Computer Graphics Projection

Matthias Teschner
Homogeneous Coordinates - Summary

- $[x, y, z, w]^T$ with $w \neq 0$ are the homogeneous coordinates of the 3D position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- $[x, y, z, 0]^T$ is a point at infinity in the direction of $(x, y, z)^T$
- $[x, y, z, 0]^T$ is a vector in the direction of $(x, y, z)^T$
- $\begin{bmatrix} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ p_0 & p_1 & p_2 & w \end{bmatrix}$ is a transformation that represents rotation, scale, shear, translation, projection
Outline

– Context
– Projections
– Projection transform
– Typical vertex transformations
Motivation

– 3D scene with a camera, its view volume and its projection

Orthographic projection Perspective projection

[Song Ho Ahn]
Motivation

– Rendering generates planar views from 3D scenes
– 3D space is projected onto a 2D plane considering external and internal camera parameters
 – Position, orientation, focal length
– Projections can be represented with a matrix in homogeneous notation
Motivation

- Transformation matrix in homogeneous notation

\[
\begin{bmatrix}
m_{00} & m_{01} & m_{02} & t_0 \\
m_{10} & m_{11} & m_{12} & t_1 \\
m_{20} & m_{21} & m_{22} & t_2 \\
p_0 & p_1 & p_2 & w
\end{bmatrix}
\]

- m_{ij} represent rotation, scale, shear
- t_i represent translation
- p_i are used in projections
- w is the homogeneous component
Example

- Last matrix row can be used to realize divisions by a linear combination of multiples of $p_x, p_y, p_z, 1$

\[
p' = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
p_0 & p_1 & p_2 & w
\end{bmatrix} \begin{bmatrix}
p_x \\
p_y \\
p_z \\
1
\end{bmatrix} = \begin{bmatrix}
p_x \\
p_y \\
p_z \\
p_0 p_x + p_1 p_y + p_2 p_z + w
\end{bmatrix}
\]

~

\[
\begin{pmatrix}
p_x \\
\frac{p_0 p_x + p_1 p_y + p_2 p_z + w}{p_y} \\
\frac{p_0 p_x + p_1 p_y + p_2 p_z + w}{p_z} \\
\frac{p_0 p_x + p_1 p_y + p_2 p_z + w}{p_0 p_x + p_1 p_y + p_2 p_z + w}
\end{pmatrix}
\]
2D Illustration

\[p' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d \end{bmatrix} \begin{bmatrix} wp_x \\ wp_y \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ -dwp_y \\ wp_x - wd \end{bmatrix} \approx \begin{bmatrix} 0 \\ -dwp_y/p_{x-d} \end{bmatrix} \]

\[p' = \frac{\frac{p_y}{p_{x-d}}}{\frac{p_y}{-d}} \Rightarrow p'_y = -\frac{dp_y}{p_{x-d}} \]

\[p_x = 0 \]

\[v = [d, 0, 1]^T \]
Outline

– Context
– Projections
 – 2D
 – 3D
– Projection transform
– Typical vertex transformations
Setting

- A 2D projection from \(v \) onto \(l \) maps a point \(p \) onto \(p' \)
- \(p' \) is the intersection of the line through \(p \) and \(v \) with line \(l \)
- \(v \) is the viewpoint, center of perspectivity
- \(l \) is the viewline
- The line through \(p \) and \(v \) is a projector
- \(v \) is not on the line \(l, p \neq v \)
Classification

- If the homogeneous component of the viewpoint \(\mathbf{v} \) is not equal to zero, we have a perspective projection
 - Projectors are not parallel
- If \(\mathbf{v} \) is at infinity, we have a parallel projection
 - Projectors are parallel

\[
\mathbf{v} = [x, y, 1]^T
\]

\[
\mathbf{v} = [x, y, 0]^T
\]
Classification

- Location of viewpoint and orientation of the viewline determine the type of projection
 - Parallel (viewpoint at infinity, parallel projectors)
 - Orthographic (viewline orthogonal to the projectors)
 - Oblique (viewline not orthogonal to the projectors)
 - Perspective (non-parallel projectors)
 - One-point (viewline intersects one principal axis, i.e. viewline is parallel to a principal axis, one vanishing point)
 - Two-point (viewline intersects two principal axes, two vanishing points)
General Case

- A 2D projection is represented by a matrix in homogeneous notation

\[M = vl^T - (l \cdot v)I_3 \]

\[vl^T = \begin{bmatrix} v_xa & v_xb & v_xc \\ v_ya & v_yb & v_yc \\ v_wa & v_wb & v_wc \end{bmatrix} \]

\[(l \cdot v)I_3 = (av_x + bv_y + cv_w) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[l = \{ax + by + c = 0\} = [a, b, c]^T \]

\[p = [px, py, 1]^T \]

\[r' = Mr \]

\[s' = Ms \]
Example

\[l = \{ x + 0y + 0 = 0 \} \]
\[l = [1, 0, 0]^T \]
\[p = [p_x, p_y, 1]^T \]
\[p' = [p'_x, p'_y, 1]^T \]
\[v = [d, 0, 1]^T \]

\[M = \begin{bmatrix} d & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -d \end{bmatrix} \]
\[M = [1, 0, 0] - \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} d \\ 0 \\ 1 \end{bmatrix} \right) I_3 \]
\[= \begin{bmatrix} 0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d \end{bmatrix} \]

\[p' = Mp = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d \end{bmatrix} \begin{bmatrix} wp_x \\ wp_y \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ -dwp_y \\ wp_x - wd \end{bmatrix} = \begin{bmatrix} 0 \\ -dp_y/p_x - d \end{bmatrix} \sim \begin{bmatrix} 0 \\ -dp_y/p_x - d \end{bmatrix} \]
Discussion

- \textbf{Discussion}

- M and λM represent the same transformation \(\lambda M p = \lambda p' \)

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & -d & 0 \\
1 & 0 & -d
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{d} & 0 & 1
\end{bmatrix}
\]

are the same transformation

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & -d & 0 \\
1 & 0 & -d
\end{bmatrix}
\begin{bmatrix}
w p_x \\
w p_y \\
w
\end{bmatrix}
= \begin{bmatrix}
0 \\
-d w p_y \\
w p_x - d w
\end{bmatrix}
= \begin{bmatrix}
0 \\
-\frac{-d p_y}{p_x - d} \\
1
\end{bmatrix}
\sim \begin{bmatrix}
0 \\
-\frac{-d p_y}{p_x - d}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 \\
-\frac{-p_y}{\frac{p_x}{d} - 1}
\end{bmatrix}
\sim \begin{bmatrix}
0 \\
\frac{-p_y}{\frac{p_x}{d} - 1}
\end{bmatrix}
= \begin{bmatrix}
0 \\
wp_y \\
-w \frac{p_x}{d} + w
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{d} & 0 & 1
\end{bmatrix}
\begin{bmatrix}
w p_x \\
w p_y \\
w
\end{bmatrix}
\]
Parallel Projection

– Moving d to infinity results in parallel projection

$$\lim_{d \to \pm \infty} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{d} & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

– x-component is mapped to zero
– y- and w-component are unchanged
Parallel Projection

\[l = \{1x + 0y + 0 = 0\} \]
\[l = [1, 0, 0]^T \]
\[v = [-1, 0, 0]^T \]
\[p' = [p'_x, p'_y, 1]^T \]
\[p = [p_x, p_y, 1]^T \]

\[M = vl^T - (l \cdot v)I_3 \]

\[M = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} (1, 0, 0) - \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \right) I_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

X-component is mapped to zero.
Y-component is unchanged.
Discussion

− 2D transformation in homogeneous form

\[M = \begin{pmatrix} m_{11} & m_{12} & t_1 \\ m_{21} & m_{22} & t_2 \\ p_1 & p_2 & w \end{pmatrix} \]

− \(p_1 \) and \(p_2 \) map the homogeneous component \(w \) of a point to a value \(w' \) that depends on \(x \) and \(y \)

− Therefore, the scaling of a point depends on \(x \) and / or \(y \)

− In perspective projections, this is generally employed to scale the \(x \)- and \(y \)-component with respect to \(z \), its distance to the viewer
Outline

− Context
− Projections
 − 2D
 − 3D
− Projection transform
− Typical vertex transformations
Setting

- A 3D projection from v onto l maps a point p onto p'
- p' is the intersection of the line through p and v with plane n
- v is the viewpoint, center of perspectivity
- n is the viewplane
- The line through p and v is a projector
- v is not on the plane n, $p \neq v$

$n = \{ax + by + cz + d = 0\} = [a, b, c, d]^T$

$p = [p_x, p_y, p_z, 1]^T$
General Case

- A 3D projection is represented by a matrix in homogeneous notation

\[M = vn^T - (n \cdot v)I_4 \]

\[vn^T = \begin{bmatrix} v_x a & v_x b & v_x c & v_x d \\ v_y a & v_y b & v_y c & v_y d \\ v_z a & v_z b & v_z c & v_z d \\ v_w a & v_w b & v_w c & v_w d \end{bmatrix} \]

\[(n \cdot v)I_4 = (av_x + bv_y + cv_z + dv_w) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[n = \{ax + by + cz + d = 0\} = [a, b, c, d]^T \]

\[p = [p_x, p_y, p_z, 1]^T \]

\[p' = Mp \]

\[r' = Mr \]

\[s' = Ms \]
Example

\[n = \{0x + 0y + 1z + 0 = 0\} \]
\[n = [0, 0, 1, 0]^T \]
\[\mathbf{p} = [p_x, p_y, p_z, 1]^T \]
\[\mathbf{p}' = [p'_x, p'_y, 0, 1]^T \]
\[\mathbf{v} = [0, 0, d, 1]^T \]

\[
\begin{align*}
p'_x &= \frac{p_x}{p_z - d} \\
p'_y &= \frac{p_y}{p_z - d} \\
p'_z &= 0 \\
p' &= M \mathbf{p} = \\
&= \begin{bmatrix}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -d \\
\end{bmatrix}
\begin{bmatrix}
w p_x \\
w p_y \\
w p_z \\
w \\
\end{bmatrix}
= \begin{bmatrix}
-w dp_x \\
-w dp_y \\
0 \\
-w p z \cdot dw \\
\end{bmatrix}
\sim \begin{bmatrix}
\frac{-dp_x}{p_z - d} \\
\frac{-dp_y}{p_z - d} \\
0 \\
1 \\
\end{bmatrix}
\end{align*}
\]

\[M = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -d \\
\end{bmatrix} \cdot (0, 0, 1, 0) - \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix} \cdot I_4 \]
Parallel Projection

\[n = \{0x + 0y + 1z + 0 = 0\} \]
\[n = [0, 0, 1, 0]^T \]
\[v = [0, 0, -1, 0]^T \]
\[p' = [p'_x, p'_y, 0, 1]^T \]
\[p = [p_x, p_y, p_z, 1]^T \]

\[M = vn^T - (n \cdot v)I_4 \]

\[M = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} [0, 0, 1, 0] - \left(\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} \right) I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

X- and y-component are unchanged. Z-component is mapped to zero.
Outline

– Context
– Projections
– Projection transform
 – Motivation
 – Perspective projection
 – Discussion
 – Orthographic projection
– Typical vertex transformations
Modelview Transform

Transformation from local into view space is realized with the modelview transform.
Objects: V^1M_1, V^1M_2, V^1M_3
Camera: $V^1V = I$
Projection Transform

Transformation from view space to clip space / NDC space is realized with the projection transform P.

View frustum

View space / Camera space.

Canonical view volume

Clip space / NDC space.
Clip Space / NDC Space

- Allows simplified and unified implementations
 - Culling
 - Clipping
 - Visibility
 - Parallel ray casting
 - Depth test
 - Projection onto view plane / screen (viewport mapping)
Culling / Clipping / Visibility

Culling

Clipping

Visibility
Outline

– Context
– Projections
– Projection transform
 – Motivation
 – Perspective projection
 – Discussion
 – Orthographic projection
– Typical vertex transformations
Perspective Projection Transform

- Maps a view volume / pyramidal frustum to a canonical view volume
- The view volume is specified by its boundary
 - Left l, right r, bottom b, top t, near n, far f
- The canonical view volume is, e.g., a cube from $(-1,-1,-1)$ to $(1,1,1)$
Perspective Projection Transform

- Is applied to vertices
- Maps
 - The x-component of a projected point from (left, right) to (-1, 1)
 - The y-component of a projected point from (bottom, top) to (-1, 1)
 - The z-component of a point from (near, far) to (-1, 1)
- If a point in view space is inside / outside the view volume, it is inside / outside the canonical view volume
Derivation

\[
\begin{align*}
\frac{y_p}{n} &= \frac{y_v}{z_v} \Rightarrow y_p &= \frac{ny_v}{z_v} \\
x_p &= \frac{nx_v}{z_v}
\end{align*}
\]
Derivation

– From

\[
x_n = \frac{1}{z_v} \left(\frac{2n}{r-l} x_v - \frac{r+l}{r-l} z_v \right) \quad y_n = \frac{1}{z_v} \left(\frac{2n}{t-b} y_v - \frac{t+b}{t-b} z_v \right)
\]

we get

\[
\begin{bmatrix}
 x_c \\
 y_c \\
 z_c \\
 w_c
\end{bmatrix} =
\begin{bmatrix}
 \frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\
 . & . & . & . \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_v \\
 y_v \\
 z_v \\
 1
\end{bmatrix}
\]

Clip coordinates
(clip space)

with

\[
\begin{bmatrix}
 x_n \\
 y_n \\
 z_n \\
 1
\end{bmatrix} =
\begin{bmatrix}
 x_c/w_c \\
 y_c/w_c \\
 z_c/w_c \\
 w_c/w_c
\end{bmatrix}
\]

Normalized device coordinates
(NDC space)
Derivation

- z_v is mapped from (near, far) or (n, f) to (-1, 1)
- The transform does not depend on x_v and y_v
- So, we have to solve for A and B in

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ w_c \end{bmatrix} = \begin{bmatrix} \frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & A & B \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} w_vx_v \\ w_vy_v \\ w_vz_v \\ w_v \end{bmatrix}$$

$$z_n = \frac{z_c}{w_c} = \frac{Az_v + Bw_v}{z_v}$$
Derivation

- $z_v=n$ with $w_v=1$ is mapped to $z_n=-1$
- $z_v=f$ with $w_v=1$ is mapped to $z_n=1$

$$\Rightarrow A = \frac{f+n}{f-n} \quad \Rightarrow B = -\frac{2fn}{f-n}$$

- The complete projection matrix is

$$\begin{pmatrix}
\frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & 1 & 0
\end{pmatrix}$$
Perspective Projection Matrix

\[
P = \begin{bmatrix}
\frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & -\frac{r-l}{t+b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
transforms the view volume, the pyramidal frustum to the canonical view volume

[Song Ho Ahn]
Outline

− Context
− Projections
− Projection transform
 − Motivation
 − Perspective projection
 − Discussion
 − Orthographic projection
− Typical vertex transformations
Symmetric Setting

– The matrix simplifies for $r=-l$ and $t=-b$

\[
\begin{align*}
 r + l &= 0 \\
 r - l &= 2r \\
 t + b &= 0 \\
 t - b &= 2t
\end{align*}
\]

\[P = \begin{bmatrix}
 \frac{n}{r} & 0 & 0 & 0 \\
 0 & \frac{n}{t} & 0 & 0 \\
 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
 0 & 0 & 1 & 0
\end{bmatrix}\]
Variants

- Projection matrices depend on coordinate systems and other settings
- E.g., OpenGL
 - Viewing along negative z-axis in view space
 - Negated values for n and f

\[
P = \begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r+l}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -2fn \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Non-linear Mapping of Depth Values

\[z_n = \frac{f+n}{f-n} - \frac{1}{z_v} \frac{2fn}{f-n} \]

- Near plane should not be too close to zero

\[n = 9 \quad f = 10 \quad n = 1 \quad f = 10 \quad n = 0.1 \quad f = 10 \]
Non-linear Mapping of Depth Values

– Setting the far plane to infinity is not too critical

\[
P = \begin{bmatrix}
\frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & -\frac{r+l}{t+b} & 0 \\
0 & 0 & \frac{f+n}{t-b} & -2fn \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[f \to \infty\]

\[
\Rightarrow \begin{bmatrix}
\frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & -\frac{r+l}{t+b} & 0 \\
0 & 0 & 1 & -2n \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[\Rightarrow z_n = 1 - \frac{2n}{2n}\]

\[n = 1 \quad f = \infty\]
Outline

− Context
− Projections
− Projection transform
 − Motivation
 − Perspective projection
 − Discussion
 − Orthographic projection
− Typical vertex transformations
Orthographic Projection

- View volume is a cuboid and specified by its boundary
 - Left \(l \), right \(r \), bottom \(b \), top \(t \), near \(n \), far \(f \)
- Canonical view volume is a cube from \((-1,-1,-1)\) to \((1,1,1)\)
Derivation

- All components of a point in view coordinates are linearly mapped to the range of (-1,1)

\[x_n = \frac{2}{r-l} x_v - \frac{r+l}{r-l} \quad y_n = \frac{2}{t-b} y_v - \frac{t+b}{t-b} \quad z_n = \frac{2}{f-n} z_v - \frac{f+n}{f-n} \]

- Linear in \(x_v, y_v, z_v \)
- Combination of scale and translation
Orthographic Projection Matrix

– General form

\[
P = \begin{bmatrix}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{r+l}{t+b} \\
0 & 0 & \frac{2}{f-n} & -\frac{r+l}{t-b} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Simplified form for a symmetric view volume

\[\begin{align*}
 r + l &= 0 \\
 r - l &= 2r \\
 t + b &= 0 \\
 t - b &= 2t
\end{align*}\]

\[
\Rightarrow P = \begin{bmatrix}
\frac{1}{r} & 0 & 0 & 0 \\
0 & \frac{1}{t} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Outline

– Context
– Projections
– Projection transform
– Typical vertex transformations
Overview

\(V^{-1} M_i \)

Modelview transform depends on model \(i \).

\(P \)

Projection transform depends on camera parameters.

\[PV^{-1} M_i \]
Coordinate Systems

<table>
<thead>
<tr>
<th>Transform Type</th>
<th>Source Space</th>
<th>Transformation</th>
<th>Target Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model transform:</td>
<td>Local space</td>
<td>→</td>
<td>Global space</td>
</tr>
<tr>
<td>View transform:</td>
<td>Local space</td>
<td>→</td>
<td>Global space</td>
</tr>
<tr>
<td>Inverse view transform:</td>
<td>Global space</td>
<td>→</td>
<td>View space</td>
</tr>
<tr>
<td>Modelview transform:</td>
<td>Local space</td>
<td>→</td>
<td>View space</td>
</tr>
<tr>
<td>Projection transform:</td>
<td>View space</td>
<td>→</td>
<td>Clip space</td>
</tr>
</tbody>
</table>
Camera Placement

\[V = T_{\text{cam}} R_{\text{cam}} \]
Object Placement

Local space

Global space

M_i
View Transform

\[V^{-1} = (T_{\text{cam}} R_{\text{cam}})^{-1} = R_{\text{cam}}^{-1} T_{\text{cam}}^{-1} = R_{\text{cam}}^{T} T_{\text{cam}}^{-1} \]
Projection Transform

View space

Clip space

P
Vertex Transforms - Summary

Transformations are applied to vertices. Internal and external camera parameters are encoded in the matrices for view and projection transform.

\[P R_{\text{cam}}^T T_{\text{cam}}^{-1} M_i \]
References