Computer Graphics Homogeneous Notation

Matthias Teschner

UNI FREIBURG

What is visible at the sensor?

 Visibility can be resolved by ray casting or by applying transformations

Ray Casting computes ray-scene intersections to estimate *q* from *p*. Rasterizers apply transformations to *p* in order to estimate *q*. *p* is projected onto the sensor plane.

University of Freiburg – Computer Science Department – 2

FREIBURG

Outline

- Motivation
- Homogeneous notation
- Transformations

Motivation

- Transformations in modeling and rendering
 - Position, reshape, and animate objects, lights, cameras
 - Project 3D geometry onto the camera plane
- Homogeneous notation
 - 3D vertices (positions) and 3D normals (directions) are represented with 4D vectors
 - Transformations are represented with 4x4 matrices
 - All transformations of positions and directions are consistently realized as a matrix-vector product

Transformations – 2D

Coordinate Systems and Transformations

Global coordinate system with one camera and three instances of the same object

Coordinate Systems and Transformations

Working in view space is motivated by simplified implementations. E.g., rays start at **0** in view space.

University of Freiburg – Computer Science Department – 7

UNI FREIBURG

Modelview Transform

More Transformations

- To transform from view space positions to positions on the camera plane
 - Projection transform
 - Viewport transform
- See lecture on projections

Transformations - Groups

- Translation, rotation, reflection
 - Preserve shape and size
 - Congruent transformations (Euclidean transformations)
- Translation, rotation, reflection, scale
 - Preserve shape
 - Similarity transformations

Affine Transformations

- Translation, rotation, reflection, scale, shear
 - Angles and lengths are not preserved
 - Preserve collinearity
 - Points on a line are transformed to points on a line
 - Preserve proportions
 - Ratios of distances between points are preserved
 - Preserve parallelism
 - Parallel lines are transformed to parallel lines

Affine Transformations

- 3D position p: p' = T(p) = Ap + t
- Affine transformations preserve affine combinations $T(\sum_{i} \alpha_{i} \cdot p_{i}) = \sum_{i} \alpha_{i} \cdot T(p_{i})$ for $\sum_{i} \alpha_{i} = 1$
- E.g., a line can be transformed by transforming its control points $p_1 = p_1'$

$$p_1$$

$$p_1$$

$$p_1$$

$$p_1$$

$$p_2$$

University of Freiburg – Computer Science Department – 12

FREIBURG

Affine Transformations

- 3D position p: p' = Ap + t
- 3x3 matrix A represents linear transformations
 - Scale, rotation, shear
- 3D vector t represents translation
- Using the homogeneous notation, all affine transformations are represented with one matrix-vector multiplication

Positions and Vectors

- Positions / vertices specify a location in space
- Vectors / normals specify a direction
- Relations

position - position = vector
position + vector = position
vector + vector = vector

position + position not defined

Positions and Vectors

- Transformations can have different effects on positions and vectors
 - E.g., translation of a point changes its position, but translation of a vector does not change the vector
- Using the homogeneous notation, transformations of vectors and positions are handled in a unified way

Translation of positions and vectors.

Outline

- Motivation
- Homogeneous notation
- Transformations

Homogeneous Coordinates of Positions

- -[x,y,z,w]' with $w \neq 0$ are the homogeneous $[x, y, z, w]^{\mathsf{T}} = \begin{vmatrix} y \\ z \end{vmatrix}$ coordinates of the 3D position $\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^{\mathsf{T}}$
- $[\lambda x, \lambda y, \lambda z, \lambda w]^{\mathsf{T}}$ represents the same position $\left(\frac{\lambda x}{\lambda w}, \frac{\lambda y}{\lambda w}, \frac{\lambda z}{\lambda w}\right)^{\mathsf{T}} = \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^{\mathsf{T}}$ for all $\lambda \neq 0$
- Examples
 - $[2, 3, 4, 1]^{\mathsf{T}} \sim (2, 3, 4)^{\mathsf{T}}$
 - $[2, 4, 6, 1]^{\mathsf{T}} \sim (2, 4, 6)^{\mathsf{T}}$
 - $[4, 8, 12, 2]^{\mathsf{T}} \sim (2, 4, 6)^{\mathsf{T}}$
 - $[0.2, 0.4, 0.6, 0.1]^{\mathsf{T}} \sim (2, 4, 6)^{\mathsf{T}}$

Note

Homogeneous Coordinates of Positions

- From Cartesian to homogeneous coordinates
 - $(x, y, z)^{\mathsf{T}} \rightarrow [x, y, z, 1]^{\mathsf{T}}$ Most obvious, but an infinite number of options.
 - $(x, y, z)^{\mathsf{T}} \quad \to \quad [\lambda x, \lambda y, \lambda z, \lambda]^{\mathsf{T}} \quad \lambda \neq 0$
- From homogeneous to Cartesian coordinates $[x, y, z, w]^{\mathsf{T}} \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^{\mathsf{T}}$

1D Illustration

- Homogeneous points $[\lambda x, \lambda]^T$ represent the same position x in Cartesian space
- Homogeneous points $[\lambda x, \lambda]^T$ lie on a line in the 2D space [x, w]

Homogeneous Coordinates of Vectors

- For varying w, a point $[x, y, z, w]^T$ is scaled and the points $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ represent a line in 3D space
- The direction of this line is $(x, y, z)^{\mathsf{T}}$
- For $w \to 0$, the position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^{\mathsf{T}}$ moves to infinity in the direction $(x, y, z)^{\mathsf{T}}$
- $-[x, y, z, 0]^{\mathsf{T}}$ is a position at infinity in the direction of $(x, y, z)^{\mathsf{T}}$
- $[x, y, z, 0]^{\mathsf{T}}$ is a vector in the direction of $(x, y, z)^{\mathsf{T}}$

1D Illustration

University of Freiburg – Computer Science Department – 21

UNI FREIBURG

Positions at Infinity

Can be processed by graphics APIs, e.g. OpenGL
Used, e.g. in shadow volumes

UNI FREIBURG

Positions and Vectors

 If positions are in normalized form, position-vector relations can be represented

 $\begin{vmatrix} v_y \\ v_z \end{vmatrix} = \begin{vmatrix} u_y + v_y \\ u_z + v_z \end{vmatrix}$ + vector = vector $\begin{array}{c} u_y \\ u_z \end{array}$ vector $+ \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = \begin{bmatrix} p_x + v_x \\ p_y + v_y \\ p_z + v_z \\ 1 \end{bmatrix}$ $\left. \begin{array}{c} p_y \\ p_z \end{array} \right|$ position + vector = position $\begin{bmatrix} r_x \\ r_y \\ r_z \\ r_z \end{bmatrix} = \begin{bmatrix} p_x - r_x \\ p_y - r_y \\ p_z - r_z \end{bmatrix}$ $p_y \ p_z$ position - position = vector University of Freiburg – Computer Science Department – 23

FREIBURG

Homogeneous Notation of Linear Transformations

UNI FREIBURG

Affine Transformations and Projections

– General form

m_{00}	m_{01}	m_{02}	t_0
m_{10}	m_{11}	m_{12}	t_1
m_{20}	m_{21}	m_{22}	t_2
p_0	p_1	p_2	w

- $-m_{ij}$ represent rotation, scale, shear
- $-t_i$ represent translation
- p_i are used for projections (see lecture on projections)
- -w is the homogeneous component

Homogeneous Coordinates - Summary

- -[x,y,z,w]' with $w \neq 0$ are the homogeneous coordinates of the 3D position $\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^{\mathsf{T}}$
- $-[x,y,z,0]^{\mathsf{T}}$ is a point at infinity in the direction of $(x,y,z)^{\mathsf{T}}$
- $[x, y, z, 0]^{\mathsf{T}}$ is a vector in the direction of $(x, y, z)^{\mathsf{T}}$

 $\begin{bmatrix} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ p_0 & p_1 & p_2 & w \end{bmatrix}$ is a transformation that represents rotation, scale, shear, translation, projection shear, translation, projection

Outline

- Motivation
- Homogeneous notation
- Transformations

Transformations

University of Freiburg – Computer Science Department – 28

UNI FREIBURG

Translation

 $- \text{ Of a position} \qquad T(t)p = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{bmatrix}$ $- \text{ Of a vector} \qquad T(t)v = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$

Inverse transform

$$\boldsymbol{T}^{-1}(\boldsymbol{t}) = \boldsymbol{T}(-\boldsymbol{t})$$

University of Freiburg – Computer Science Department – 29

UNI FREIBURG

Rotation

- Positive (anticlockwise) rotation with angle ϕ around the *x*-, *y*-, *z*-axis

$$\boldsymbol{R}_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\boldsymbol{R}_{y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\boldsymbol{R}_{z}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

UNI FREIBURG

Matrices for rotations around arbitrary axes are built by combining simple rotations and translations.

Rotation – Inverse Transform

- The inverse of a rotation matrix is its transpose

$$\boldsymbol{R}_{x}(-\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos -\phi & -\sin -\phi & 0 \\ 0 & \sin -\phi & \cos -\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi & 0 \\ 0 & -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \boldsymbol{R}_{x}^{\mathsf{T}}(\phi)$$

 $oldsymbol{R}_x^{-1} = oldsymbol{R}_x^{\mathsf{T}} \qquad oldsymbol{R}_y^{-1} = oldsymbol{R}_y^{\mathsf{T}} \qquad oldsymbol{R}_z^{-1} = oldsymbol{R}_z^{\mathsf{T}}$

University of Freiburg – Computer Science Department – 31

FREIBURG

Mirroring / Reflection

- Mirroring with respect to x = 0, y = 0, z = 0 plane
- Changes the sign of the *x*-, *y*-, *z*-component

$$\boldsymbol{P}_{x} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{P}_{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{P}_{z} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- The inverse of a reflection is its transpose $P_x^{-1} = P_x^{\mathsf{T}}$ $P_y^{-1} = P_y^{\mathsf{T}}$ $P_z^{-1} = P_z^{\mathsf{T}}$

Orthogonal Matrices

- Rotation and reflection matrices are orthogonal $RR^{\mathsf{T}} = R^{\mathsf{T}}R = I$ $R^{-1} = R^{\mathsf{T}}$
- $\mathbf{R}_1, \mathbf{R}_2$ are orthogonal $\Rightarrow \mathbf{R}_1 \mathbf{R}_2$ is orthogonal
- Rotation: det $\mathbf{R} = 1$, Reflection: det $\mathbf{R} = -1$
- Length of a vector is preserved $\|\mathbf{R}\mathbf{v}\| = \|\mathbf{v}\|$
- Angles are preserved $\langle Ru, Rv \rangle = \langle u, v \rangle$

Scale

– Scaling x-, y-, z-components of a position or vector

$$\boldsymbol{S}(s_x, s_y, s_z)\boldsymbol{p} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} s_x p_x \\ s_y p_y \\ s_z p_z \\ 1 \end{bmatrix}$$

- Inverse
$$S^{-1}(s_x, s_y, s_z) = S(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z})$$

- Uniform scaling: $s_x = s_y = s_z = s$

$$\boldsymbol{S}(s) = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{or, e.g.} \quad \boldsymbol{S}(s) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{s} \end{bmatrix}$$

University of Freiburg – Computer Science Department – 34

UNI FREIBURG

Shear

- Offset of one component with respect to another component
- Six shear modes in 3D
- E.g., shear of x with respect to z

$$\boldsymbol{H}_{xz}(s)\boldsymbol{p} = \begin{bmatrix} 1 & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + sp_z \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

- Inverse $H_{xz}^{-1}(s) = H_{xz}(-s)$

Compositing Transformations

- Composition is achieved by matrix multiplication
 - A translation T applied to p, followed by a rotation R R(Tp) = (RT)p
 - A rotation $m{R}$ applied to $m{p}$, followed by a translation $m{T}$ $m{T}(m{R}m{p}) = (m{T}m{R})m{p}$
 - Note that generally $TR \neq RT$
 - The order of composed transformations matters

- Rotation around a line through t parallel to the x-, y-, z- axis $T(t)R_{xyz}(\phi)T(-t)$
- Scale with respect to an arbitrary axis $R_{xyz}(\phi)S(s_x, s_y, s_z)R_{xyz}(-\phi)$
- E.g., b₁, b₂, b₃ represent an orthonormal basis,
 then scaling along these vectors is realized with

$$\begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 & \boldsymbol{b}_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{S}(s_x, s_y, s_z) \begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 & \boldsymbol{b}_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$

University of Freiburg – Computer Science Department – 37

UNI FREIBURG

2D Example – Rotation About a Point

University of Freiburg – Computer Science Department – 38

UNI FREIBURG

Rigid-Body Transform

- In Cartesian coordinates: p' = Rp + t with R being a rotation and t being a translation
- In homogeneous notation: $\begin{bmatrix} p'\\1 \end{bmatrix} = \begin{bmatrix} R & t\\0^T & 1 \end{bmatrix} \begin{bmatrix} p\\1 \end{bmatrix}$ The inverse transform in Cartesian coordinates

$$p = R^{-1}(p' - t) = R^{-1}p' - R^{-1}t = R^{T}p' - R^{T}t$$

– The inverse in homogeneous notation $\begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix}^{-1} \begin{bmatrix} p' \\ 1 \end{bmatrix} = \begin{bmatrix} R^{\mathsf{T}} & -R^{\mathsf{T}}t \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} p' \\ 1 \end{bmatrix}$

University of Freiburg – Computer Science Department – 39

Planes and Normals

- Planes can be represented by a surface normal n and a point r. All points p with $n \cdot (p - r) = 0$ form a plane $n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_y - n_z r_z) = 0$ $n_x p_x + n_y p_y + n_z p_z + d = 0$ $(n_x n_y n_z d)(p_x p_y p_z 1)^{\mathsf{T}} = 0$ $(n_x n_y n_z d) \mathbf{A}^{-1} \mathbf{A}(p_x p_y p_z 1)^{\mathsf{T}} = 0$
- The transformed points $A[p_x p_y p_z 1]^T$ are on the plane represented by $(n_x n_y n_z d)A^{-1} = ((A^{-1})^T(n_x n_y n_z d)^T)^T$
- If a surface is transformed by A, its homogeneous notation (including the normal) is transformed by $(A^{-1})^{\mathsf{T}}$

Basis Transform - Translation

Two coordinate systems

 $egin{aligned} m{C}_1 &= (m{O}_1, \{m{e}_1, m{e}_2, m{e}_3\}) \ m{C}_2 &= (m{O}_2, \{m{e}_1, m{e}_2, m{e}_3\}) \ m{O}_2 &= m{T}(m{t})m{O}_1 \end{aligned}$

Basis Transform - Translation

- The coordinates of p_1 with respect to C_2 are given by $p_2 = p_1 - t$ $p_2 = T(-t)p_1$
- The coordinates of a point in the transformed basis correspond to the coordinates of the point in the untransformed basis transformed by the inverse basis transform
 - Translating the origin by t corresponds to translating the object by -t
 - Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Rotation

- Two coordinate systems
 - $C_{1} = (O, \{e_{1}, e_{2}, e_{3}\})$ $C_{2} = (O, \{b_{1}, b_{2}, b_{3}\})$ b_{2} y_{1} p_{1} p_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{3} y_{2} y_{3} y_{4} y_{2} y_{2} y_{2} y_{3} y_{4} y_{2} y_{2} y_{3} y_{4} y_{5} y_{5} y_{5} y_{5} $y_$

 \boldsymbol{e}_1

Basis Transform - Rotation

– Coordinates of p_1 with respect to C_2 are given by

$$m{p}_2 = \left(egin{array}{c} m{b}_1^{\mathsf{T}} \ m{b}_2^{\mathsf{T}} \ m{b}_3^{\mathsf{T}} \end{array}
ight) m{p}_1 \sim \left[egin{array}{cccc} m{b}_{1,x} & m{b}_{1,y} & m{b}_{1,z} & 0 \ m{b}_{2,x} & m{b}_{2,y} & m{b}_{2,z} & 0 \ m{b}_{3,x} & m{b}_{3,y} & m{b}_{3,z} & 0 \ 0 & 0 & 0 & 1 \end{array}
ight] m{p}_1$$

- b_1, b_2, b_3 are the basis vectors of C_2 with respect to C_1
- b_1, b_2, b_3 are orthonormal, represent a rotation
- Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Application

- The view transform can be seen as a basis transform
- Objects are in a global system $C_1 = (O_1, \{e_1, e_2, e_3\})$
- The camera is at O_2 and oriented with $\{b_1, b_2, b_3\}$
- After the view transform, all objects are represented in the eye or camera coordinate system $C_2 = (O_2, \{b_1, b_2, b_3\})$
- Placing and orienting the camera is a transformation $oldsymbol{v}$
- The basis transform is realized by applying V^{-1} to all objects

View Transform

University of Freiburg – Computer Science Department – 46

NN

Summary

- Usage of the homogeneous notation is motivated by a unified processing of affine transformations, perspective projections, points, and vectors
- All transformations of points and vectors are represented by a matrix-vector multiplication
- "Undoing" a transformation is represented by its inverse
- Compositing of transformations is accomplished by matrix multiplication