Pattern Recognition, Image Processing and Computer Graphics Test Exam

Rendering Pipeline	true	false
The depth test is performed in the fragment processing stage.	\otimes	0
Stencil tests are performed in the vertex processing stage.	\bigcirc	\otimes
In Phong shading, the illumination model is evaluated per vertex. In Gouraud shading, however, the illumination model is evaluated per fragment.	\bigcirc	\otimes
Blending combines the color of an incoming fragment with the framebuffer color at the pixel position of the incoming fragment. The resulting color replaces the respective framebuffer color.	\otimes	0
Homogeneous Coordinates and Transforms	true	false
The same modelview transform is applied to all objects in a scene.	\bigcirc	\otimes
Affine transformations map the midpoint of a line segment to the midpoint of the transformed line segment.	\otimes	\bigcirc
$(9,6,3,1)^T$, $(-9,-6,-3,-1)^T$, $(9\cdot\sqrt{2},6\cdot\sqrt{2},3\cdot\sqrt{2},1\cdot\frac{2}{\sqrt{2}})^T$ are all homogeneous coordinates of the same point in Cartesian space.	\otimes	\bigcirc
$(3,4,0)^T$ is a point at infinity on the line $4x - 3y + 1 = 0$.	\otimes	\bigcirc
Projections	true	false
Perspective projection is an affine transform.	\bigcirc	\otimes
In OpenGL, the orthographic projection is a combination of trans- lation and scaling.	\otimes	\bigcirc
In OpenGL, projective transforms map from object space to clip space.	\bigcirc	\otimes
In OpenGL, perspective projections non-linearly map the z- component from camera / eye space to normalized device coordi- nates.	\otimes	0

Lighting	true	false
The inverse square law states, that the number of photons emitted in direction ω and hitting a planar surface area dA orthogonal to ω at distance r is inversely proportional to r^2 .	\otimes	\bigcirc
Radiance is radiant flux per unit solid angle per unit projected area incident on, emerging from, passing through a point of a surface in a certain direction.	\bigcirc	\otimes
If wavelengths in the visible spectrum are equally distributed, humans perceive such mixtures as chromatic colors.	\bigcirc	\otimes
In the Phong illumination model, the computation of the specular component is independent from the light source direction.	\bigcirc	\otimes
In Phong shading, the lighting model is evaluated per vertex, not per fragment.	0	\otimes
Shadow Algorithms	true	false
In projection shadows, the geometry of occluders has to be pro- cessed twice in the rendering pipeline.	\otimes	\bigcirc
In shadow mapping, the shadow map stores distances to shadowed surface points.	\bigcirc	\otimes
In the z-pass algorithm for shadow volumes, the stencil value at a pixel position is incremented if a fragment of a front face of the shadow volume at this pixel position is closer to the viewer than the closest fragment of the scene at this pixel position.	\otimes	0
The z-fail algorithm does not work, if shadow volume polygons	\bigcirc	\otimes