
Image Processing and Computer Graphics
Prof. Dr.-Ing. M. Teschner

Exercise 1 - Transformations

1 Transformation of objects

1. Transform the object ABCDEF given below to the object A’B’C’D’E’F’. Give matrices
in homogenous notation for each step, show in which order they have to be applied and
compute the final model transform.

2. If the camera position and viewing direction is given by

V =





1√
2

−
1√
2

2
1√
2

1√
2

−3

0 0 1



 ,

what is the corresponding ModelView transform?

The coordinates of the points areA(−6/4),B(−5/4),C(−5/2),D(−4/4),E(−3/2),F (−2/4),
G(−4/8) andA′(2, 5/1, 5),B′(3/2),C ′(2/3),D′(3, 5/2, 5),E ′(3/4),F ′(4, 5/3, 5),G′(5, 5/0, 5).

2 Transformation basics in OpenGL

In the following exercises, we get familiar with transformations in OpenGL. Use the commands
glRotated(), glTranslated() andglMultMatrixd() for passing transformations to OpenGL. Note
that4× 4-matrices are generally stored in linear arrays with16 values. While C/C++ uses row



major order, OpenGL uses column major order for these arrays. Thus,glMultMatrixd() expects
a 16-value array which denotes a matrix in column major order. There is also the command
glMultTransposeMatrixd(), which expects matrices in row major order, but it is probably better
to get used to the column major notation as it is the standard OpenGL interpretation, and e. g.
querying a matrix withglGetDoublev() also returns column major matrices. Therefore, we
recommend using theglMultMatrixd() command.

F.Y.I. We usually think of vectors as column vectors, and therefore, we multiply matrices from
the left. However, we could equally interpret vectors as rowvectors and multiply matrices from
the right. Then, transposing the column vectorAx yields withxTAT , so multiplying from the
left is the same like multiplying the transpose from the right. Second, interpreting a row major
matrix as a column major matrix obviously corresponds to taking the transposed matrix. Thus,
in the resulting vector there is no difference between interpreting the matrix as column major
and multiplying it from the left or interpreting it as row major and multiplying it from the right,
and it’s up to you to choose your favorite interpretation. However, we would recommend the
first version.

a) Use the commandglTranslated() to translate an object by2 units inx-direction. Then, use
the commandglMultMatrixd() with an appropriate matrixT that yields the same result.

b) Use the commandglRotated() to rotate an object by45◦ around they-axis. Again, use
glMultMatrixd() with a4× 4-matrixR to get the same result.

c) An object should first be rotated byR and then translated byT given in (a) and (b), respec-
tively. Write down the resulting model transform.

d) In which order do you have to perform theglTranslated() and glRotated() commands in
order to get the transformation demanded in (c)? If you are not sure, compute the resulting
transformation by hand and useglMultMatrixd() to compare the visual result.

e) If the camera is transformed by

V =









1 0 0 1
0 −1 0 2
0 0 −1 3
0 0 0 1









, (1)

which is the resulting ModelView matrix?

3 View Transform

In this exercise, we develop thegluLookAt() function, which performs the view transform in
OpenGL for a given camera position, a point the camera looks at and a given up-vector, i. e.
it puts the inverse view transform onto the matrix stack. In exercise 4, this function is re-
implemented.

At the beginning, the camera is located at the origin with viewing directionview0 = (0, 0,−1)T

and up-vectorup
0
= (0, 1, 0)T . view0 andup

0
are completed in a natural way bys0 =

view0 × up
0
= (1, 0, 0)T to form an orthonormal basis (an orthonormal basis is a basiswhere

all basis vectors are orthogonal to each other and have unit length).

a) Leteye = (0, 3,−4)T be the position of the camera,center = (0, 0, 0)T the center point
where the camera looks at, andup = (1, 0, 0)T be the up-vector of the camera. What is the



viewing directionview, which vectors completes an orthonormal basis in a natural way,
and how does the basis look like?

b) The ordering of the standard orthonormal basis isB0 = (s0,up0
,view0). Which matrix

transformsB0 to B = (s,up,view)? Obviously, this is the rotational part of the view
transform.

c) Additionally, the camera has to be translated toeye. Which operation should be performed
first, translation or rotation?

d) Hence, which matrix has to be put onto the ModelView matrixstack? Write down the 16-
value array and keep exercise 2 in mind.

e) If one choosesup′ = (1, 0.3,−0.4) to be the up vector, it wouldn’t be orthogonal to the
viewing direction, and therefore, the view transform wouldn’t be a rotation any more. In
order to correct this drawback, one has to orthogonalizeup′ manually before continuing.

Show thatup := up′
− view(up′

· view) is orthogonal toview.

Alternatively, lets = view × up′ andup× := view × s. Then, by constructionview, s
andup× are orthogonal to each other. Show thatup = up×.

4 Implementation

In this exercise, we want to become familiar with implementing transformations in OpenGL.
Use the TransformationBasics - framework from the course webpage. Each part where some-
thing should be implemented is marked with a //TODO. In the accompanying executable files,
you can see one possible solution, but you are free to implement different scenarios.

The files are prepared for Visual Studio 2008. You are free to use any platform, but your
submission has to be compilable with Visual Studio 2008 (i. e. you must not use compiler-
specific syntax in the header and code files).

a) Draw some basic objects into the scene (at least two), using e.g.gluSolidSphere(), gluSolid-
Torus() etc. Move them to different positions, and preferably use different colors for the
objects. Insert your code inCViewer::draw() in viewer.cpp.

b) Implement thesetLookAt() function in the class CViewer in viewer.cpp, which should re-
flect thegluLookAt() function, and replace the call ofgluLookAt() in CViewer::initialize()
in viewer.cpp bysetLookAt(). Check the correctness of you implementation by comparing
either the matrices or the visual result.

Instead of establishing the inverse view transformation matrix as done in exercise 3, it is
easier to perform rotation and translation separately. Thus, establish the rotation matrix
according to exercise 3 (a)-(e) and useglMultMatrixd() to pass it to OpenGL. UseglTrans-
lated() to perform the appropriate translation. Be careful in which order the commands have
to be performed (see exercise 2).

c) Use the PreciseTimer-class to introduce different time-dependent relative movements for the
objects, e.g. one object could be rotating, one object couldbe moving back and forth. . .

d) Implement a time-dependent camera rotation around they-axis. Establish the additional
view transform explicitly as a matrix and use theglMultMatrixd() command.



5 Resources

• Course homepage: http://cg.informatik.uni-freiburg.de/teaching.htm

• C++ introduction: e. g. http://www.cplusplus.com/doc/tutorial/

• OpenGL web page: http://www.opengl.org/

• OpenGL introduction: e. g. http://www.codeworx.org/opengl_tuts.php

• OpenGL Wiki: http://wiki.delphigl.com

• VisualStudio introduction: http://cg.informatik.uni-freiburg.de/teaching/VisualStudio8.pdf


