Computer Graphics Summary, Applications, and Outlook

Matthias Teschner

Introduction to Computer Graphics

Rendering	Modeling	Simulation		
Homogeneous Notation				
Ray Casting	Bézier Curves	Particle Fluids		
Rasterization	Piecewise			
Phong	Polynomial Curves			

University of Freiburg – Computer Science Department – 2

Simulations / Renderings vs. Experiments / Real-World Videos

- Less expensive
- Faster
- More flexible
- Less dangerous

... if sufficiently accurate

Application

The Ford Motor Company of Australia

University of Freiburg – Computer Science Department – 4

Challenges

- Prototype
- Sensors
 - Wetting, pressure, volume, flow rate, pathline, ...
- Analysis
- Redesign
- Prototype

The Ford Motor Company of Australia

State-of-the-Art in 2014

Merkle & Partner Commercial CFD Product

> UNI FREIBURG

Current State-of-the-Art

Johan Idoffsson Chalmers University

Volvo Cars

PreonLab FIFTY2 Technology

BURG

UN I

Evaluation

Computer Science in Simulation

Efficiency	Usability	Reliability
Neighbor search	Boundary representation flexible, fast pre-proc.	Implicit formulations
Pressure solve large time steps	Pressure solver simple, intuitive setup	
Boundary handling large time steps	Monolithic solutions e.g. rigid-body solver	
•••	Pre- and Postprocessing	

Further Applications

– Medicine

. . .

- Climate Research
- Entertainment

Modeling - Simulation - Rendering

© Spellwork Pictures

Modeling

UNI FREIBURG

Modeling - Simulation - Rendering

© Spellwork Pictures

UNI FREIBURG

Simulation

Rendering

Modeling - Simulation - Rendering

© Spellwork Pictures

University of Freiburg – Computer Science Department – 13

FREIBURG

Specialization Courses – Topics

Simulation
Particle Motion
Elastic Solids
Fluids (Particles and Grids)
Rigid Bodies
Contact

University of Freiburg – Computer Science Department – 14

Specialization Courses – Concepts

Rendering	Simulation	
Monte Carlo Integration	Smoothed Particle Hydrodynamics	
Monte Cano Integration	Shoothed Farticle Flydrodynamics	
Finite Element Modeling	Finite Differences	
Linear Systems		
Spatial Data Structures		
Real Time Graphics / High Performance Computing		

University of Freiburg – Computer Science Department – 15

Rendering Equation

$$L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) \mathrm{d}\boldsymbol{\omega}_i$$

- Establishes relations between incident and exitant radiances
- Expresses the steady state of radiances in a scene
- Governs the computation of radiances from all scene points into all directions

Akenine-Möller et al.

Solving the Rendering Equation

- Exitant radiances from all scene points into all directions

 $L_e(oldsymbol{p}
ightarrowoldsymbol{\omega}_o)$

Cornell box

University of Freiburg – Computer Science Department – 17

Particle Simulation

University of Freiburg – Computer Science Department – 18

FREIBURG

Projects – Theses

Rendering Track	Simulation Track
Simple Raytracer	Simple Fluid Solver
Data Structures	Data Structures
Stochastic Raytracer	Incompressible SPH Solver

Features / Performance / Research

Please contact me per email two / three weeks before the semester starts.

UNI FREIBURG

Image Processing

- Slides, recordings, information on

- https://lmb.informatik.unifreiburg.de/lectures/image_processing/
- First class on
 - Tuesday, June 13, 14:15

Computer Graphics Summary, Applications, and Outlook

Matthias Teschner