Points on a Line

A line in the Cartesian plane can be written as $a x+b y+c=0$. We consider a point (x, y) on this line and its homogeneous notation (X, Y, W) with $x=\frac{X}{W}$ and $y=\frac{Y}{W}$. This point is on the line, thus: $a \frac{X}{W}+b \frac{Y}{W}+c=0$. Multiplying with W, we get $a X+b Y+c W=0$.

Interestingly, $a X+b Y+c W=0$ can be checked for all (X, Y, W), even for $W=0$. E.g., the homogeneous coordinates $(b,-a, 0)$ and $(-b, a, 0)$ are on the line as $a b-b a+c \cdot 0=-a b+b a+c \cdot 0=0 .(b,-a, 0)$ and $(-b, a, 0)$ can be interpreted as points at infinity on the line $a x+b y+c=0$ or they can be interpreted as the direction of that line.

It can be seen that all lines $a x+b y+c=0$ with fixed a and b, but varying c have the same direction $(b,-a, 0)$ or $(-b, a, 0)$. We have two direction as we can move in two directions on a line. Employing the concept of points at infinity, we can say that parallel lines meet at the same point at infinity: $(b,-a, 0)$ in one direction or $(-b, a, 0)$ in the other direction. These points at infinity only depend on a and b. So, all lines $a x+b y+c=0$ with fixed a and b, but varying c meet at the same two points at infinity.

Points on a Line 2

We consider a line in parametric form $(x(t), y(t))=\left(t, \frac{-a t-c}{b}\right)$. For all t, the Cartesian point $(x(t), y(t))$ fulfills $a x(t)+b y(t)+c=0$, so all points $(x(t), y(t))$ are on that line. One homogeneous notation for $(x(t), y(t))$ is $(x(t), y(t), 1)=$ $\left(t, \frac{-a t-c}{b}, 1\right)$. Multiplying with $\frac{b}{t}$, we get $\left(b,-a-\frac{c}{t}, \frac{b}{t}\right)$ with $t \neq 0$. Now, we move to infinity along the line, i.e. $t \rightarrow \infty$ or $t \rightarrow-\infty$. In this case, the homogeneous form $\left(b,-a-\frac{c}{t}, \frac{b}{t}\right)$ converges to $(b,-a, 0)$ or $(-b, a, 0)$, respectively. Thus, $(b,-a, 0)$ or $(-b, a, 0)$ are points at infinity on the line $a x+b y+c=0$.

