Pattern Recognition, Image Processing and Computer Graphics Test Exam

Rendering Pipeline

true false

The depth test is performed in the fragment processing stage.

Stencil tests are performed in the vertex processing stage.

In Phong shading, the illumination model is evaluated per vertex.

In Gouraud shading, however, the illumination model is evaluated per fragment.
Blending combines the color of an incoming fragment with the framebuffer color at the pixel position of the incoming fragment. The resulting color replaces the respective framebuffer color.

Homogeneous Coordinates and Transforms
 true false

The same modelview transform is applied to all objects in a scene.

Affine transformations map the midpoint of a line segment to the midpoint of the transformed line segment.
$(9,6,3,1)^{\top},(-9,-6,-3,-1)^{\top},\left(9 \cdot \sqrt{2}, 6 \cdot \sqrt{2}, 3 \cdot \sqrt{2}, 1 \cdot \frac{2}{\sqrt{2}}\right)^{\top}$ are all \otimes homogeneous coordinates of the same point in Cartesian space.
$(3,4,0)^{T}$ is a point at infinity on the line $4 x-3 y+1=0$.

Projections

true false

Perspective projection is an affine transform.

The orthographic projection is a combination of translation and scaling.
Projective transforms map from object space to clip space.
Perspective projections non-linearly map the z-component from camera / eye space to normalized device coordinates.

Lighting

true false

In the Phong illumination model, the computation of the specular component is independent from the light source direction.
In Phong shading, the lighting model is evaluated per vertex, not per fragment.

Ray Casting

true false

Consider a 3D plane through point $(0,0,0)^{\top}$ with surface normal $(1,0,0)^{\top}$. A ray with origin $(-1,0,0)^{\top}$ and direction $(1,1,0)^{\top}$ intersects this plane at point $(0,1,0)^{\top}$.
All points $\boldsymbol{p}\left(b_{1}, b_{2}\right)=\left(1-b_{1}-b_{2}\right) \boldsymbol{p}_{0}+b_{1} \boldsymbol{p}_{1}+b_{2} \boldsymbol{p}_{2}$ with $b_{1} \geq 0, b_{2} \geq$ $0, b_{1}+b_{2} \leq 1$ are within the triangle formed by points $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}$.

Curves

true false
$\boldsymbol{x}(t)=(1-t)^{2} \boldsymbol{p}_{0}+2 t(1-t) t \boldsymbol{p}_{1}+t^{2} \boldsymbol{p}_{2}$ with $0 \leq t \leq 1$ is a quadratic Bézier curve.
The Bernstein polynomials of degree 2 can be written in matrix
\square
form as $\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}1 \\ t \\ t^{2}\end{array}\right)$.
Consider a quadratic Bézier curve with control points $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}$. The point $\boldsymbol{x}(t)$ on this curve for $0 \leq t \leq 1$ can be computed as $\boldsymbol{x}(t)=(1-t)\left((1-t) \boldsymbol{p}_{0}+t \boldsymbol{p}_{1}\right)-t\left((1-t) \boldsymbol{p}_{1}+t \boldsymbol{p}_{2}\right)$.
The curve $\boldsymbol{x}(t)=\left(1+t^{3}, 2\right)^{\top}$ is C^{1} continuous.

Particle Fluids

true false

In an SPH fluid solver, the density at a particle is computed as sum over adjacent particles as $\rho_{i}=\sum_{j} \rho_{j} W_{i j}$.
In an SPH fluid solver, the Verlet scheme updates particle posi-
tions and velocities with $\boldsymbol{x}^{t+h}=\boldsymbol{x}^{t}+h \boldsymbol{v}^{t}$ and $\boldsymbol{v}^{t+h}=\boldsymbol{v}^{t}+h \boldsymbol{a}^{t}$.

