} \sum_{i=1}^{N} f(X_i)$
- expected value of F_N is equal to the integral $\int_a^b f(x) \, dx$
 - $E[F_N] = \int_a^b f(x) \, dx$
- variance $V = \frac{1}{N-1} \sum_{i=1}^{N} [f(X_i) - E[F_N]]^2$
 - convergence rate of $O(\sqrt{N})$
 - independent from the dimensionality
 \Rightarrow appropriate for high-dimensional integrals
Monte Carlo Estimator
Uniform Random Variables

\[E[F_N] = E \left[\frac{b-a}{N} \sum_{i=1}^{N} f(X_i) \right] \]
\[= \frac{b-a}{N} \sum_{i=1}^{N} E[f(X_i)] \]
\[= \frac{b-a}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x)p(x)dx \]
\[= \frac{b-a}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) \frac{1}{b-a} dx \]
\[= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x)dx \]
\[= \int_{a}^{b} f(x)dx \]
Examples - Uniform Random Variables

- integral \(\int_0^1 5x^4 \, dx = 1 \)
- estimator \(F_N = \frac{1}{N} \sum_{i=1}^{N} 5X_i^4 \)
- for an increasing number of uniformly distributed random variables \(X_i \), the estimator converges to one

\[
F_N = \frac{b-a}{N} \sum_{i=1}^{N} f(X_i) \\
F_N = (b - a) \frac{1}{N} \sum_{i=1}^{N} f(X_i) \\
F_N = (b - a) \overline{f(x)} \\
E[F_N] = \int_{a}^{b} f(x) \, dx
\]

uniformly distributed random samples
Monte Carlo Estimator

Non-uniform Random Variables

Monte Carlo estimator \(F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)} \quad p(X_i) \neq 0 \)

\[E[F_N] = E \left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)} \right] \]

\[= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} \frac{f(x)}{p(x)} p(x) \, dx \]

\[= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) \, dx \]

\[= \int_{a}^{b} f(x) \, dx \]
Monte Carlo Estimator

Multiple Dimensions

- samples X_i are multidimensional
- e.g. $\int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{z_0}^{z_1} f(x, y, z) dx dy dz$
- uniformly distributed random samples
 $(x_0, y_0, z_0) \leq X_i = (x_i, y_i, z_i) \leq (x_1, y_1, z_1)$
- probability density function $p(X_i) = \frac{1}{x_1-x_0} \frac{1}{y_1-y_0} \frac{1}{z_1-z_0}$
- Monte Carlo estimator
 $F_N = \frac{(x_1-x_0)(y_1-y_0)(z_1-z_0)}{N} \sum_{i=1}^{N} f(X_i)$
- N can be arbitrary, N is independent from the dimensionality
Monte Carlo Estimator
Integration over a Hemisphere

- approximate computation of the irradiance at a point
 \[E_i(p) = \int_{2\pi}^{0} L_i(p, \omega) \cos \theta d\omega \]
 \[= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} L_i(p, \theta, \phi) \cos \theta \sin \theta d\theta d\phi \]

- estimator
 \[F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)} = \frac{1}{N} \sum_{i=1}^{N} \frac{L_i(p, \theta, \phi) \cos \theta \sin \theta}{p(\theta, \phi)} \]

- probability distribution
 - should be similar to the shape of the integrand
 - as incident radiance is weighted with \(\cos \theta \), it is appropriate to generate more samples close to the top of the hemisphere
 - \(p(\omega) \propto \cos \theta \)
Monte Carlo Estimator

Integration over a Hemispher

- probability distribution (cont.)
 \[\int_{2\pi} \ c \ p(\omega) d\omega = 1 \]
 \[\int_0^{2\pi} \int_0^{\frac{\pi}{2}} c \ \cos \theta \sin \theta \ d\theta \ d\phi = 1 \]
 \[c \ \frac{2\pi}{1+1} = 1 \]
 \[c = \frac{1}{\pi} \]
 \[p(\theta, \phi) = \frac{\cos \theta \sin \theta}{\pi} \]

- estimator
 \[F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{L_i(p, \theta, \phi) \cos \theta \sin \theta}{p(\theta, \phi)} \]
 \[= \frac{\pi}{N} \sum_{i=1}^{N} L_i(p, \theta, \phi) \]
Monte Carlo Integration

Steps

- choose an appropriate probability density function
- generate random samples according to the PDF
- evaluate the function for all samples
- average the weighted function values
Monte Carlo Estimator

Error

- variance
 \[V = \frac{1}{N} \int_a^b \left(\frac{f(x)}{p(x)} - F_N \right)^2 p(x) \, dx \]
- estimator
 \[V_N = \frac{1}{N-1} \sum_{i=1}^N \left[f(X_i) - F_N \right]^2 \]
- for increasing \(N \)
 - the variance decreases with \(O(N) \)
 - the standard deviation decreases with \(O(N^{\frac{1}{2}}) \)
- variance is perceived as noise
Monte Carlo Estimator

Variance Reduction / Error Reduction

- importance sampling
 - motivation: contributions of larger function values are more important
 - PDF should be similar to the shape of the function
 - optimal PDF \(p(x) = \frac{f(x)}{\int f(x)dx} \)
 - e.g., if incident radiance is weighted with \(\cos \theta \), the PDF should choose more samples close to the normal direction
- stratified sampling
 - domain subdivision into strata does not increase the variance
- multi-jittered sampling
 - alternative to random samples for, e.g., uniform sampling of area lights
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
 - inversion method
 - rejection method
 - transforming between distributions
 - 2D sampling
 - examples

Inversion Method

- mapping of a uniform random variable to a goal distribution
- discrete example
 - four outcomes with probabilities \(p_1, p_2, p_3, p_4 \) and \(\sum_i p_i = 1 \)
- computation of the cumulative distribution function \(P(i) = \sum_{j=1}^{i} p_j \)
Inversion Method

- **discrete example cont.**
 - take a uniform random variable ξ
 - $P^{-1}(\xi)$ has the desired distribution

- **continuous case**
 - P and P^{-1} are continuous functions
 - start with the desired PDF $p(x)$
 - compute $P(x) = \int_0^x p(x') dx'$
 - compute the inverse $P^{-1}(x)$
 - obtain a uniformly distributed variable
 - compute $X_i = P^{-1}(\xi)$ which adheres to $p(x)$
Inversion Method

Example 1

- power distribution \(p(x) \propto x^n \)
 - e.g., for sampling the Blinn microfacet model
- computation of the PDF
 - \(\int_0^1 c x^n \, dx = 1 \Rightarrow c \left. \frac{x^{n+1}}{n+1} \right|_0^1 = 1 \Rightarrow c = n + 1 \)
- PDF \(p(x) = (n + 1)x^n \)
- CDF \(P(x) = \int_0^x p(x') \, dx' = x^{n+1} \)
- inverse of the CDF \(P^{-1}(x) = \sqrt[1+n]{x} \)
- sample generation
 - generate uniform random samples \(0 \leq \xi \leq 1 \)
 - \(X = \sqrt[n+1]{\xi} \) are samples from the power distribution \(p(x) = (n + 1)x^n \)
Inversion Method

Example 2

- exponential distribution \(p(x) \propto e^{-ax} \)
 - e.g., for considering participating media

- computation of the PDF
 - \(\int_0^\infty c \ e^{-ax} \, dx = -\frac{c}{a} \ e^{-ax} \bigg|_0^\infty = \frac{c}{a} = 1 \)
 - PDF \(p(x) = a \ e^{-ax} \)
 - CDF \(P(x) = \int_0^x p(x') \, dx' = 1 - e^{-ax} \)
 - inverse of the CDF \(P^{-1}(x) = -\frac{\ln(1-x)}{a} \)

- sample generation
 - generate uniform random samples \(0 \leq \xi \leq 1 \)
 - \(X = -\frac{\ln(1-\xi)}{a} \) are samples from the power distribution \(p(x) = a \ e^{-ax} \)
Inversion Method
Example 3

- piecewise-constant distribution
 - e.g., for environment lighting

\[
f(x) = \begin{cases}
v_0 & x_0 \leq x < x_1 \\
v_1 & x_1 \leq x < x_2 \\
\vdots & \vdots \\
\end{cases}
\]

\[x_i = \Delta \cdot i\]

\[\Delta = \frac{1}{N}\]

- PDF \[p(x) = \frac{1}{c} f(x)\]
 - with \[c = \int_0^1 f(x) \, dx = \sum_{i=0}^{N-1} \Delta \cdot v_i = \frac{\sum_{i=0}^{N-1} v_i}{N}\]
Inversion Method
Example 3

- **CDF**

 \[P(x_0) = 0 \]
 \[P(x_1) = \int_{x_0}^{x_1} p(x) \, dx = \Delta \cdot \frac{v_0}{c} = \frac{v_0}{N_c} = P(x_0) + \frac{v_0}{N_c} \]
 \[P(x_2) = \int_{x_0}^{x_2} p(x) \, dx = \int_{x_0}^{x_1} p(x) \, dx + \int_{x_1}^{x_2} p(x) \, dx = P(x_1) + \frac{v_1}{N_c} \]
 \[P(x_i) = P(x_{i-1}) + \frac{v_{i-1}}{N_c} \]

- **CDF is linear between** \(x_i \) **and** \(x_{i+1} \) **with slope** \(\frac{v_i}{c} \)

- **sample generation**
 - generate uniform random samples \(0 \leq \xi \leq 1 \)
 - compute \(x_i \) with \(P(x_i) \leq \xi \) and \(\xi < P(x_{i+1}) \)
 - compute \(d \) with \(P(x_i) + d(P(x_{i+1}) - P(x_i)) = \xi \)
 - \(X = x_i + d(x_{i+1} - x_i) = x_i + \frac{d}{N} \) are samples from \(p(x) = \frac{1}{c} f(x) \)
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
 - inversion method
 - rejection method
 - transforming between distributions
 - 2D sampling
 - examples
Rejection Method

- draws samples according to a function $f(x)$
 - dart-throwing approach
 - works with a PDF $p(x)$ and a scalar c with $f(x) < c \cdot p(x)$
- properties
 - $f(x)$ is not necessarily a PDF
 - PDF, CDF and inverse CDF do not have to be computed
 - simple to implement
 - useful for debugging purposes
- sample generation
 - generate a uniform random sample $0 \leq \xi < 1$
 - generate a sample X according to $p(x)$
 - accept X if $\xi \cdot c \cdot p(X) \leq f(X)$
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
 - inversion method
 - rejection method
 - transforming between distributions
- 2D sampling
- examples
Transforming Between Distributions

- computation of a resulting PDF, when a function is applied to samples from an arbitrary distribution
 - random variables X_i are drawn from $p_x(x)$
 - bijective transformation (one-to-one mapping) $Y_i = y(X_i)$
 - How does the distribution $p_y(y)$ look like?

$$Pr\{Y \leq y(x)\} = Pr\{X \leq x\}$$

$$p_y(y) = P_y(y(x)) = P_x(x)$$

$$p_y(y) = \frac{p_x(x)}{|y'(x)|}$$

- example $p_x(x) = 2x \quad 0 \leq x \leq 1$
 - $y(x) = \sin x \quad x(y) = \arcsin y$
 - $y'(x) = \cos x$
 - $p_y(y) = \frac{p_x(x)}{\cos x} = \frac{2 \arcsin y}{\sqrt{1-y^2}}$
Transforming Between Distributions

- multiple dimensions
 - X_i is an n-dimensional random variable
 - $Y_i = T(X_i)$ is a bijective transformation

- transformation of the PDF

 $$ p_y(y) = \frac{p_x(x)}{|J_T(x)|} \quad J_T(x) = \begin{pmatrix} \frac{\partial T_1}{\partial x_1} & \ldots & \frac{\partial T_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial T_n}{\partial x_1} & \ldots & \frac{\partial T_n}{\partial x_n} \end{pmatrix} $$

- example (polar coordinates)
 - samples (r, θ) with density $p(r, \theta)$
 - corresponding density $p(x, y)$ with $x = r \cos \theta$ and $y = r \sin \theta$
 - $J_T(x) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$
 - $|J_T(x)| = r(\cos^2 \theta + \sin^2 \theta) = r$
 - $p(x, y) = \frac{1}{r} p(r, \theta)$
 - $p(r, \theta) = r \cdot p(x, y)$
Transforming Between Distributions

- example (spherical coordinates)
 - $x = r \sin \theta \cos \phi$
 - $y = r \sin \theta \sin \phi$
 - $z = r \cos \theta$
 - $p(r, \theta, \phi) = r^2 \sin \theta \cdot p(x, y, z)$

- example (solid angle)
 - $Pr\{\omega \in \Omega\} = \int_{\Omega} p(\omega) d\omega$
 - $d\omega = \sin \theta \ d\theta \ d\phi$
 - $p(\theta, \phi) = \sin \theta \cdot p(\omega)$
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
 - inversion method
 - rejection method
 - transforming between distributions
- 2D sampling
- examples
Concept

- generation of samples from a 2D joint density function $p(x, y)$
- general case
 - compute the marginal density function $p_x(x) = \int p(x, y) dy$
 - compute the conditional density function $p_y(y|x) = \frac{p(x, y)}{p_x(x)}$
 - generate a sample X according to $p_x(x)$
 - generate a sample Y according to $p_y(y|X) = \frac{p(x, y)}{p_x(X)}$
- marginal density function
 - integral of $p(x, y)$ for a particular x over all y-values
- conditional density function
 - density function for y given a particular x
Outline

- rendering equation
- Monte Carlo integration
- sampling of random variables
 - inversion method
 - rejection method
 - transforming between distributions
- 2D sampling
- examples
Uniform Sampling of a Hemisphere

- PDF is constant with respect to a solid angle \(p(\omega) = c \)
 \[
 \int_{2\pi} p(\omega) \, d\omega = 1 \Rightarrow c \int_{2\pi} d\omega = 1 \Rightarrow c = \frac{1}{2\pi}
 \]
- \(p(\omega) = \frac{1}{2\pi} \Rightarrow p(\theta, \phi) = \frac{\sin \theta}{2\pi} \)
- marginal density function
 \[
 p_\theta(\theta) = \int_0^{2\pi} p(\theta, \phi) \, d\phi = \int_0^{2\pi} \frac{\sin \theta}{2\pi} \, d\phi = \sin \theta
 \]
- conditional density for \(\phi \)
 \[
 p_\phi(\phi|\theta) = \frac{p(\theta, \phi)}{p_\theta(\theta)} = \frac{1}{2\pi}
 \]
- inversion method
 \[
 P_\theta(\theta) = \int_0^\theta \sin \theta' \, d\theta' = -\cos \theta + 1
 \]
 \[
 P_\phi(\phi|\theta) = \int_0^\phi \frac{1}{2\pi} \, d\phi' = \frac{\phi}{2\pi}
 \]
Uniform Sampling of a Hemisphere

- inversion method cont.
 - inverse functions of the cumulative distribution functions
 - \(\theta = \arccos(1 - \xi_1) \)
 - \(\phi = 2\pi \xi_2 \)
 - generating uniformly sampled random values \(\xi_1 \) and \(\xi_2 \)
 - applying the inverse CDFs to obtain \(\theta \) and \(\phi \)
- conversion to Cartesian space
 - \(x = \sin \theta \cos \phi = \cos(2\pi \xi_2) \sqrt{1 - (1 - \xi_1)^2} \)
 - \(y = \sin \theta \sin \phi = \sin(2\pi \xi_2) \sqrt{1 - (1 - \xi_1)^2} \)
 - \(z = \cos \theta = 1 - \xi_1 \)
- \((x, y, z)^T\) is a normalized direction
Uniform Sampling of a Hemisphere

- illustration for \(\theta \)

\[\theta = \arccos(1 - \xi_1) \]
Uniform Sampling of a Unit Disk

- PDF is constant with respect to area $p(x, y) = \frac{1}{\pi}$
- $p(r, \theta) = r \cdot p(x, y) \Rightarrow \frac{r}{\pi}$
- marginal density function
 - $p_r(r) = \int_0^{2\pi} p(r, \theta) d\theta = 2r$
- conditional density
 - $p_\theta(\theta|r) = \frac{p(r, \theta)}{p_r(r)} = \frac{1}{2\pi}$
- inversion method
 - $P_r(r) = \int_0^r 2r' dr' = r^2$
 - $P_\theta(\theta|r) = \int_0^{2\pi} \frac{1}{2\pi} d\theta' = \frac{\theta}{2\pi}$
Uniform Sampling of a Unit Disk

- inversion method cont.
 - inverse functions of the cumulative distribution functions
 - \(r = \sqrt{\xi_1} \)
 - \(\theta = 2\pi \xi_2 \)
 - generating uniformly sampled random values \(\xi_1 \) and \(\xi_2 \)
 - applying the inverse CDFs to obtain \(r \) and \(\theta \)

![Graph showing the relationship between \(\xi_1 \) and \(r \). The graph indicates that for smaller values of \(\xi_1 \), the value of \(r \) is generated with less samples.](image-url)
Uniform Sampling
of a Cosine-Weighted Hemisphere

- PDF is proportional to $\cos \theta$.
 $p(\omega) \propto \cos \theta$
 \[\int_{2\pi}^{2\pi+} c \ p(\omega) \ d\omega = 1 = \int_{0}^{2\pi} \int_{0}^{\pi} c \ \cos \theta \sin \theta \ d\theta \ d\phi = c \ 2\pi \int_{0}^{\pi/2} \cos \theta \sin \theta \ d\theta = c \ 2\pi \frac{1}{2} = 1 \]

- marginal density function
 \[p(\theta, \phi) = \frac{1}{\pi} \cos \theta \sin \theta \]

- conditional density for ϕ
 \[p(\phi|\theta) = \frac{p(\theta,\phi)}{p(\theta)} = \frac{1}{2\pi} \]

- inversion method
 \[P(\theta) = \int_{0}^{\theta} 2 \cos \theta' \sin \theta' \ d\theta' = 2 \left[-\frac{\cos^2 \theta'}{2} \right]_{0}^{\theta} = 2 \left(-\frac{\cos^2 \theta}{2} + \frac{1}{2} \right) = \sin^2 \theta \]
 \[P(\phi|\theta) = \int_{0}^{\phi} \frac{1}{2\pi} \ d\theta' = \frac{\phi}{2\pi} \]
Uniform Sampling of a Cosine-Weighted Hemisphere

- inversion method cont.
 - inverse functions of the cumulative distribution functions
 - \(\theta = \arcsin(\sqrt{\xi_1}) \)
 - \(\phi = 2\pi \xi_2 \)
 - generating uniformly sampled random values \(\xi_1 \) and \(\xi_2 \)
 - applying the inverse CDFs to obtain \(\theta \) and \(\phi \)

- conversion to Cartesian space
 - \(x = \sin \theta \cos \phi = \cos(2\pi \xi_2) \sqrt{\xi_1} \)
 - \(y = \sin \theta \sin \phi = \sin(2\pi \xi_2) \sqrt{\xi_1} \)
 - \(z = \cos \theta = \sqrt{1 - \xi_1} \)

- \((x, y, z)^T \) is a normalized direction

- x- y- values uniformly sample a unit disk, i.e., cosine-weighted samples of the hemisphere can also be obtained by uniformly sampling a unit sphere and projecting the samples onto the hemisphere
Uniform Sampling of a Cosine-Weighted Hemisphere

Illustration for θ

$$\theta = \arcsin(\xi_1)$$

- Cosine-weighted hemisphere (top view, side view)
- Uniform hemisphere (top view)

generate less samples for smaller and larger angles θ
Uniform Sampling of a Triangle

- sampling an isosceles right triangle of area 0.5
 - u, v can be interpreted as Barycentric coordinates
 - can be used to generate samples for arbitrary triangles
- $p(u, v) = 2$
- marginal density function
 - $p_u(u) = \int_0^{1-u} p(u, v) \, dv = 2 \int_0^{1-u} dv = 2(1 - u)$
- conditional density
 - $p_v(v|u) = \frac{p(u,v)}{p_u(u)} = \frac{1}{1-u}$
- inversion method
 - $P_u(u) = \int_0^u 2 - 2u' \, du' = 2u - u^2$
 - $P_v(v|u) = \int_0^v \frac{1}{1-u} \, dv' = \frac{v}{1-u}$
Uniform Sampling of a Triangle

- inversion method cont.
 - inverse functions of the cumulative distribution functions
 - \(u = 1 - \sqrt{\xi_1} \)
 - \(v = \xi_2 \sqrt{\xi_1} \)
 - generating uniformly sampled random values \(\xi_1 \) and \(\xi_2 \)
 - applying the inverse CDFs to obtain \(u \) and \(v \)
Piecwise-Constant 2D Distribution

- \(n_u \times n_v \) samples defined over \((u, v) \in [0, 1]^2\)
 - e.g., an environment map
- \(f(u, v) \) is defined by a set of \(n_u \times n_v \) values \(f[u_i, v_i] \)
 - \(u_i \in [0, \ldots, n_u - 1] \quad v_i \in [0, \ldots, n_v - 1] \)
 - \(f[u_i, v_i] \) is the value of \(f(u, v) \) in the range \(\left[\frac{i}{n_u}, \frac{i+1}{n_u} \right] \times \left[\frac{j}{n_v}, \frac{j+1}{n_v} \right] \)
 - \(f(u, v) = f[u_i, v_i] \) with \(\tilde{u} = \lfloor n_u u \rfloor \) and \(\tilde{v} = \lfloor n_v v \rfloor \)
- integral over the domain
 - \(I_f = \int \int f(u, v) \, du \, dv = \frac{1}{n_u n_v} \sum_i \sum_j f[u_i, v_j] \)
- PDF
 - \(p(u, v) = \frac{1}{I_f} f(u, v) = \frac{1}{I_f} f[\tilde{u}, \tilde{v}] \)
Piecewise-Constant 2D Distribution

- marginal density function
 $$p_v(v) = \int p(u,v) \, du = \frac{1}{I_f} \frac{1}{n_v} \sum_i f[u_i, \tilde{v}]$$
 - piecewise-constant 1D function
 - defined by n_v values $p_v[\tilde{v}]$

- conditional density
 $$p_u(u|v) = \frac{p(u,v)}{p_v(v)} = \frac{1}{I_f} \frac{f[\tilde{u}, \tilde{v}]}{p[\tilde{v}]}$$
 - piecewise-constant 1D function

- sample generation
 - see example 3 of the inversion method
Piecewise-Constant 2D Distribution

- environment map

- low-resolution of the marginal density function and the conditional distributions for rows
 - first, a row is selected according to the marginal density function
 - then, a column is selected from the row's 1D conditional distribution

Paul Debevec, Grace Cathedral