Advanced Computer Graphics Summary

Matthias Teschner

UNI FREIBURG

Outline

- Introduction
- Ray-object intersections
- Light
- Materials
- Radiosity
- Stochastic Raytracing

Tracing rays through a scene to compute the radiance

Ray Tracing

- that is perceived by a sensor, i.e. transported along rays
- Tracing a path from a camera through a pixel position of a virtual image plane to compute the color / radiance of an object that is visible along the path

[Wikipedia: Ray Tracing]

Light

– Is modeled as geometric rays

- Travels in straight lines (e.g., no diffraction / bending)
- Travels at infinite speed (steady state of light is computed)
- Is emitted by light sources
- Is absorbed / scattered at surfaces

Measuring Light

- Radiance
 - Characterizes strength and direction of radiation / light
 - Is measured by sensors
 - Is computed in computer-generated images
 - Is preserved along lines in space
 - Does not change with distance

Aspects

Light / radiance travels along rays

Light / radiance is emitted at light sources specular diffuse

Incoming light / radiance is absorbed and scattered at surfaces

Cameras capture light / radiance

> UNI FREIBURG

Ray Tracing - Capabilities

- Reflection
- Refraction
- Soft shadows
- Caustics
- Diffuse interreflections
- Specular interreflections
- Depth of field
- Motion blur

[sean.seanie, www.flickr.com] rendered with POVray 3.7

FREIBURG

Ray Tracing - Challenges

- Ray shooting (ray-object intersections)
- Number of rays (quality vs. costs)
 - Approximately solving the Rendering equation
- Recursion depth (quality vs. costs)

Ray Tracing vs. Rasterization

- Rasterization
 - Given a set of viewing rays and a primitive, efficiently compute the subset of rays hitting the primitive
 - Loop over all primitives
 - Implicit ray representation
- Ray tracing
 - Given a viewing ray and a set of primitives, efficiently compute the subset of primitives hit by the ray
 - Loop over all viewing rays
 - Explicit ray representation

Ray Tracing vs. Rasterization

– Solve the same problem

UNI FREIBURG

Ray Tracing vs. Rasterization

- Rasterization
 - Well-established, parallelizable algorithms
 - Popular in interactive applications
 - Specialized realizations of global illumination effects
- Ray tracing
 - Natural incorporation of numerous visual effects
 - Unified algorithms for global illumination effects
 - Trade-off between quality and performance

Outline

- Introduction
- Ray-object intersections
- Light
- Materials
- Radiosity
- Stochastic Raytracing

Motivation

- Rays
 - A half-line specified by an origin / position **o** and a direction **d**
 - Parametric form $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ with $0 \le t \le \infty$
- Nearest intersection with all objects has to be computed, i.e. intersection with minimal $t \ge 0$
- In implementations, usually $t \ge \varepsilon$ to avoid self-intersections, e.g., if rays start at object surfaces

[Suffern]

Implicit Surfaces

- Implicit functions implicitly define a set of surface points
- For a surface point (x,y,z), an implicit function *f*(x,y,z) is zero
- An intersection occurs, if a point on a ray satisfies the implicit equation $f(x, y, z) = f(\mathbf{r}(t)) = f(\mathbf{o} + t\mathbf{d}) = 0$
- E.g., all points **p** on a plane with surface normal **n** and offset **r** satisfy the equation $\mathbf{n} \cdot (\mathbf{p} \mathbf{r}) = 0$
- The intersection with a ray can be computed based on t $\mathbf{n} \cdot (\mathbf{o} + t\mathbf{d} - \mathbf{r}) = 0$ $t = \frac{(\mathbf{r} - \mathbf{o}) \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{d}}$ if d is not orthogonal to n

Implicit Surfaces - Normal

- Perpendicular to the surface
- Given by the gradient of the implicit function $\mathbf{n} = \nabla f(\mathbf{p}) = \left(\frac{\partial f(\mathbf{p})}{\partial x}, \frac{\partial f(\mathbf{p})}{\partial y}, \frac{\partial f(\mathbf{p})}{\partial z}\right)$
- E.g., for a point p on a plane $f(\mathbf{p}) = \mathbf{n} \cdot (\mathbf{p} \mathbf{r}) = 0$

 $\mathbf{n} = \nabla f(\mathbf{p}) = (n_x, n_y, n_z)$

Triangle

- Parametric representation (barycentric coords) $\mathbf{p}(b_1, b_2) = (1 - b_1 - b_2)\mathbf{p_0} + b_1\mathbf{p_1} + b_2\mathbf{p_2}$ $b_1 \ge 0$ $b_2 \ge 0$ $b_1 + b_2 \le 1$
- Intersection is computed using a linear system $\mathbf{o} + t\mathbf{d} = (1 - b_1 - b_2)\mathbf{p_0} + b_1\mathbf{p_1} + b_2\mathbf{p_2}$
- Solution (non-degenerated triangles, not parallel to ray)

$$\begin{pmatrix} t \\ b_1 \\ b_2 \end{pmatrix} = \frac{1}{(\mathbf{d} \times \mathbf{e_2}) \cdot \mathbf{e_1}} \begin{pmatrix} (\mathbf{s} \times \mathbf{e_1}) \cdot \mathbf{e_2} \\ (\mathbf{d} \times \mathbf{e_2}) \cdot \mathbf{s} \\ (\mathbf{s} \times \mathbf{e_1}) \cdot \mathbf{d} \end{pmatrix} \qquad \begin{aligned} \mathbf{e_1} = \mathbf{p_1} - \mathbf{p_0} \\ \mathbf{e_2} = \mathbf{p_2} - \mathbf{p_0} \\ \mathbf{s} = \mathbf{o} - \mathbf{p_0} \end{aligned}$$

Axis-Aligned (Bounding) Box AABB

- Boxes are represented by slabs
- Intersections of rays with slabs are analyzed to check for ray-box intersection
 - E.g. non-overlapping ray intervals within different slabs indicate that the ray misses the box

Axis-Aligned (Bounding) Box AABB

- Overlapping ray intervals indicate intersections,

e.g. $t_{xmin} < t_{ymax} \land t_{xmax} > t_{ymin} \Rightarrow$ intersection (largest entering value *t* is smaller than the smallest leaving value *t*, only positive values t are considered)

Outline

- Introduction
- Ray-object intersections
- Light
- Materials
- Radiosity
- Stochastic Raytracing

The Importance of Light Modeling

FREIBURG

- How to quantify light/color? ⇒ Flux, Irradiance, Radiance
- How to quantify surface illumination? ⇒ Irradiance
- How to quantify pixel colors? ⇒ Radiance

Flux

- Radiant flux Φ
 - Power
 - Radiant energy, i.e. number of photons, per time
 - Brightness, e.g., number of photons emitted by a source per time

Flux is actually radiant energy per time.

$$\Phi = \frac{dQ}{dt}$$

As photons carry varying energy depending on their wavelength, number of photons per time is an approximation that improves the intuition behind flux.

Flux Density

- Irradiance at a position $E(\mathbf{x})$?
 - Issues: position with zero area, no flux per position
 - Solution: infinitesimals, differentials, small quantities
- Consider a small amount of flux $d\Phi(\mathbf{x})$ incident to a small area $dA(\mathbf{x})$ around position \mathbf{x}
- For $dA(\mathbf{x}) \rightarrow 0$, we have $d\Phi(\mathbf{x}) \rightarrow 0$, and the ratio converges to the irradiance at \mathbf{x} : $E(\mathbf{x}) = \frac{d\Phi(\mathbf{x})}{dA(\mathbf{x})}$

Irradiance at a position

х

Flux Density - Variants

- Irradiance E incident / incoming flux per surface
- Radiosity B outgoing flux (reflected plus emitted)
 per surface

Radiosity – Outgoing flux per area

Irradiance – Incident flux per area

Solid Angle

- Area of a sphere surface divided by the squared sphere radius $\Omega = \frac{A}{r^2}$
- E.g., solid angle of the entire sphere surface $\Omega = \frac{4\pi r^2}{r^2} = 4\pi$ – Independent from the radius
- E.g., solid angle of a hemisphere $\Omega = \frac{1}{2} \frac{4\pi r^2}{r^2} = 2\pi$

Wikipedia: Raumwinkel

Infinitesimal Solid Angle and Surface Area

$$-\Omega \approx \frac{A\cos\theta}{r^2}$$
 is an approximation

 $d\omega$

- If an infinitesimally small area $dA(\mathbf{x})$ at position \mathbf{x} converges to zero, then the solid angle $d\omega$ also converges to zero and the relation $d\omega = \frac{dA(\mathbf{x})\cos\theta_{\mathbf{x}}}{r_{\mathbf{x}}^2}$ is correct in the limit \mathbf{x}

 $r_{\mathbf{x}}$

UNI FREIBURG

University of Freiburg – Computer Science Department – 26

 $dA(\mathbf{x})$

Visibility Function

– Position **x** only contributes to $\int_{\text{Surface}} \frac{\cos \theta_{\mathbf{x}}}{r_{\mathbf{x}}^2} dA(\mathbf{x})$, if it is visible from **c**

- Therefore, $\Omega = \int_{Surface} V(\mathbf{c}, \mathbf{x}) \frac{\cos \theta_{\mathbf{x}}}{r_{\mathbf{x}}^2} dA(\mathbf{x})$ with $V(\mathbf{c}, \mathbf{x}) = 1$, if \mathbf{x} is visible from \mathbf{c} and $V(\mathbf{c}, \mathbf{x}) = 0$, if \mathbf{x} is not visible from \mathbf{c}

Radiance at a Position in a Direction

- Actual setting
 - $L(\mathbf{x},\omega) = \frac{d^2\Phi}{dA(\mathbf{x})\cdot\cos\theta\cdot d\omega}$
 - Flux that is transported through an infinitesimally small cone
- Simplified notion $L(\mathbf{x}, \omega)$
 - Radiance L at position ${\bf x}$ in direction ω
 - Flux that is transported along a ray

Radiance and Oriented Surfaces

- Two areas dA_1, dA_2 around positions $\mathbf{x}_1, \mathbf{x}_2$ with $\mathbf{x}_1 = \mathbf{x}_2$
- Angles between surface normal and flux direction ω : $\theta_1 = 0, \theta_2 \neq 0$
- Radiance at \mathbf{x}_1 : $L(\mathbf{x}_1, \omega) = \frac{d^2 \Phi}{dA_1 \cdot \cos \theta_1 \cdot d\omega} = \frac{d^2 \Phi}{dA^{\perp} \cdot d\omega}$ - Radiance at \mathbf{x}_2 : $L(\mathbf{x}_2, \omega) = \frac{d^2 \Phi}{dA_2 \cdot \cos \theta_2 \cdot d\omega} = \frac{d^2 \Phi}{dA^{\perp} \cdot d\omega}$

FREIBURG

Radiance describes the flux within the grey area independent from the plane (sensor) orientation.

Irradiance and Oriented Surfaces

 Irradiance on a surface is proportional to the cosine of the angle between surface normal and flux direction Irradiance describes the effect of the flux within the grey area onto a surface. I.e., the orientation of the surface with respect to the flux direction matters.

> UNI FREIBURG

Conservation of Radiance

- Radiosity at \mathbf{x}_1 : $B(\mathbf{x}_1) = \frac{d\Phi}{dA_1}$
- Irradiance at \mathbf{x}_2 : $E(\mathbf{x}_2) = \frac{d\Phi}{dA_2} \neq B(\mathbf{x}_1)$
- Radiance at \mathbf{x}_1 :

$$L(\mathbf{x}_{1},\omega_{1}) = \frac{d^{2}\Phi}{dA_{1}\cdot\cos\theta_{1}\cdot d\omega_{1}} \quad d\omega_{1} = \frac{dA_{2}\cdot\cos\theta_{2}}{r^{2}}$$
$$L(\mathbf{x}_{1},\omega_{1}) = \frac{r^{2}\cdot d^{2}\Phi}{dA_{1}\cdot\cos\theta_{1}\cdot dA_{2}\cdot\cos\theta_{2}}$$

$$egin{array}{ccc} \mathbf{x}_1 & rac{ heta_1}{d\omega_1} & d\Phi \ dA_1 \end{array}$$

– Radiance at \mathbf{x}_2 :

$$L(\mathbf{x}_2, \omega_2) = \frac{d^2 \Phi}{dA_2 \cdot \cos \theta_2 \cdot d\omega_2} \quad d\omega_2 = \frac{dA_1 \cdot \cos \theta_1}{r^2}$$
$$L(\mathbf{x}_2, \omega_2) = \frac{r^2 \cdot d^2 \Phi}{dA_1 \cdot \cos \theta_1 \cdot dA_2 \cdot \cos \theta_2} = L(\mathbf{x}_1, \omega_1)$$

Conservation of radiance. Radiance describes flux transported along a ray.

Discussion – Inverse Square Law

- Irradiance at an illuminated surface decreases quadratically with the distance from a light source
 - Surfaces appear darker with growing distance from light
 - Flux generated at A, arriving at A₁ and A₂: $L \cdot A \cdot \Omega$
 - Areas
 - $A_1 \sim \Omega \cdot r_1^2 \quad A_2 \sim \Omega \cdot r_2^2$

 $E_1 \sim \frac{\Phi}{A_1} = \frac{L \cdot A \cdot \Omega}{\Omega \cdot r_1^2} \quad E_2 \sim \frac{\Phi}{A_2} = \frac{L \cdot A \cdot \Omega}{\Omega \cdot r_2^2} \quad E \sim \frac{1}{r^2}$

– Irradiances

All planes are orthogonal to ω . Thus, $\cos \theta = 1$ for all planes.

 r_2

Φ

 A_1

Φ

 A_2

Irradiance and Radiance

- Illumination strength at a surface can be characterized by irradiance (flux per area)
 - Depends quadratically on the distance between surface and light source
- Illumination strength at a sensor element can be characterized by radiance (flux per area per solid angle)
 - Does not depend on the distance between surface and sensor

Irradiance and Radiance

Outline

- Introduction
- Ray-object intersections
- Light
- Materials
- Radiosity
- Stochastic Raytracing

Can be described by relating incident and exitant flux

University of Freiburg – Computer Science Department – 36

FREIBURG

Light Interaction at a Surface

- Incident radiance $L_i(p, \omega_i)$ at position p from direction ω_i induces irradiance at p: $dE_i(p, \omega_i) = L_i(p, \omega_i) \cos \theta_i d\omega_i$
- Flux is partially absorbed: $0 \le p \le 1$ is a $dB_i(p, \omega_i) = \rho(p) dE_i(p, \omega_i)$ coefficient.

- Reflected flux into direction ω_o $dL_o(p, \omega_o) \sim dB_i(p, \omega_i) \sim dE_i(p, \omega_i)$

 ω_i represents the direction of the incident radiance. Per definition, all directions point away from the surface. I.e., incident radiance travels along $-\omega_i$.

BRDF *Definition*

- For all pairs of directions ω_i and ω_o , the ratio of outgoing radiance towards ω_o and irradiance due to incoming radiance from ω_i is referred to as BRDF: $f_r(p, \omega_i, \omega_o) = \frac{dL_o(p, \omega_o)}{dE_i(p, \omega_i)}$
- BRDF typically depends on a position and two directions.
 - Directions form a solid angle of 2π for opaque surfaces and 4π for transparent surfaces
 - Various variants. E.g., BRDF can depend on two positions for subsurface scattering $f_r(p_i, p_o, \omega_i, \omega_o) = \frac{dL_o(p_o, \omega_o)}{dE_i(p_i, \omega_i)}$

BRDF Application

- Relation between irradiance and exitant radiance $dL_o(p, \omega_o) = f_r(p, \omega_i, \omega_o) dE_i(p, \omega_i)$ The portion of light from an incoming direction
- Irradiance is induced by radiance $dL_o(p,\omega_o) = f_r(p,\omega_i,\omega_o)L_i(p,\omega_i)\cos\theta_i d\omega_i$ that is scattered in an outgoing direction
- Integration over the hemisphere \Rightarrow reflectance equation $L_o(p, \omega_o) = \int_{2\pi} f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i d\omega_i$
- Reflectance equation establishes a relation between incident and exitant radiance

BRDF Properties

- Definition: $f_r(\omega_i, \omega_o) = \frac{dL_o(\omega_o)}{dE_i(\omega_i)} = \frac{dL_o(\omega_o)}{L_i(\omega_i) \cdot \cos \theta_i \cdot d\omega_i}$
- Positive: $f_r(\omega_i, \omega_o) \ge 0$
- Helmholtz reciprocity: $f_r(\omega_o, \omega_i) = f_r(\omega_i, \omega_o)$
 - Incident and exitant radiance can be reversed
- Energy conservation: $\forall \omega_i : \int_{2\pi^+} f_r(\omega_i, \omega_o) \cos \theta_o d\omega_o \leq 1$
- Linearity
 - If a material is defined as a sum of BRDFs, the contributions of the BRDFs are added for the total outgoing radiance
 - $\int (f_{r,1} + f_{r,2}) L_i \cos \theta_i d\omega_i = \int f_{r,1} L_i \cos \theta_i d\omega_i + \int f_{r,2} L_i \cos \theta_i d\omega_i$

BRDF Materials

– Diffuse

$$f_{r,d}(\omega_i,\omega_o) = \frac{\rho}{\pi}$$

– Mirror

$$f_{r,m}(\omega_i,\omega_o) = \rho \, \frac{1}{\cos \theta_i \sin \theta_i} \, \delta(\theta_o - \theta_i) \, \delta(\phi_o \pm \pi - \phi_i)$$

– Specular

$$f_{r,s}(\omega_i, \omega_o) = \rho \left((2(n \cdot \omega_i) \cdot n - \omega_i) \cdot \omega_o \right)^e \qquad \text{n, } \omega_{i}, \omega_{o} \text{ are represented} \\ \text{with 3D normalized vectors} \end{cases}$$

BRDF for Diffuse Reflecting Material

- Illumination $L_i(\omega_i)$
- Induced surface irradiance $dE_i(\omega_i) = L_i(\omega_i) \cdot \cos \theta_i \cdot d\omega_i$
- Overall irradiance $E = \int_{2\pi} L_i(\omega_i) \cdot \cos \theta_i \cdot d\omega_i$
- Partially absorbed. Resulting radiosity

$$B = \rho \cdot E = \int_{2\pi} \rho \cdot L_i(\omega_i) \cdot \cos \theta_i \cdot d\omega_i \qquad 0 \le \rho \le 1 \qquad \text{ρ-reflectance}$$
$$B = \int_{2\pi} L_o(\omega_o) \cdot \cos \theta_o \cdot d\omega_o = L_o \cdot \int_{2\pi} \cos \theta_o d\omega_o = L_o \cdot \pi \qquad \text{see next}_{\text{slide}}$$
$$\rho \cdot E = \pi \cdot L_o \qquad L_o = \frac{\rho}{\pi} E = \int_{2\pi} \frac{\rho}{\pi} \cdot L_i(\omega_i) \cdot \cos \theta_i \cdot d\omega_i$$

 $\Rightarrow f_{r,d}(\omega_i,\omega_o) = rac{
ho}{\pi}$ BRDF is constant for diffuse reflecting material

Outline

- Introduction
- Ray-object intersections
- Light
- Materials
- Radiosity
- Stochastic Raytracing

Solution of the Rendering Equation

- Exitant radiances from all scene points into all directions

 $L_e(p \to \omega_o)$

Rendering of the Solution

- At an arbitrarily placed and oriented sensor
 - Cast a ray through position p in an image plane into direction ω_i
 - Lookup $L(p \leftarrow \omega_i) = L(r_c(p, \omega_i) \rightarrow -\omega_i) = L(p' \rightarrow -\omega_i)$

Simplified Setting

- Lambertian material
 - Exitant radiance independent from direction
 - Radiance into arbitrary direction can be computed from radiosity $L(p \rightarrow \omega_o) = \frac{B(p)}{\pi}$
- Discretized scene representation with faces, e.g., triangles
 - Assume constant radiosity per face
- ⇒ Problem is simplified to n radiosity values for n faces

⇒ n instances of the rendering equation govern the solution

Radiosity Integral Equation

- Rendering equation $L(p \to \omega_o) = L_e(p \to \omega_o) + \int_S f_r(p, \omega_i \leftrightarrow \omega_o) L(x \to -\omega_i) V(p, x) \frac{\cos(\omega_i, n_p) \cos(-\omega_i, n_x)}{r_{px}^2} dA_x$
- Radiance can be computed from radiosity for Lambertian surfaces: $L(p \rightarrow \omega_o) = \frac{B(p)}{\pi}$
- Radiosity equation

$$B(p) = B_e(p) + \int_S f_r(p, \omega_i \leftrightarrow \omega_o) B(x) V(p, x) \frac{\cos(\omega_i, n_p) \cos(-\omega_i, n_x)}{r_{px}^2} dA_x$$

$$B(p) = B_e(p) + \frac{\rho(p)}{\pi} \int_S B(x) V(p, x) \frac{\cos(\omega_i, n_p) \cos(-\omega_i, n_x)}{r_{px}^2} dA_x$$
Constant BRDF for Lambertian surfaces

Discretization of the Radiosity Equation

- Continuous form, per surface position $B(p) = B_e(p) + \frac{\rho(p)}{\pi} \int_S B(x) V(p,x) \frac{\cos(\omega_i, n_p) \cos(-\omega_i, n_x)}{r_{nx}^2} dA_x$
- Discretized form, per face / triangle Finite Element Method $B_i = B_{ei} + \sum_j \rho_i F_{ij} B_j$
 - $B_i \sum_j \rho_i F_{ij} B_j = B_{ei}$
- B_{ei} is a source, i.e. the emitted radiosity at face i
- $-B_i, B_j$ are unknown radiosities at faces i and j
- ρ_i, F_{ij} are known coefficients

System of Linear Equations

$$- \begin{pmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \dots & -\rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \dots & -\rho_2 F_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_n F_{n1} & \dots & -\rho_n F_{nn-1} & 1 - \rho_n F_{nn} \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{pmatrix} = \begin{pmatrix} B_{e1} \\ B_{e2} \\ \vdots \\ B_{en} \end{pmatrix}$$

Matrix with known coefficients, reflectances and form factors. Indirect illumiation. Describes, how faces illuminate each other. Unknown radiosities. Known source terms. Direct illumination.

FREIBURG

Solving the Linear System

- Typically with iterative schemes, e.g. relaxed Jacobi
 - Initialize, e.g., $B_i^0 = 0$ Superscript indicates solver iteration
 - Iteratively update $B_i^{l+1} = B_i^l + \frac{\lambda_i}{1-\rho_i F_{ii}} (B_{ei} (B_i^l \sum_j \rho_i F_{ij} B_j^l))$
- Intuition

 λ_i is a user-defined parameter that governs the solver convergence

- Changes from B_i^l to B_i^{l+1} are proportional to
- $\begin{array}{l} B_{ei}-(B_i^l-\sum_j\rho_iF_{ij}B_j^l)\\ \mbox{ If } B_{ei}-(B_i^l-\sum_j\rho_iF_{ij}B_j^l)=0 \ , \mbox{ i.e. } B_i^l-\sum_j\rho_iF_{ij}B_j^l=B_{ei} \ , \\ \mbox{ the solver has converged and } B_i^{l+1}=B_i^l \end{array}$

Outline

- Introduction
- Ray-object intersections
- Light
- Materials
- Radiosity
- Stochastic Raytracing

Concept

- Approximately evaluate the integral $\int_{\Omega} f_r(p, \omega_i \leftrightarrow \omega_o) L(p \leftarrow \omega_i) \cos(\omega_i, n_p) d\omega_i \text{ by}$
 - Tracing rays into randomly sampled 2D directions
 - Computing the incoming radiances
- Integral is approximated with
 - $\sum_{i} f_r(p, \omega_i \leftrightarrow \omega_o) L(p \leftarrow \omega_i) \cos(\omega_i, n_p) \Delta \Omega_i$
 - 2 dimensional sample directions $\omega_i = (\theta_i, \phi_i)$
 - $\Delta \Omega_i$ is an approximation of the solid angle of sample direction $\omega_i = (\theta_i, \phi_i)$

Properties

- Benefits
 - Processes only evaluations of the integrand at arbitrary surface points in the domain
 - Appropriate for integrals of arbitrary dimensions
 - Allows for non-uniform sample patterns / adaptive sample sizes
 - Works for a large variety of integrands, e.g., it handles discontinuities

Properties

- Drawbacks
 - Using n samples, the scheme converges to the correct result with O ($n^{\frac{1}{2}}$)
 - I.e., to half the error, 4n samples are required
 - Errors are perceived as noise,
 i.e. pixels are arbitrarily too bright or dark
 (due to the erroneous approximation of the sample size)
 - Evaluation of the integrand at a point is expensive (ray intersections tests)

Monte Carlo Estimator - Non-uniform Random Variables

- $\mathsf{PDF} p(x)$
- Estimator $F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$
- Integral
 - $\int_{a}^{b} f(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_{i})}{p(X_{i})} = \sum_{i=1}^{N} f(X_{i}) \frac{1}{N \ p(X_{i})}$
 - Function value $f(X_i)$
 - Approximate sample size $\frac{1}{N p(X_i)}$

Monte Carlo Estimator - Integration over a Hemisphere

- Approximate computation of the irradiance at a point $E_i(p) = \int_{2\pi^+} L_i(p,\omega) \cos\theta d\omega$ $= \int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(p,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$
- Estimator $F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)} = \frac{1}{N} \sum_{i=1}^N \frac{L_i(p,\theta_i,\phi_i)\cos\theta_i\sin\theta_i}{p(\theta_i,\phi_i)}$
- Choosing a PDF This flexibility is an important aspect of Monte Carlo integration.
 - Should be similar to the shape of the integrand
 - As incident radiance is weighted with $\cos \theta$, it is appropriate to generate more samples close to the top of the hemisphere
 - $\ p(\theta,\phi) \propto \cos\theta$

Monte Carlo Estimator - Integration over a Hemisphere

 Probability distribution $\int_{2\pi^+} c \ p(\omega) \mathrm{d}\omega = 1$ $\int_0^{2\pi} \int_0^{\frac{\pi}{2}} c \, \cos\theta \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi = 1$ $c \frac{2\pi}{1+1} = 1$ $c = \frac{1}{\pi}$ $p(\theta, \phi) = \frac{\cos \theta \sin \theta}{\pi}$ – Estimator $F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{L_i(p,\theta_i,\phi_i)\cos\theta_i\sin\theta_i}{p(\theta_i,\phi_i)}$ $= \frac{\pi}{N} \sum_{i=1}^{N} L_i(p,\theta_i,\phi_i) \qquad \approx \int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(p,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$ If θ and ϕ are sampled according to PDF p(θ , ϕ) University of Freiburg – Computer Science Department – 57

FREIBURG

Monte Carlo Estimator - Integration over a Hemisphere

- Integral $\int_0^{2\pi} \int_0^{\frac{\pi}{2}} L_i(p,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$
- PDF $p(\theta, \phi) = \frac{\cos \theta \sin \theta}{\pi}$
- Estimator $\frac{\pi}{N} \sum_{i=1}^{N} L_i(p, \theta_i, \phi_i)$ = $\sum_{i=1}^{N} L_i(p, \theta_i, \phi_i) \cos \theta_i \sin \theta_i \frac{\pi}{N \cos \theta_i \sin \theta_i}$
- Function value $L_i(p, \theta_i, \phi_i) \cos \theta_i \sin \theta_i$ for direction (θ_i, ϕ_i)
- Approximate sample size / solid angle $\frac{\pi}{N\cos\theta_i\sin\theta_i}$

Monte Carlo Integration - Steps

- Choose an appropriate probability density function
- Generate random samples according to the PDF
- Evaluate the function for all samples
- Accumulate sample values weighted with their approximate sample size

Inversion Method

- P and P^{-1} are continuous functions
- Start with the desired PDF p(x)
- Compute $P(x) = \int_0^x p(x') dx'$
- Compute the inverse $P^{-1}(x)$
- Obtain a uniformly distributed variable ξ
- Compute $X_i = P^{-1}(\xi)$ which adheres to p(x)

Rejection Method

- Sample generation
 - Generate a uniform random sample $0 \le \xi < 1$
 - Generate a sample *X* according to p(x)
 - Accept X if $\xi \cdot c \cdot p(X) \leq f(X)$

[Pharr, Humphreys]