Computer Graphics
Homogeneous Notation

Matthias Teschner
What is visible at the sensor?

- Visibility can be resolved by ray casting or by applying transformations.

Ray Casting computes ray-scene intersections to estimate q from p.

Rasterizers apply transformations to p in order to estimate q. p is projected onto the sensor plane.

Transform

$$\begin{bmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p \\
\end{bmatrix}$$

Matrix in homogeneous notation.
Outline

– Motivation
– Homogeneous notation
– Transformations
Motivation

- Transformations in modeling and rendering
 - Position, reshape, and animate objects, lights, cameras
 - Project 3D geometry onto the camera plane
- Homogeneous notation
 - 3D vertices (positions) and 3D normals (directions) are represented with 4D vectors
 - Transformations are represented with 4x4 matrices
 - All transformations of positions and directions are consistently realized as a matrix-vector product
Transformations – 2D

Four faces / primitives / polygons, four points / vertices, four normals.

Translation.

Scale.

Identity transform.

Rotation.

Shear.

Transformations change vertex positions and surface normals.
Coordinate Systems and Transformations

Local coordinate system of an object

Local coordinate system of a camera

Model transforms M_1, M_2, M_3

View transform V

Global coordinate system with one camera and three instances of the same object
Coordinate Systems and Transformations

Global coordinate system with one camera and three objects

Inverse view transform V^1 applied to all objects and the camera

View space / Camera space.

Working in view space is motivated by simplified implementations. E.g., rays start at 0 in view space.
Modelview Transform

Transformation from local into view space is realized with the modelview transform.

Objects: V^1M_1, V^1M_2, V^1M_3

Camera: $V^1V = I$
More Transformations

- To transform from view space positions to positions on the camera plane
 - Projection transform
 - Viewport transform
- See lecture on projections
Transformations - Groups

- Translation, rotation, reflection
 - Preserve shape and size
 - Congruent transformations
 (Euclidean transformations)
- Translation, rotation, reflection, scale
 - Preserve shape
 - Similarity transformations
Affine Transformations

- Translation, rotation, reflection, scale, shear
 - Angles and lengths are not preserved
 - Preserve collinearity
 - Points on a line are transformed to points on a line
 - Preserve proportions
 - Ratios of distances between points are preserved
 - Preserve parallelism
 - Parallel lines are transformed to parallel lines
Affine Transformations

- 3D position \mathbf{p}: $\mathbf{p}' = T(\mathbf{p}) = A\mathbf{p} + \mathbf{t}$

- Affine transformations preserve affine combinations
 $T\left(\sum \alpha_i \cdot \mathbf{p}_i\right) = \sum \alpha_i \cdot T(\mathbf{p}_i)$ for $\sum \alpha_i = 1$

- E.g., a line can be transformed by transforming its control points

 $x = \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2$

 $x' = T(x) = \alpha_1 T(\mathbf{p}_1) + \alpha_2 T(\mathbf{p}_2)$
Affine Transformations

- 3D position \mathbf{p}: $\mathbf{p}' = A\mathbf{p} + \mathbf{t}$
- 3x3 matrix A represents linear transformations
 - Scale, rotation, shear
- 3D vector \mathbf{t} represents translation
- Using the homogeneous notation, all affine transformations are represented with one matrix-vector multiplication
Positions and Vectors

- Positions / vertices specify a location in space
- Vectors / normals specify a direction
- Relations

 \[
 \text{position} - \text{position} = \text{vector} \\
 \text{position} + \text{vector} = \text{position} \\
 \text{vector} + \text{vector} = \text{vector} \\
 \text{position} + \text{position} \text{ not defined}
 \]
Positions and Vectors

- Transformations can have different effects on positions and vectors
 - E.g., translation of a point changes its position, but translation of a vector does not change the vector
- Using the homogeneous notation, transformations of vectors and positions are handled in a unified way
Outline

– Motivation
– Homogeneous notation
– Transformations
Homogeneous Coordinates of Positions

- \([x, y, z, w]^T\) with \(w \neq 0\) are the homogeneous coordinates of the 3D position \((x/w, y/w, z/w)^T\)
- \([\lambda x, \lambda y, \lambda z, \lambda w]^T\) represents the same position \((\lambda x/\lambda w, \lambda y/\lambda w, \lambda z/\lambda w)^T = (x/w, y/w, z/w)^T\) for all \(\lambda \neq 0\)
- Examples
 - \([2, 3, 4, 1]^T \sim (2, 3, 4)^T\)
 - \([2, 4, 6, 1]^T \sim (2, 4, 6)^T\)
 - \([4, 8, 12, 2]^T \sim (2, 4, 6)^T\)
 - \([0.2, 0.4, 0.6, 0.1]^T \sim (2, 4, 6)^T\)

Note: \([x, y, z, w]^T = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\)
Homogeneous Coordinates of Positions

– From Cartesian to homogeneous coordinates
\[(x, y, z)^T \rightarrow [x, y, z, 1]^T\] Most obvious, but an infinite number of options.
\[(x, y, z)^T \rightarrow [\lambda x, \lambda y, \lambda z, \lambda]^T \lambda \neq 0\]

– From homogeneous to Cartesian coordinates
\[[x, y, z, w]^T \rightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^T\]
1D Illustration

- Homogeneous points $[\lambda x, \lambda]^T$ represent the same position x in Cartesian space.
- Homogeneous points $[\lambda x, \lambda]^T$ lie on a line in the 2D space $[x, w]$.
Homogeneous Coordinates of Vectors

- For varying w, a point $[x, y, z, w]^T$ is scaled and the points $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ represent a line in 3D space.
- The direction of this line is $(x, y, z)^T$.
- For $w \to 0$, the position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ moves to infinity in the direction $(x, y, z)^T$.
- $[x, y, z, 0]^T$ is a position at infinity in the direction of $(x, y, z)^T$.
- $[x, y, z, 0]^T$ is a vector in the direction of $(x, y, z)^T$.
1D Illustration

\[[x_0, w_1]^T \sim x_1 \]

\[[x_0, w_2]^T \sim x_2 \]

\[[x_0, w_3]^T \sim x_3 \]
Positions at Infinity

- Can be processed by graphics APIs, e.g. OpenGL
- Used, e.g. in shadow volumes
Positions and Vectors

- If positions are in normalized form, position-vector relations can be represented

\[
\begin{align*}
\text{vector} + \text{vector} &= \text{vector} \\
\begin{bmatrix}
u_x \\
v_y \\
v_z \\
0
\end{bmatrix} +
\begin{bmatrix}
v_x \\
v_y \\
v_z \\
0
\end{bmatrix} &=
\begin{bmatrix}
u_x + v_x \\
v_y + v_y \\
v_z + v_z \\
0
\end{bmatrix} \\
\text{position} + \text{vector} &= \text{position} \\
\begin{bmatrix}
p_x \\
p_y \\
p_z \\
1
\end{bmatrix} +
\begin{bmatrix}
v_x \\
v_y \\
v_z \\
0
\end{bmatrix} &=
\begin{bmatrix}
p_x + v_x \\
p_y + v_y \\
p_z + v_z \\
1
\end{bmatrix} \\
\text{position} - \text{position} &= \text{vector} \\
\begin{bmatrix}
p_x \\
p_y \\
p_z \\
1
\end{bmatrix} -
\begin{bmatrix}
r_x \\
r_y \\
r_z \\
1
\end{bmatrix} &=
\begin{bmatrix}
p_x - r_x \\
p_y - r_y \\
p_z - r_z \\
0
\end{bmatrix}
\end{align*}
\]
Homogeneous Notation of Linear Transformations

\[
\begin{pmatrix}
 m_{00} & m_{01} & m_{02} \\
 m_{10} & m_{11} & m_{12} \\
 m_{20} & m_{21} & m_{22}
\end{pmatrix}
\begin{pmatrix}
 p_x \\
 p_y \\
 p_z
\end{pmatrix}
\sim
\begin{pmatrix}
 m_{00} & m_{01} & m_{02} & 0 \\
 m_{10} & m_{11} & m_{12} & 0 \\
 m_{20} & m_{21} & m_{22} & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 p_x \\
 p_y \\
 p_z \\
 1
\end{pmatrix}
\]

- If the transform of \(\begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \) results in \(\begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} \), then the transform of \(\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} \) results in \(\begin{pmatrix} r_x \\ r_y \\ r_z \\ 1 \end{pmatrix} \) \(\sim \) \(\begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} \)
Affine Transformations and Projections

– General form

\[
\begin{bmatrix}
 m_{00} & m_{01} & m_{02} & t_0 \\
 m_{10} & m_{11} & m_{12} & t_1 \\
 m_{20} & m_{21} & m_{22} & t_2 \\
 p_0 & p_1 & p_2 & w
\end{bmatrix}
\]

– m_{ij} represent rotation, scale, shear
– t_i represent translation
– p_i are used for projections (see lecture on projections)
– w is the homogeneous component
Homogeneous Coordinates - Summary

- $[x, y, z, w]^T$ with $w \neq 0$ are the homogeneous coordinates of the 3D position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- $[x, y, z, 0]^T$ is a point at infinity in the direction of $(x, y, z)^T$
- $[x, y, z, 0]^T$ is a vector in the direction of $(x, y, z)^T$
- $\begin{bmatrix} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ p_0 & p_1 & p_2 & w \end{bmatrix}$ is a transformation that represents rotation, scale, shear, translation, projection
Outline

– Motivation
– Homogeneous notation
– Transformations
Transformations

Four faces / primitives / polygons, four points / vertices, four normals.

- Translation
- Scale
- Identity transform
- Rotation
- Shear
Translation

– Of a position
\[T(t)p = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{bmatrix} \]

– Of a vector
\[T(t)v = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} \]

– Inverse transform
\[T^{-1}(t) = T(-t) \]
Rotation

- Positive (anticlockwise) rotation with angle ϕ around the x-, y-, z-axis

Rotation Matrices for rotations around arbitrary axes are built by combining simple rotations and translations.

$$R_x(\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Rotation – Inverse Transform

– The inverse of a rotation matrix is its transpose

\[
R_x(-\phi) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos -\phi & -\sin -\phi & 0 \\
0 & \sin -\phi & \cos -\phi & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 \\
0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = R_x^T(\phi)
\]

\[
R_x^{-1} = R_x^T \\
R_y^{-1} = R_y^T \\
R_z^{-1} = R_z^T
\]
Mirroring / Reflection

– Mirroring with respect to \(x = 0, y = 0, z = 0 \) plane
– Changes the sign of the \(x \)-, \(y \)-, \(z \)-component

\[
P_x = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad P_y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad P_z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

– The inverse of a reflection is its transpose

\(P_x^{-1} = P_x^T \) \quad \(P_y^{-1} = P_y^T \) \quad \(P_z^{-1} = P_z^T \)
Orthogonal Matrices

- Rotation and reflection matrices are orthogonal
 \[RR^T = R^T R = I \quad R^{-1} = R^T \]
- \(R_1, R_2 \) are orthogonal \(\Rightarrow R_1 R_2 \) is orthogonal
- Rotation: \(\det R = 1 \), Reflection: \(\det R = -1 \)
- Length of a vector is preserved \(\|Rv\| = \|v\| \)
- Angles are preserved \(\langle Ru, Rv \rangle = \langle u, v \rangle \)
Scale

– Scaling x, y, z-components of a position or vector

$S(s_x, s_y, s_z)p = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} s_x p_x \\ s_y p_y \\ s_z p_z \\ 1 \end{bmatrix}$

– Inverse $S^{-1}(s_x, s_y, s_z) = S(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z})$

– Uniform scaling: $s_x = s_y = s_z = s$

$S(s) = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ or, e.g. $S(s) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{s} \end{bmatrix}$
Shear

– Offset of one component with respect to another component
– Six shear modes in 3D
– E.g., shear of x with respect to z

\[\mathbf{H}_{xz}(s) \mathbf{p} = \begin{bmatrix} 1 & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + sp_z \\ p_y \\ p_z \\ 1 \end{bmatrix} \]

– Inverse \(\mathbf{H}_{xz}^{-1}(s) = \mathbf{H}_{xz}(-s) \)
Compositing Transformations

– Composition is achieved by matrix multiplication
 – A translation T applied to p, followed by a rotation R
 \[R(Tp) = (RT)p \]
 – A rotation R applied to p, followed by a translation T
 \[T(Rp) = (TR)p \]
 – Note that generally $TR \neq RT$
 – The order of composed transformations matters
Examples

- Rotation around a line through \(t \) parallel to the \(x-, y-, z- \) axis

\[
T(t)R_{xyz}(\phi)T(-t)
\]

- Scale with respect to an arbitrary axis

\[
R_{xyz}(\phi)S(s_x, s_y, s_z)R_{xyz}(-\phi)
\]

- E.g., \(b_1, b_2, b_3 \) represent an orthonormal basis, then scaling along these vectors is realized with

\[
\begin{bmatrix}
 b_1 & b_2 & b_3 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
S(s_x, s_y, s_z)
\begin{bmatrix}
b_1 & b_2 & b_3 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}^T
\]
2D Example – Rotation About a Point

We want to rotate the object points p_i around point t.

Translation by $-t$.

$T(-t)p_i$

Rotation by ϕ.

$R(\phi)T(-t)p_i$

Translation by t.

$T(t)R(\phi)T(-t)p_i$
Rigid-Body Transform

- In Cartesian coordinates: \(p' = Rp + t \) with \(R \) being a rotation and \(t \) being a translation

- In homogeneous notation:
 \[
 \begin{bmatrix}
 p' \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 R & t \\
 0^T & 1
 \end{bmatrix}
 \begin{bmatrix}
 p \\
 1
 \end{bmatrix}
 \]

- The inverse transform in Cartesian coordinates
 \[
 p = R^{-1}(p' - t) = R^{-1}p' - R^{-1}t = R^T p' - R^T t
 \]

- The inverse in homogeneous notation
 \[
 \begin{bmatrix}
 p \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 R & t \\
 0^T & 1
 \end{bmatrix}^{-1}
 \begin{bmatrix}
 p' \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 R^T & -R^T t \\
 0^T & 1
 \end{bmatrix}
 \begin{bmatrix}
 p' \\
 1
 \end{bmatrix}
 \]
Planes and Normals

- Planes can be represented by a surface normal \mathbf{n} and a point \mathbf{r}. All points \mathbf{p} with $\mathbf{n} \cdot (\mathbf{p} - \mathbf{r}) = 0$ form a plane

\[
\begin{align*}
 n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_y - n_z r_z) &= 0 \\
 n_x p_x + n_y p_y + n_z p_z + d &= 0 \\
 (n_x \ n_y \ n_z \ \ d)(p_x \ p_y \ p_z \ \ 1)^T &= 0 \\
 (n_x \ n_y \ n_z \ \ d)\mathbf{A}^{-1}\mathbf{A}(p_x \ p_y \ p_z \ \ 1)^T &= 0
\end{align*}
\]

- The transformed points $\mathbf{A}[p_x \ p_y \ p_z \ \ 1]^T$ are on the plane represented by $(n_x \ n_y \ n_z \ \ d)\mathbf{A}^{-1} = ((\mathbf{A}^{-1})^T(n_x \ n_y \ n_z \ d)^T)^T$

- If a surface is transformed by \mathbf{A}, its homogeneous notation (including the normal) is transformed by $(\mathbf{A}^{-1})^T$
Basis Transform - Translation

- Two coordinate systems

\[C_1 = (O_1, \{e_1, e_2, e_3\}) \]
\[C_2 = (O_2, \{e_1, e_2, e_3\}) \]
\[O_2 = T(t)O_1 \]
Basis Transform - Translation

- The coordinates of p_1 with respect to C_2 are given by $p_2 = p_1 - t$, $p_2 = T(-t)p_1$
- The coordinates of a point in the transformed basis correspond to the coordinates of the point in the untransformed basis transformed by the inverse basis transform
 - Translating the origin by t corresponds to translating the object by $-t$
 - Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle
Basis Transform - Rotation

- Two coordinate systems

\[C_1 = (O, \{e_1, e_2, e_3\}) \]
\[C_2 = (O, \{b_1, b_2, b_3\}) \]
Basis Transform - Rotation

- Coordinates of \(p_1 \) with respect to \(C_2 \) are given by

\[
p_2 = \begin{pmatrix}
 b_1^T \\
 b_2^T \\
 b_3^T
\end{pmatrix}
\begin{pmatrix}
 b_{1,x} & b_{1,y} & b_{1,z} & 0 \\
 b_{2,x} & b_{2,y} & b_{2,z} & 0 \\
 b_{3,x} & b_{3,y} & b_{3,z} & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 p_{1,x} \\
 p_{1,y} \\
 p_{1,z} \\
 1
\end{pmatrix}
\]

- \(b_1, b_2, b_3 \) are the basis vectors of \(C_2 \) with respect to \(C_1 \)
- \(b_1, b_2, b_3 \) are orthonormal, represent a rotation
- Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle
Basis Transform - Application

- The view transform can be seen as a basis transform
- Objects are in a global system $C_1 = (O_1, \{e_1, e_2, e_3\})$
- The camera is at O_2 and oriented with $\{b_1, b_2, b_3\}$
- After the view transform, all objects are represented in the eye or camera coordinate system $C_2 = (O_2, \{b_1, b_2, b_3\})$
- Placing and orienting the camera is a transformation v
- The basis transform is realized by applying v^{-1} to all objects
View Transform

\[C_2 = (O_2, \{b_1, b_2, b_3\}) \]

\[C_1 = (O_1, \{e_1, e_2, e_3\}) \]

\[C_1 \rightarrow V \rightarrow C_2 \]

Inverse view transform \(V^1 \) applied to all objects and the camera

View space / Camera space.
Summary

- Usage of the homogeneous notation is motivated by a unified processing of affine transformations, perspective projections, points, and vectors.
- All transformations of points and vectors are represented by a matrix-vector multiplication.
- "Undoing" a transformation is represented by its inverse.
- Compositing of transformations is accomplished by matrix multiplication.