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Ray Tracing

 Tracing rays through a scene 
to compute the radiance 
that is perceived by a sensor,
i.e. transported along rays 

 Tracing a path from a camera 
through a pixel position of a 
virtual image plane to compute 
the color / radiance of an object 
that is visible along the path

[Wikipedia: Ray Tracing]

http://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg
http://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg
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Light

 Is modeled as geometric rays

 Travels in straight lines (e.g., no diffraction / bending)

 Travels at infinite speed (steady state of light is computed)

 Is emitted by light sources

 Is absorbed / scattered at surfaces
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Measuring Light

 Radiance 

 Characterizes strength and direction of radiation / light

 Is measured by sensors

 Is computed in computer-generated images

 Is preserved along lines in space

 Does not change with distance
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Aspects

Light / radiance
travels along rays



Light / radiance
is emitted at
light sources

Incoming light / 
radiance is absorbed 

and scattered at surfaces

specular diffuse

Cameras capture
light / radiance


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Ray Tracing - Capabilities

 Reflection

 Refraction

 Soft shadows

 Caustics

 Diffuse interreflections

 Specular interreflections

 Depth of field

 Motion blur

[sean.seanie, www.flickr.com]
rendered with POVray 3.7
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Ray Tracing - Challenges

 Ray shooting (ray-object intersections)

 Number of rays (quality vs. costs)

 Approximately solving the Rendering equation

 Recursion depth (quality vs. costs)
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Ray Tracing vs. Rasterization

 Rasterization
 Given a set of viewing rays and a primitive, efficiently 

compute the subset of rays hitting the primitive 

 Loop over all primitives

 Implicit ray representation

 Ray tracing
 Given a viewing ray and a set of primitives, efficiently

compute the subset of primitives hit by the ray

 Loop over all viewing rays

 Explicit ray representation
[Ray Tracing Course: SIGGRAPH 2005]
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Ray Tracing vs. Rasterization

 Solve the same problem

[Ray Tracing Course: SIGGRAPH 2005]

Ray Tracers
Compute ray-object 
intersections to 
estimate q from p  


 Rasterizers

Apply modelview,
projection and viewport
transform to p in order
to estimate q

Transform
Ray
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Ray Tracing vs. Rasterization

 Rasterization

 Well-established, parallelizable algorithms

 Popular in interactive applications

 Specialized realizations of global illumination effects 

 Ray tracing

 Natural incorporation of numerous visual effects

 Unified algorithms for global illumination effects

 Trade-off between quality and performance 
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Motivation

 Rays 

 A half-line specified by an origin / position o and a direction d

 Parametric form                          with

 Nearest intersection with all objects has to be computed,
i.e. intersection with minimal t  0

 In implementations, usually t  
to avoid self-intersections, e.g., 
if rays start at object surfaces 

[Suffern]
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Implicit Surfaces

 Implicit functions implicitly define a set of surface points

 For a surface point (x,y,z), an implicit function f(x,y,z) is zero

 An intersection occurs, if a point on a ray satisfies the
implicit equation

 E.g., all points p on a plane with surface normal n
and offset r satisfy the equation

 The intersection with a ray can be computed based on t
if d is not orthogonal to n
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Implicit Surfaces - Normal

 Perpendicular to the surface

 Given by the gradient of the implicit function

 E.g., for a point p on a plane
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Triangle

 Parametric representation (barycentric coords)

 Intersection is computed using a linear system 

 Solution (non-degenerated triangles, not parallel to ray)
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Axis-Aligned (Bounding) Box AABB

 Boxes are represented by slabs 
 Intersections of rays with slabs are analyzed

to check for ray-box intersection
 E.g. non-overlapping ray intervals within different slabs

indicate that the ray misses the box

[Suffern]

general case

intersection 
with x-slab
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Axis-Aligned (Bounding) Box AABB

 Overlapping ray intervals indicate intersections, 

e.g. txmin < tymax  txmax > tymin  intersection
(largest entering value t is smaller than the smallest leaving value t,

only positive values t are considered)

[Suffern]
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The Importance of Light Modeling

Light

Color

Material

Rendering equation

Solving the rendering equation 
(Computing pixel colors)
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Light

 How to quantify light/color?  Flux, Irradiance, Radiance

 How to quantify surface illumination?  Irradiance 

 How to quantify pixel colors?  Radiance

Light travels
along rays



Light is
emitted at

light sources

Incoming light /
is absorbed and

scattered at surfaces

specular diffuse

Cameras 
capture light


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Flux

 Radiant flux 

 Power

 Radiant energy, i.e. number of photons, per time

 Brightness, e.g., number of photons emitted 
by a source per time

Flux is actually radiant energy per time. 

As photons carry varying energy depending 
on their wavelength, number of photons 
per time is an approximation that improves
the intuition behind flux.
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Flux Density

 Irradiance at a position          ?

 Issues: position with zero area, no flux per position

 Solution: infinitesimals, differentials, small quantities

 Consider a small amount of flux            incident 
to a small area            around position 

 For                   , we have                  ,
and the ratio converges to the
irradiance at    : 

Irradiance 
at a position
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Flux Density - Variants

 Irradiance     - incident / incoming flux per surface

 Radiosity     - outgoing flux (reflected plus emitted)
per surface

Radiosity – Outgoing flux per areaIrradiance – Incident flux per area
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Solid Angle

 Area of a sphere surface divided 
by the squared sphere radius

 E.g., solid angle of the entire
sphere surface

 Independent from the radius

 E.g., solid angle of a hemisphere 
Wikipedia: Raumwinkel
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Infinitesimal Solid Angle and Surface Area

 is an approximation

 If an infinitesimally small area           at position   
converges to zero, then the solid angle       also 
converges to zero and the relation
is correct in the limit 
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Visibility Function

 Position    only contributes to                               , 
if it is visible from

 Therefore,

with                   , if     is visible 
from    and                    , if     
is not visible from  
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Radiance at a Position in a Direction

 Actual setting

 Flux that is transported
through an infinitesimally
small cone

 Simplified notion

 Radiance     at position     in direction

 Flux that is transported along a ray  
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Radiance and Oriented Surfaces

 Two areas                around positions           with    

 Angles between surface normal and flux direction    :

 Radiance at     :

 Radiance at     :   

Radiance describes the flux
within the grey area independent
from the plane (sensor) orientation.
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Irradiance and Oriented Surfaces

 Irradiance at     :

 Irradiance at     :



 Lambert’s Cosine Law    

 Irradiance on a surface is proportional 
to the cosine of the angle between 
surface normal and flux direction

i denotes 
an arbitrary 
orientation. Irradiance describes the effect of

the flux within the grey area onto
a surface. I.e., the orientation of 
the surface with respect to the
flux direction matters.
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Conservation of Radiance

 Radiosity at     : 

 Irradiance at     :

 Radiance at     :

 Radiance at     :

Conservation of radiance. 
Radiance describes flux
transported along a ray.



University of Freiburg – Computer Science Department – 32

Discussion – Inverse Square Law

 Irradiance at an illuminated surface decreases 
quadratically with the distance from a light source

 Surfaces appear darker with growing distance from light

 Flux generated at A, arriving 
at A1 and A2:

 Areas

 Irradiances
All planes are orthogonal to . 
Thus, cos  = 1 for all planes.
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Irradiance and Radiance

 Illumination strength at a surface can be characterized 
by irradiance (flux per area)

 Depends quadratically on the distance between surface 
and light source

 Illumination strength at a sensor element can be cha-
racterized by radiance (flux per area per solid angle) 

 Does not depend on the distance between surface and 
sensor
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Irradiance and Radiance



Object surface receives less flux from light 2 
than from light 1 (inverse square law). Both 
lights contribute to the illumination of the 
same surface element.

Camera captures the same radiance for 
both lights. d1 and d2 are of the same 
size into different directions. Light 1 and 2 
contribute to different sensor elements.

Object
surface

Camera

Light 1

Light 2

Brightness 
depends on
irradiance.

Sensor 
response
depends on
Radiance.

Direction:
Solid angle:
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 Can be described by relating incident and exitant flux  

Materials

glossy diffuse

dark bright

transparent subsurface
scattering
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Light Interaction at a Surface

 Incident radiance       
at position    from direction  
induces irradiance at    : 

 Flux is partially absorbed:

 Reflected flux into direction 

0≤≤1 is a 
reflectance 
coefficient.

i represents the direction of the incident 
radiance. Per definition, all directions point 
away from the surface. I.e., incident radiance 
travels along -i. 
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BRDF Definition

 For all pairs of directions      and      ,
the ratio of outgoing radiance towards      and 
irradiance due to incoming radiance from      is
referred to as BRDF:

 BRDF typically depends on a position and two directions. 

 Directions form a solid angle of 2 for opaque surfaces 
and 4 for transparent surfaces

 Various variants. E.g., BRDF can depend on two positions for 
subsurface scattering
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BRDF Application

 Relation between irradiance and exitant radiance

 Irradiance is induced by radiance

 Integration over the hemisphere  reflectance equation

 Reflectance equation establishes a relation 
between incident and exitant radiance 

The portion of light from
an incoming direction 
that is scattered in 
an outgoing direction 
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 Definition:

 Positive:

 Helmholtz reciprocity:

 Incident and exitant radiance can be reversed

 Energy conservation:

 Linearity

 If a material is defined as a sum of BRDFs, the contributions 
of the BRDFs are added for the total outgoing radiance



BRDF Properties
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BRDF Materials

 Diffuse

 Mirror

 Specular
n, i, o are represented 
with 3D normalized vectors
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BRDF for Diffuse Reflecting Material

 Illumination

 Induced surface irradiance

 Overall irradiance

 Partially absorbed. Resulting radiosity  

BRDF is constant for diffuse reflecting material 

see next
slide 

 - reflectance 



University of Freiburg – Computer Science Department – 43

Outline

 Introduction

 Ray-object intersections

 Light

 Materials

 Radiosity

 Stochastic Raytracing



University of Freiburg – Computer Science Department – 44

Solution of the Rendering Equation

 Exitant radiances from all scene points into all directions

Cornell box
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Rendering of the Solution

 At an arbitrarily placed and oriented sensor

 Cast a ray through position p in an image plane into direction

 Lookup 

view
plane

scene
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Simplified Setting

 Lambertian material

 Exitant radiance independent from direction

 Radiance into arbitrary direction can be 
computed from radiosity

 Discretized scene representation with faces, 
e.g., triangles

 Assume constant radiosity per face

 Problem is simplified to n radiosity values for n faces

 n instances of the rendering equation govern the solution 
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Radiosity Integral Equation

 Rendering equation

 Radiance can be computed from radiosity 
for Lambertian surfaces:

 Radiosity equation

Constant BRDF
for Lambertian
surfaces
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Discretization of the Radiosity Equation

 Continuous form, per surface position

 Discretized form, per face / triangle

 is a source, i.e. the emitted radiosity at face i

 are unknown radiosities at faces i and j 

 are known coefficients 

Finite Element Method
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System of Linear Equations



Known
source 
terms.
Direct
illumi-
nation.

Unknown
radiosities.

Matrix with known coefficients,
reflectances and form factors. 
Indirect illumiation. Describes,
how faces illuminate each other.
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Solving the Linear System

 Typically with iterative schemes, e.g. relaxed Jacobi

 Initialize, e.g., 

 Iteratively update

 Intuition

 Changes from      to         are proportional to

 If                                                , i.e.                                      ,   
the solver has converged and 

Superscript indicates solver iteration

i is a user-defined parameter 
that governs the solver convergence
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Concept

 Approximately evaluate the integral 
by

 Tracing rays into randomly sampled 2D directions 

 Computing the incoming radiances

 Integral is approximated with 

 2 dimensional sample directions

 is an approximation of the solid angle
of sample direction 
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Properties

 Benefits

 Processes only evaluations of the integrand 
at arbitrary surface points in the domain 

 Appropriate for integrals of arbitrary dimensions

 Allows for non-uniform sample patterns / 
adaptive sample sizes 

 Works for a large variety of integrands, 
e.g., it handles discontinuities
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Properties

 Drawbacks

 Using n samples, the scheme converges 
to the correct result with O (n½)

 I.e., to half the error, 4n samples are required

 Errors are perceived as noise, 
i.e. pixels are arbitrarily too bright or dark
(due to the erroneous approximation of the sample size)

 Evaluation of the integrand at a point 
is expensive (ray intersections tests)
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Monte Carlo Estimator - Non-uniform Random Variables

 PDF

 Estimator

 Integral 



 Function value

 Approximate sample size 
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Monte Carlo Estimator - Integration over a Hemisphere

 Approximate computation of the irradiance at a point

 Estimator
 Choosing a PDF

 Should be similar to the shape of the integrand
 As incident radiance is weighted with cos , 

it is appropriate to generate more samples 
close to the top of the hemisphere  



This flexibility is an important aspect of Monte Carlo integration.
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Monte Carlo Estimator - Integration over a Hemisphere

 Probability distribution

 Estimator

If  and  are sampled according to PDF p(, )
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Monte Carlo Estimator - Integration over a Hemisphere

 Integral
 PDF
 Estimator

 Function value                               for direction 
 Approximate sample size / solid angle
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Monte Carlo Integration - Steps

 Choose an appropriate 
probability density function

 Generate random samples according to the PDF

 Evaluate the function for all samples

 Accumulate sample values weighted with their 
approximate sample size
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 and         are continuous functions
 Start with the desired PDF
 Compute
 Compute the inverse 
 Obtain a uniformly distributed variable
 Compute                  which adheres to  

Inversion Method
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 Sample generation
 Generate a uniform random sample
 Generate a sample     according to 
 Accept      if 

Rejection Method

a b

[Pharr, Humphreys]


