Computer Graphics Projection

Matthias Teschner

UNI

Homogeneous Coordinates - Summary

$-[x, y, z, w]^{\top}$ with $w \neq 0$ are the homogeneous coordinates of the 3D position $\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^{\top}$
$-[x, y, z, 0]^{\top}$ is a point at infinity in the direction of $(x, y, z)^{\top}$
$-[x, y, z, 0]^{\top}$ is a vector in the direction of $(x, y, z)^{\top}$

- $\left[\begin{array}{llll}m_{00} & m_{01} & m_{02} & t_{0} \\ m_{0} & m_{11} & \text { is a transformation that }\end{array}\right.$ $\begin{array}{llll}m_{10} & m_{11} & m_{12} & t_{1} \\ m_{20} & m_{21} & m_{22} & t_{2}\end{array} \quad$ represents rotation, scale, $\left.\begin{array}{cccc}m_{20} & m_{21} & m_{22} & t_{2} \\ p_{0} & p_{1} & p_{2} & w\end{array}\right]$ shear, translation, projection

Outline

- Context
- Projections
- Projection transform
- Typical vertex transformations

Motivation

- 3D scene with a camera, its view volume and its projection
[Song Ho Ahn]

Orthographic projection

Perspective projection

Motivation

- Rendering generates planar views from 3D scenes
- 3D space is projected onto a 2D plane considering external and internal camera parameters
- Position, orientation, focal length
- Projections can be represented with a matrix in homogeneous notation

Motivation

- Transformation matrix in homogeneous notation
$\left[\begin{array}{cccc}m_{00} & m_{01} & m_{02} & t_{0} \\ m_{10} & m_{11} & m_{12} & t_{1} \\ m_{20} & m_{21} & m_{22} & t_{2} \\ p_{0} & p_{1} & p_{2} & w\end{array}\right]$
- $m_{i j}$ represent rotation, scale, shear
- t_{i} represent translation
- p_{i} are used in projections
$-w$ is the homogeneous component

Example

- Last matrix row can be used to realize divisions by a linear combination of multiples of $p_{x}, p_{y}, p_{z}, 1$

$$
\left.\begin{array}{l}
\boldsymbol{p}^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
p_{0} & p_{1} & p_{2} & w
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
p_{0} p_{x}+p_{1} p_{y}+p_{2} p_{z}+w
\end{array}\right] \\
\sim\left(\frac { \frac { p _ { x } } { p _ { 0 } p _ { x } + p _ { 1 } p _ { y } + p _ { 2 } p _ { z } + w } } { \frac { p _ { 0 } p _ { y } } { p _ { 0 } + p _ { 2 } p _ { z } + p _ { 2 } p _ { z } + w } } \left(\frac{p_{0} p_{x}+p_{1} p_{y}+p_{2} p_{z}+w}{p}\right.\right.
\end{array}\right)
$$

2D Illustration

$$
\boldsymbol{p}^{\prime}=\boldsymbol{M} \boldsymbol{p}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -d & 0 \\
1 & 0 & -d
\end{array}\right]\left[\begin{array}{c}
w p_{x} \\
w p_{y} \\
w
\end{array}\right]=\left[\begin{array}{c}
0 \\
-d w p_{y} \\
w p_{x}-w d
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{-d p_{y}}{p_{x}-d} \\
1
\end{array}\right] \sim\binom{0}{\frac{-d p_{y}}{p_{x}-d}}
$$

Outline

- Context
- Projections
- 2D
- 3D
- Projection transform
- Typical vertex transformations

Setting

- A 2D projection from vonto I maps a point p onto p^{\prime}
$-p^{\prime}$ is the intersection of the line through p and v with line /
- v is the viewpoint,
center of perspectivity
- l is the viewline
- The line through p and v is a projector
$-v$ is not on the line $l, p \neq v$

Classification

- If the homogeneous component of the viewpoint v is not equal to zero, we have a perspective projection
- Projectors are not parallel
- If v is at infinity, we have a parallel projection
- Projectors are parallel

Classification

- Location of viewpoint and orientation of the viewline determine the type of projection
- Parallel (viewpoint at infinity, parallel projectors)
- Orthographic (viewline orthogonal to the projectors)
- Oblique (viewline not orthogonal to the projectors)
- Perspective (non-parallel projectors)
- One-point (viewline intersects one principal axis, i.e. viewline is parallel to a principal axis, one vanishing point)
- Two-point (viewline intersects two principal axes, two vanishing points)

General Case

- A 2D projection is represented by a matrix in homogeneous notation

$$
\begin{aligned}
& \boldsymbol{M}=\boldsymbol{v} \boldsymbol{l}^{\top}-(\boldsymbol{l} \cdot \boldsymbol{v}) \boldsymbol{I}_{3} \\
& \boldsymbol{v} \boldsymbol{l}^{\top}=\left[\begin{array}{ccc}
v_{x} a & v_{x} b & v_{x} c \\
v_{y} a & v_{y} b & v_{y} c \\
v_{w} a & v_{w} b & v_{w} c
\end{array}\right] \\
& (\boldsymbol{l} \cdot \boldsymbol{v}) \boldsymbol{I}_{3}=\left(a v_{x}+b v_{y}+c v_{w}\right)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\boldsymbol{l}=\{1 x+0 y+0=0\} \\
\boldsymbol{l}=[1,0,0]^{\top}
\end{array}
$$

$$
\boldsymbol{p}^{\prime}=\boldsymbol{M} \boldsymbol{p}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -d & 0 \\
1 & 0 & -d
\end{array}\right]\left[\begin{array}{c}
w p_{x} \\
w p_{y} \\
w
\end{array}\right]=\left[\begin{array}{c}
0 \\
-d w p_{y} \\
w p_{x}-w d
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{-d p_{y}}{p_{x}-d} \\
1
\end{array}\right] \sim\binom{0}{\frac{-d p_{y}}{p_{x}-d}}
$$

Discussion

- M and λM represent the same transformation $\lambda M \boldsymbol{p}=\lambda p^{\prime}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -d & 0 \\
1 & 0 & -d
\end{array}\right] \text { and }\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{d} & 0 & 1
\end{array}\right] \text { are the same transformation }} \\
& {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -d & 0 \\
1 & 0 & -d
\end{array}\right]\left[\begin{array}{c}
w p_{x} \\
w p_{y} \\
w
\end{array}\right]=\left[\begin{array}{c}
0 \\
-d w p_{y} \\
w p_{x}-d w
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{-p_{y}}{p_{x}-d} \\
1
\end{array}\right] \sim\binom{0}{\frac{-d p_{y}}{p_{x}-d}}} \\
& =\binom{0}{\frac{-p_{y}}{d y-1}} \sim\left[\begin{array}{c}
0 \\
\frac{-p_{y}}{p_{d}-1} \\
\frac{1}{d}
\end{array}\right]=\left[\begin{array}{c}
0 \\
w p_{y} \\
-w \frac{p_{x}}{d}+w
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{d} & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w p_{x} \\
w p_{y} \\
w
\end{array}\right]
\end{aligned}
$$

Parallel Projection

- Moving d to infinity results in parallel projection
$\lim _{d \rightarrow \pm \infty}\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{d} & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- x-component is mapped to zero
- y - and w-component are unchanged

Parallel Projection

$$
\boldsymbol{M}=\boldsymbol{v} \boldsymbol{l}^{\top}-(\boldsymbol{l} \cdot \boldsymbol{v}) \boldsymbol{I}_{3}
$$

$$
\boldsymbol{M}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right](1,0,0)-\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \boldsymbol{I}_{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

X-component is
mapped to zero.
Y-component is unchanged.

$$
\begin{aligned}
& \boldsymbol{l}=\{1 x+0 y+0=0\} \uparrow y \\
& \boldsymbol{l}=[1,0,0]^{\top} \\
& \begin{array}{|l|l}
\stackrel{\rightharpoonup}{\boldsymbol{v}=[-1,0,0]^{\top}} & \left.\overline{\boldsymbol{p}^{\prime}=\left[p_{x}^{\prime}, p_{y}^{\prime}, 1\right]^{\top}} \overrightarrow{\boldsymbol{p}=[} p_{x}, p_{y}, 1\right]^{\top} \\
& \boldsymbol{x}
\end{array}
\end{aligned}
$$

Discussion

- 2D transformation in homogeneous form
$M=\left(\begin{array}{ccc}m_{11} & m_{12} & t_{1} \\ m_{21} & m_{22} & t_{2} \\ p_{1} & p_{2} & w\end{array}\right)$
$-p_{1}$ and p_{2} map the homogeneous component w of a point to a value w^{\prime} that depends on x and y
- Therefore, the scaling of a point depends on x and / or y
- In perspective projections, this is generally employed to scale the x - and y-component with respect to z, its distance to the viewer

Outline

- Context
- Projections
- 2D
- 3D
- Projection transform
- Typical vertex transformations

Setting

- A 3D projection from vonto I maps a point p onto p^{\prime}
$-p^{\prime}$ is the intersection of the line through p and v with plane n
$-v$ is the viewpoint,
center of perspectivity
$-n$ is the viewplane
- The line through p and v is a projector
$-v$ is not on the plane $n, p \neq v$

$$
\boldsymbol{n}=\{a x+b y+c z+d=0\}=[a, b, c, d]^{\top}
$$

General Case

- A 3D projection is represented

$$
\boldsymbol{n}=\{a x+b y+c z+d=0\}=[a, b, c, d]^{\top}
$$ by a matrix in homogeneous notation

$$
\begin{aligned}
& \boldsymbol{M}=\boldsymbol{v} \boldsymbol{n}^{\top}-(\boldsymbol{n} \cdot \boldsymbol{v}) \boldsymbol{I}_{4} \\
& \boldsymbol{v} \boldsymbol{n}^{\top}=\left[\begin{array}{cccc}
v_{x} a & v_{x} b & v_{x} c & v_{x} d \\
v_{y} a & v_{y} b & v_{y} c & v_{y} d \\
v_{z} a & v_{z} b & v_{z} c & v_{z} d \\
v_{w} a & v_{w} b & v_{w} c & v_{w} d
\end{array}\right] \\
& (\boldsymbol{n} \cdot \boldsymbol{v}) \boldsymbol{I}_{4}=\left(a v_{x}+b v_{y}+c v_{z}+d v_{w}\right)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example

$$
\boldsymbol{p}^{\prime}=\boldsymbol{M} \boldsymbol{p}=\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -d
\end{array}\right]\left[\begin{array}{c}
w p_{x} \\
w p_{y} \\
w p_{z} \\
w
\end{array}\right]=\left[\begin{array}{c}
-d w p_{x} \\
-d w p_{y} \\
0 \\
w p_{z}-d w
\end{array}\right]=\left[\begin{array}{c}
\frac{-d p_{x}}{p_{z}-d} \\
\frac{-d p_{y}}{p_{z}-d} \\
0 \\
1
\end{array}\right] \sim\left(\begin{array}{c}
\frac{-d p_{x}}{p_{z}-d} \\
\frac{-d p_{y}}{p_{z}-d} \\
0
\end{array}\right)
$$

Parallel Projection

$M=\boldsymbol{v} \boldsymbol{n}^{\top}-(n \cdot v) \boldsymbol{I}_{4}$
$\boldsymbol{M}=\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right][0,0,1,0]-\left(\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right]\right) \boldsymbol{I}_{4}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
X - and y-component are unchanged. Z-component is mapped to zero.

Outline

- Context
- Projections
- Projection transform
- Motivation
- Perspective projection
- Discussion
- Orthographic projection
- Typical vertex transformations

Modelview Transform

Transformation from local into view space is realized with the modelview transform Objects: $V^{-1} M_{1}, V^{-1} M_{2}, V^{-1} M_{3}$ Camera: $V^{-1} V=I$

Projection Transform

Clip Space / NDC Space

- Allows simplified and unified implementations
- Culling
- Clipping
- Visibility
- Parallel ray casting
- Depth test
- Projection onto view plane / screen (viewport mapping)

Culling / Clipping / Visibility

Culling

Clipping

Visibility

Outline

- Context
- Projections
- Projection transform
- Motivation
- Perspective projection
- Discussion
- Orthographic projection
- Typical vertex transformations

Perspective Projection Transform

- Maps a view volume / pyramidal frustum to a canonical view volume
- The view volume is
[Song Ho Ahn] specified by its boundary
- Left l, right r, bottom b, top t, near n, far f
- The canonical view volume is, e.g., a cube from ($-1,-1,-1$) to ($1,1,1$)

Perspective Projection Transform

- Is applied to vertices
- Maps
- The x-component of a projected point from (left, right) to (-1, 1)
- The y-component of a projected point from (bottom, top) to ($-1,1$)
- The z-component of a point from (near, far) to (-1, 1)
- If a point in view space is inside / outside the view volume, it is inside /outside the canonical view volume

Derivation

$$
\begin{aligned}
y_{n} & =\alpha y_{p}+\beta \\
\alpha & =\frac{1-(-1)}{t-b} \quad \beta=-\frac{t+b}{t-b} \\
y_{n} & =\frac{2}{t-b} y_{p}-\frac{t+b}{t-b} \\
y_{n} & =\frac{1}{z_{v}}\left(\frac{2 n}{t-b} y_{v}-\frac{t+b}{t-b} z_{v}\right) \\
x_{n} & =\frac{1}{z_{v}}\left(\frac{2 n}{r-l} x_{v}-\frac{r+l}{r-l} z_{v}\right)
\end{aligned}
$$

Derivation

- From

$$
x_{n}=\frac{1}{z_{v}}\left(\frac{2 n}{r-l} x_{v}-\frac{r+l}{r-l} z_{v}\right) \quad y_{n}=\frac{1}{z_{v}}\left(\frac{2 n}{t-b} y_{v}-\frac{t+b}{t-b} z_{v}\right)
$$

we get

$$
\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{v} \\
y_{v} \\
z_{v} \\
1
\end{array}\right]
$$

Clip coordinates (clip space)
with

$$
\left[\begin{array}{c}
x_{n} \\
y_{n} \\
z_{n} \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{c} / w_{c} \\
y_{c} / w_{c} \\
z_{c} / w_{c} \\
w_{c} / w_{c}
\end{array}\right]
$$

Normalized device
coordinates
(NDC space)

Derivation

$-z_{v}$ is mapped from (near, far) or (n, f) to $(-1,1)$

- The transform does not depend on x_{v} and y_{v}
- So, we have to solve for A and B in

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\
0 & 0 & A & B \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
w_{v} x_{v} \\
w_{v} y_{v} \\
w_{v} z_{v} \\
w_{v}
\end{array}\right]} \\
& z_{n}=\frac{z_{c}}{w_{c}}=\frac{A z_{v}+B w_{v}}{z_{v}}
\end{aligned}
$$

Derivation

$-z_{v}=n$ with $w_{v}=1$ is mapped to $z_{n}=-1$
$-z_{v}=f$ with $w_{v}=1$ is mapped to $z_{n}=1$
$\Rightarrow A=\frac{f+n}{f-n} \quad \Rightarrow B=-\frac{2 f n}{f-n}$

- The complete projection matrix is

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective Projection Matrix

$\boldsymbol{P}=\left[\begin{array}{cccc}\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\ 0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\ 0 & 0 & 1 & 0\end{array}\right]$
transforms the view volume, the pyramidal frustum to the
canonical view volume
[Song Ho Ahn]

Outline

- Context
- Projections
- Projection transform
- Motivation
- Perspective projection
- Discussion
- Orthographic projection
- Typical vertex transformations

Symmetric Setting

- The matrix simplifies for $r=-l$ and $t=-b$

$$
\begin{aligned}
r+l & =0 \\
r-l & =2 r \\
t+b & =0 \\
t-b & =2 t
\end{aligned} \quad \Rightarrow \boldsymbol{P}=\left[\begin{array}{cccc}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{n}{t} & 0 & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Variants

- Projection matrices depend on coordinate systems and other settings
- E.g., OpenGL
- Viewing along negative z-axis in view space
- Negated values for n and f
[Song Ho Ahn]

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Non-linear Mapping of Depth Values

$$
z_{n}=\frac{f+n}{f-n}-\frac{1}{z_{v}} \frac{2 f n}{f-n}
$$

- Near plane should not be too close to zero

$$
n=9 \quad f=10
$$

$$
n=1 \quad f=10
$$

$$
n=0.1 \quad f=10
$$

Non-linear Mapping of Depth Values

- Setting the far plane to infinity is not too critical

$$
\begin{aligned}
& \boldsymbol{P}=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right] \\
& f \rightarrow \infty \\
& \Rightarrow\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\
0 & 0 & 1 & -2 n \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \Rightarrow z_{n}=1-\frac{2 n}{z_{v}} \\
& \text { University of Freiburg - Computer Science Department }-41
\end{aligned}
$$

Outline

- Context
- Projections
- Projection transform
- Motivation
- Perspective projection
- Discussion
- Orthographic projection
- Typical vertex transformations

Orthographic Projection

- View volume is a cuboid and specified by its boundary
- Left I, right r, bottom b, top t, near n, far f
- Canonical view volume is a cube from $(-1,-1,-1)$ to $(1,1,1)$

[Song Ho Ahn]

Derivation

- All components of a point in view coordinates are linearly mapped to the range of $(-1,1)$

$$
x_{n}=\frac{2}{r-l} x_{v}-\frac{r+l}{r-l}
$$

$$
y_{n}=\frac{2}{t-b} y_{v}-\frac{t+b}{t-b}
$$

$$
z_{n}=\frac{2}{f-n} z_{v}-\frac{f+n}{f-n}
$$

- Linear in x_{v}, y_{v}, z_{v}
- Combination of scale and translation

Orthographic Projection Matrix

- General form

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Simplified form for a symmetric view volume

$$
\begin{aligned}
r+l & =0 \\
r-l & =2 r \\
t+b & =0 \\
t-b & =2 t
\end{aligned} \quad \Rightarrow \boldsymbol{P}=\left[\begin{array}{cccc}
\frac{1}{r} & 0 & 0 & 0 \\
0 & \frac{1}{t} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Outline

- Context
- Projections
- Projection transform
- Typical vertex transformations

Overview

$$
V^{-1} M_{i}
$$

Modelview transform depends on model i.

Local space

View space

Clip space

$$
\boldsymbol{P} \boldsymbol{V}^{-1} \boldsymbol{M}_{i}
$$

Coordinate Systems

Model transform:
View transform:
Inverse view transform:
Modelview transform:
Projection transform:

Local space \Rightarrow Global space
Local space \Rightarrow Global space
Global space \Rightarrow View space
Local space \Rightarrow View space
View space \Rightarrow Clip space

Camera Placement

Object Placement

View Transform

Global space

Projection Transform

View space

Clip space

P

Vertex Transforms - Summary

References

- Song Ho Ahn: "OpenGL", http://www.songho.ca/ .
- Duncan Marsh: "Applied Geometry for Computer Graphics and CAD", Springer Verlag, Berlin, 2004.

