Pattern Recognition, Image Processing and Computer Graphics Test Exam

Rendering Pipeline	true	false
The depth test is performed in the fragment processing stage.	\otimes	\bigcirc
Stencil tests are performed in the vertex processing stage.	\bigcirc	\otimes
In Phong shading, the illumination model is evaluated per vertex. In Gouraud shading, however, the illumination model is evaluated per fragment.	\bigcirc	\otimes
Blending combines the color of an incoming fragment with the framebuffer color at the pixel position of the incoming fragment. The resulting color replaces the respective framebuffer color.	\otimes	0
Homogeneous Coordinates and Transforms	true	false
The same modelview transform is applied to all objects in a scene.	\bigcirc	\otimes
Affine transformations map the midpoint of a line segment to the midpoint of the transformed line segment.	\otimes	\bigcirc
$(9, 6, 3, 1)^{T}, (-9, -6, -3, -1)^{T}, (9 \cdot \sqrt{2}, 6 \cdot \sqrt{2}, 3 \cdot \sqrt{2}, 1 \cdot \frac{2}{\sqrt{2}})^{T}$ are all homogeneous coordinates of the same point in Cartesian space.	\otimes	\bigcirc
$(3,4,0)^T$ is a point at infinity on the line $4x - 3y + 1 = 0$.	\otimes	\bigcirc
Projections	true	false
Perspective projection is an affine transform.	\bigcirc	\otimes
The orthographic projection is a combination of translation and scaling.	\otimes	\bigcirc
Projective transforms map from object space to clip space.	\bigcirc	\otimes
Perspective projections non-linearly map the z-component from camera / eye space to normalized device coordinates.	\otimes	\bigcirc

Lighting false true In the Phong illumination model, the computation of the specular \bigcirc \otimes component is independent from the light source direction. In Phong shading, the lighting model is evaluated per vertex, not \otimes \bigcirc per fragment. **Ray Casting** false true Consider a 3D plane through point $(0,0,0)^{\mathsf{T}}$ with surface normal \otimes \bigcirc $(1,0,0)^{\mathsf{T}}$. A ray with origin $(-1,0,0)^{\mathsf{T}}$ and direction $(1,1,0)^{\mathsf{T}}$ intersects this plane at point $(0, 1, 0)^{\mathsf{T}}$. All points $p(b_1, b_2) = (1 - b_1 - b_2)p_0 + b_1p_1 + b_2p_2$ with $b_1 \ge 0, b_2 \ge 0$ \otimes \bigcirc $0, b_1 + b_2 \leq 1$ are within the triangle formed by points $\boldsymbol{p}_0, \boldsymbol{p}_1, \boldsymbol{p}_2$. Curves false true $\boldsymbol{x}(t) = (1-t)^2 \boldsymbol{p}_0 + 2t(1-t)t \boldsymbol{p}_1 + t^2 \boldsymbol{p}_2$ with $0 \le t \le 1$ is a quadratic \otimes ()Bézier curve. The Bernstein polynomials of degree 2 can be written in matrix \otimes \bigcirc form as $\begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}$. Consider a quadratic Bézier curve with control points p_0, p_1, p_2 . \bigcirc \otimes The point $\boldsymbol{x}(t)$ on this curve for $0 \leq t \leq 1$ can be computed as $\boldsymbol{x}(t) = (1-t)((1-t)\boldsymbol{p}_0 + t\boldsymbol{p}_1) - t((1-t)\boldsymbol{p}_1 + t\boldsymbol{p}_2).$ The curve $\boldsymbol{x}(t) = (1 + t^3, 2)^{\mathsf{T}}$ is C^1 continuous. \otimes \bigcirc **Particle Fluids** false true In an SPH fluid solver, the density at a particle is computed as \otimes ()sum over adjacent particles as $\rho_i = \sum_i \rho_j W_{ij}$. In an SPH fluid solver, the Verlet scheme updates particle posi- \otimes \bigcirc tions and velocities with $\boldsymbol{x}^{t+h} = \boldsymbol{x}^t + h\boldsymbol{v}^t$ and $\boldsymbol{v}^{t+h} = \boldsymbol{v}^t + h\boldsymbol{a}^t$.