Computer Graphics
Homogeneous Notation

Matthias Teschner
What is visible at the sensor?

– Visibility can be resolved by ray casting or by applying transformations

Ray Casting computes ray-scene intersections to estimate \(q \) from \(p \).

Rasterizers apply transformations to \(p \) in order to estimate \(q \). \(p \) is projected onto the sensor plane.
Outline

- Motivation
- Homogeneous notation
- Transformations
Motivation

– Transformations in modeling and rendering
 – Position, reshape, and animate objects, lights, cameras
 – Project 3D geometry onto the camera plane

– Homogeneous notation
 – 3D vertices (positions) and 3D normals (directions) are represented with 4D vectors
 – Transformations are represented with 4x4 matrices
 – All transformations of positions and directions are consistently realized as a matrix-vector product
Transformations – 2D

Four faces / primitives / polygons, four points / vertices, four normals.

Identity transform.

Translation.

Rotation.

Scale.

Shear.

Transformations change vertex positions and surface normals.
Coordinate Systems and Transformations

Local coordinate system of an object

Local coordinate system of a camera

Model transforms M_1, M_2, M_3

View transform V

Global coordinate system with one camera and three instances of the same object
Coordinate Systems and Transformations

Global coordinate system with one camera and three objects

Inverse view transform V^{-1} applied to all objects and the camera

View space / Camera space.

Working in view space is motivated by simplified implementations. E.g., rays start at 0 in view space.
Modelview Transform

Transformation from local into view space is realized with the modelview transform. Objects: V^1M_1, V^1M_2, V^1M_3 Camera: $V^1V = I$
More Transformations

- To transform from view space positions to positions on the camera plane
 - Projection transform
 - Viewport transform
- See next lecture on projections
Transformations - Groups

– Translation, rotation, reflection
 – Preserve shape and size
 – Congruent transformations (Euclidean transformations)
– Translation, rotation, reflection, scale
 – Preserve shape
 – Similarity transformations
Affine Transformations

- Translation, rotation, reflection, scale, shear
 - Preserve collinearity
 - Points on a line are transformed to points on a line
 - Preserve proportions
 - Ratios of distances between points are preserved
 - Preserve parallelism
 - Parallel lines are transformed to parallel lines
 - Angles and lengths are not preserved
Affine Transformations

- 3D position \mathbf{p}: $\mathbf{p}' = T(\mathbf{p}) = A\mathbf{p} + \mathbf{t}$
- Affine transformations preserve affine combinations $T(\sum_i \alpha_i \cdot \mathbf{p}_i) = \sum_i \alpha_i \cdot T(\mathbf{p}_i)$ for $\sum_i \alpha_i = 1$
- E.g., a line can be transformed by transforming its control points

\[
x = \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2
\]

\[
x' = T(x) = \alpha_1 T(\mathbf{p}_1) + \alpha_2 T(\mathbf{p}_2)
\]
Affine Transformations

- 3D position p: $p' = Ap + t$
- 3x3 matrix A represents linear transformations
 - Scale, rotation, shear
- 3D vector t represents translation
 - Translation is not a linear transformation
- Using the homogeneous notation, all affine transformations are represented with one matrix-vector multiplication
Positions and Vectors

- Positions / vertices specify a location in space
- Vectors / normal specify a direction
- Relations
 - position - position = vector
 - position + vector = position
 - vector + vector = vector
 - position + position = not defined
- \(\vec{p} = p - O \quad p = O + \vec{p} \)
Positions and Vectors

- Transformations can have different effects on positions and vectors
 - E.g., translation of a point changes its position, but translation of a vector does not change the vector

- Using the homogeneous notation, transformations of vectors and positions are handled in a unified way

Translation of positions and vectors.
Outline

– Motivation
– Homogeneous notation
– Transformations
Homogeneous Coordinates of Positions

- \((x, y, z, w)\) with \(w \neq 0\) are the homogeneous coordinates of the 3D position \((\frac{x}{w}, \frac{y}{w}, \frac{z}{w})\)

- \((\lambda x, \lambda y, \lambda z, \lambda w)\) represents the same position \((\frac{\lambda x}{\lambda w}, \frac{\lambda y}{\lambda w}, \frac{\lambda z}{\lambda w})\) for all \(\lambda \neq 0\)

Examples

- \((2, 3, 4, 1)^T \sim (2, 3, 4)^T\)
- \((2, 4, 6, 1)^T \sim (2, 4, 6)^T\)
- \((4, 8, 12, 2)^T \sim (2, 4, 6)^T\)
- \((0.2, 0.4, 0.6, 0.1)^T \sim (2, 4, 6)^T\)
Homogeneous Coordinates of Positions

- From Cartesian to homogeneous coordinates
 \[(x, y, z)^T \rightarrow (x, y, z, 1)^T\] The most obvious way. Infinite number of options.

- From homogeneous to Cartesian coordinates
 \[(x, y, z, w)^T \rightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^T\]
1D Illustration

- Homogeneous points $(\lambda x, \lambda)^T$ represent the same position x in Cartesian space.
- Homogeneous points $(\lambda x, \lambda)^T$ lie on a line in the 2D space (x, w).

\[
\begin{align*}
(x_1, 1)^T & \sim x_1 \\
(\lambda_1 x_1, \lambda_1)^T & \sim x_1 \\
(\lambda_2 x_1, \lambda_2)^T & \sim x_1
\end{align*}
\]
Homogeneous Coordinates of Vectors

- For varying w, a point $(x, y, z, w)^T$ is scaled and the points $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ represent a line in 3D space.
- The direction of this line is $(x, y, z)^T$.
- For $w \to 0$, the position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ moves to infinity in the direction $(x, y, z)^T$.
- $(x, y, z, 0)^T$ is a position at infinity in the direction of $(x, y, z)^T$.
- $(x, y, z, 0)^T$ is a vector in the direction of $(x, y, z)^T$.
1D Illustration

\(w = 1 \)

\((x_0, w_1)^T \sim x_1\)

\((x_0, w_2)^T \sim x_2\)

\((x_0, w_3)^T \sim x_3\)
Positions at Infinity

- Can be processed by graphics APIs, e.g. OpenGL
- Used, e.g. in shadow volumes

Rendering of a triangle with vertices

\[
\begin{pmatrix}
0 \\
0.5 \\
0 \\
1 \\
\end{pmatrix}
\begin{pmatrix}
-0.5 \\
0 \\
0 \\
1 \\
\end{pmatrix}
\begin{pmatrix}
0.5 \\
0 \\
0 \\
1 \\
\end{pmatrix}
\]

Rendering of a triangle with vertices

\[
\begin{pmatrix}
0 \\
0.5 \\
0 \\
1 \\
\end{pmatrix}
\begin{pmatrix}
-0.5 \\
0 \\
0 \\
1 \\
\end{pmatrix}
\begin{pmatrix}
0.5 \\
0 \\
0 \\
1 \\
\end{pmatrix}
\]
Positions and Vectors

- If positions are in normalized form, position-vector relations can be represented
- vector + vector = vector
- \[
\begin{pmatrix}
u_x \\
u_y \\
u_z \\
0
\end{pmatrix} + \begin{pmatrix}
v_x \\
v_y \\
v_z \\
0
\end{pmatrix} = \begin{pmatrix}
u_x + v_x \\
u_y + v_y \\
u_z + v_z \\
0
\end{pmatrix}
\]
- position + vector = position
- \[
\begin{pmatrix}
p_x \\
p_y \\
p_z \\
1
\end{pmatrix} + \begin{pmatrix}
v_x \\
v_y \\
v_z \\
0
\end{pmatrix} = \begin{pmatrix}
p_x + v_x \\
p_y + v_y \\
p_z + v_z \\
1
\end{pmatrix}
\]
- position - position = vector
- \[
\begin{pmatrix}
p_x \\
p_y \\
p_z \\
1
\end{pmatrix} - \begin{pmatrix}
r_x \\
r_y \\
r_z \\
1
\end{pmatrix} = \begin{pmatrix}
p_x - r_x \\
p_y - r_y \\
p_z - r_z \\
0
\end{pmatrix}
\]
Homogeneous Notation of Linear Transformations

\[
\begin{pmatrix}
m_{00} & m_{01} & m_{02} \\
m_{10} & m_{11} & m_{12} \\
m_{20} & m_{21} & m_{22}
\end{pmatrix}
\begin{pmatrix}
p_x \\
p_y \\
p_z
\end{pmatrix}
\sim
\begin{pmatrix}
m_{00} & m_{01} & m_{02} & 0 \\
m_{10} & m_{11} & m_{12} & 0 \\
m_{20} & m_{21} & m_{22} & 0
\end{pmatrix}
\begin{pmatrix}
p_x \\
p_y \\
p_z \\
1
\end{pmatrix}
\]

– If the transform of \(\begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \) results in \(\begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} \), then

the transform of \(\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} \) results in \(\begin{pmatrix} r_x \\ r_y \\ r_z \\ 1 \end{pmatrix} \)
Affine Transformations and Projections

- General form

\[
\begin{pmatrix}
m_{00} & m_{01} & m_{02} & t_0 \\
m_{10} & m_{11} & m_{12} & t_1 \\
m_{20} & m_{21} & m_{22} & t_2 \\
p_0 & p_1 & p_2 & w
\end{pmatrix}
\]

- \(m_{ij} \) represent rotation, scale, shear
- \(t_i \) represent translation
- \(p_i \) are used for projections (see next lecture)
- \(w \) is the homogeneous component
Homogeneous Coordinates - Summary

- \((x, y, z, w)^T\) with \(w \neq 0\) are the homogeneous coordinates of the 3D position \((\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T\)
- \((x, y, z, 0)^T\) is a point at infinity in the direction of \((x, y, z)^T\)
- \((x, y, z, 0)^T\) is a vector in the direction of \((x, y, z)^T\)
- \(\begin{pmatrix} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ p_0 & p_1 & p_2 & w \end{pmatrix}\) is a transformation that represents rotation, scale, shear, translation, projection
Outline

– Motivation
– Homogeneous notation
– Transformations
Transformations

Four faces / primitives / polygons, four points / vertices, four normals.

- Translation
- Scale
- Identity transform
- Rotation
- Shear
Translation

– Of a position

\[T(t)p = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{pmatrix} \]

– Of a vector

\[T(t)v = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} \]

– Inverse transform

\[T^{-1}(t) = T(-t) \]
Rotation

- Positive (anticlockwise) rotation with angle ϕ around the x, y, z-axis

Rotation matrices for rotations around arbitrary axes are built by combining simple rotations and translations.

$$R_x(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_y(\phi) = \begin{pmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_z(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Rotation – Inverse Transform

– The inverse of a rotation matrix is its transpose

\[\mathbf{R}_x(-\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos -\phi & -\sin -\phi & 0 \\ 0 & \sin -\phi & \cos -\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi & 0 \\ 0 & -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{R}_x^T(\phi) \]

\[\mathbf{R}_x^{-1} = \mathbf{R}_x^T \quad \mathbf{R}_y^{-1} = \mathbf{R}_y^T \quad \mathbf{R}_z^{-1} = \mathbf{R}_z^T \]
Mirroring / Reflection

- Mirroring with respect to \(x = 0, y = 0, z = 0 \) plane
- Changes the sign of the \(x-, y-, z- \) component

\[
P_x = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad P_y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad P_z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

- The inverse of a reflection is its transpose

\[
P_x^{-1} = P_x^T \quad P_y^{-1} = P_y^T \quad P_z^{-1} = P_z^T
\]
Orthogonal Matrices

- Rotation and reflection matrices are orthogonal

\[RR^T = R^T R = I \quad R^{-1} = R^T \]

- \(R_1, R_2 \) are orthogonal \(\Rightarrow R_1 R_2 \) is orthogonal

- Rotation: \(\det R = 1 \), Reflection: \(\det R = -1 \)

- Length of a vector is preserved \(\|Rv\| = \|v\| \)

- Angles are preserved \(\langle Ru, Rv \rangle = \langle u, v \rangle \)
Scale

- Scaling x-, y-, z-components of a position or vector

\[\mathbf{S}(s_x, s_y, s_z) \mathbf{p} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} s_x p_x \\ s_y p_y \\ s_z p_z \\ 1 \end{pmatrix} \]

- Inverse \(\mathbf{S}^{-1}(s_x, s_y, s_z) = \mathbf{S}(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z}) \)

- Uniform scaling: \(s_x = s_y = s_z = s \)

\[\mathbf{S}(s) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{s} \end{pmatrix} \]
Shear

- Offset of one component with respect to another component
- Six shear modes in 3D
- E.g., shear of x with respect to z

\[
H_{xz}(s)p = \begin{pmatrix}
1 & 0 & s & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
p_x \\
p_y \\
p_z \\
1
\end{pmatrix} = \begin{pmatrix}
p_x + sp_z \\
p_y \\
p_z \\
1
\end{pmatrix}
\]

- Inverse $H_{xz}^{-1}(s) = H_{xz}(-s)$
Compositing Transformations

- Composition is achieved by matrix multiplication
 - A translation T applied to p, followed by a rotation R
 $$R(Tp) = (RT)p$$
 - A rotation R applied to p, followed by a translation T
 $$T(Rp) = (TR)p$$
 - Note that generally $TR \neq RT$
 - The order of composed transformations matters
Examples

– Rotation around a line through t parallel to the x-, y-, z- axis
 \[T(t)R_{xyz}(\phi)T(-t) \]

– Scale with respect to an arbitrary axis
 \[R_{xyz}(\phi)S(s_x, s_y, s_z)R_{xyz}(-\phi) \]

– E.g., b_1, b_2, b_3 represent an orthonormal basis, then scaling along these vectors is realized with
 \[\begin{pmatrix} b_1 & b_2 & b_3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} S(s_x, s_y, s_z) \begin{pmatrix} b_1 & b_2 & b_3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^T \]
Rigid-Body Transform

\[\begin{pmatrix} R & t \\ 0^T & 1 \end{pmatrix} p = T(t) R p \quad \text{with } R \text{ being a rotation and } t \text{ being a translation} \]

- Inverse \((T(t)R)^{-1} = R^{-1}T(t)^{-1} = R^T T(-t) \)

- In Cartesian coordinates \(p' = Rp + t \)

- The inverse transform \(p = R^{-1}(p' - t) = R^{-1}p' - R^{-1}t \)

- Therefore \(\begin{pmatrix} R & t \\ 0^T & 1 \end{pmatrix}^{-1} = \begin{pmatrix} R^T & -R^T t \\ 0^T & 1 \end{pmatrix} \)
Planes and Normals

- Planes can be represented by a surface normal \(\mathbf{n} \) and a point \(\mathbf{r} \). All points \(\mathbf{p} \) with \(\mathbf{n} \cdot (\mathbf{p} - \mathbf{r}) = 0 \) form a plane

\[
\begin{align*}
 n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_y - n_z r_z) &= 0 \\
 n_x p_x + n_y p_y + n_z p_z + d &= 0 \\
 (n_x \ n_y \ n_z \ d)(p_x \ p_y \ p_z \ 1)^T &= 0 \\
 (n_x \ n_y \ n_z \ d) \mathbf{A}^{-1} \mathbf{A}(p_x \ p_y \ p_z \ 1)^T &= 0
\end{align*}
\]

- The transformed points \(\mathbf{A}(p_x \ p_y \ p_z \ 1)^T \) are on the plane represented by \((n_x \ n_y \ n_z \ d) \mathbf{A}^{-1} = ((\mathbf{A}^{-1})^T(n_x \ n_y \ n_z \ d)^T)^T \)

- If a surface is transformed by \(\mathbf{A} \), its homogeneous notation (including the normal) is transformed by \((\mathbf{A}^{-1})^T \)
Basis Transform - Translation

- Two coordinate systems

\[C_1 = (O_1, \{e_1, e_2, e_3\}) \]
\[C_2 = (O_2, \{e_1, e_2, e_3\}) \]
\[O_2 = T(t)O_1 \]
Basis Transform - Translation

- The coordinates of \(p_1 \) with respect to \(C_2 \) are given by \(p_2 = p_1 - t \). \(p_2 = T(-t)p_1 \)
- The coordinates of a point in the transformed basis correspond to the coordinates of the point in the untransformed basis transformed by the inverse basis transform
 - Translating the origin by \(t \) corresponds to translating the object by \(-t \)
 - Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle
Basis Transform - Rotation

- Two coordinate systems

\[C_1 = (O, \{e_1, e_2, e_3\}) \]
\[C_2 = (O, \{b_1, b_2, b_3\}) \]
Basis Transform - Rotation

- Coordinates of \mathbf{p}_1 with respect to \mathbf{C}_2 are given by

$$
\mathbf{p}_2 = \begin{pmatrix}
\mathbf{b}_1^T \\
\mathbf{b}_2^T \\
\mathbf{b}_3^T
\end{pmatrix} \mathbf{p}_1 \sim
\begin{pmatrix}
b_{1,x} & b_{1,y} & b_{1,z} & 0 \\
b_{2,x} & b_{2,y} & b_{2,z} & 0 \\
b_{3,x} & b_{3,y} & b_{3,z} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \mathbf{p}_1
$$

- $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are the basis vectors of \mathbf{C}_2 with respect to \mathbf{C}_1

- $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are orthonormal, represent a rotation

- Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle
Basis Transform - Application

- The view transform can be seen as a basis transform.
- Objects are in a global system \(C_1 = (O_1, \{e_1, e_2, e_3\}) \).
- The camera is at \(O_2 \) and oriented with \(\{b_1, b_2, b_3\} \).
- After the view transform, all objects are represented in the eye or camera coordinate system \(C_2 = (O_2, \{b_1, b_2, b_3\}) \).
- Placing and orienting the camera is a transformation \(v \).
- The basis transform is realized by applying \(v^{-1} \) to all objects.
View Transform

\[C_2 = (O_2, \{b_1, b_2, b_3\}) \]

\[C_1 = (O_1, \{e_1, e_2, e_3\}) \]

\[C_1 \rightarrow V \rightarrow C_2 \]

Inverse view transform \(V^{-1} \) applied to all objects and the camera

View space / Camera space.
Summary

– Usage of the homogeneous notation is motivated by a unified processing of affine transformations, perspective projections, points, and vectors
– All transformations of points and vectors are represented by a matrix-vector multiplication
– “Undoing” a transformation is represented by its inverse
– Compositing of transformations is accomplished by matrix multiplication