

Algorithmen und Datenstrukturen Sortieren

Matthias Teschner
Graphische Datenverarbeitung
Institut für Informatik
Universität Freiburg

SS 12

Lernziele der Vorlesung

- Algorithmen
 - Sortieren, Suchen, Optimieren
- Datenstrukturen
 - Repräsentation von Daten
 - Listen, Stapel, Schlangen, Bäume
- Techniken zum Entwurf von Algorithmen
 - Algorithmenmuster
 - Greedy, Backtracking, Divide-and-Conquer
- Analyse von Algorithmen
 - Korrektheit, Effizienz

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Sortierproblem

- Eingabe: Folge von Zahlen $< a_1, a_2, \ldots, a_n > 1$
- Ausgabe: Sortierte Folge der Eingabe $< a_1', a_2', \ldots, a_n' > \min \ a_1' \le a_2' \le \ldots \le a_n'$
- Eingabemenge als Feld oder verkettete Liste repräsentiert
- Sortierverfahren lösen das durch die Eingabe-Ausgabe-Relation beschriebene Sortierproblem.

Struktur der Daten

- zu sortierende Werte (Schlüssel) sind selten isoliert, sondern Teil einer größeren Datenmenge (Datensatz, Record)
- Datensatz besteht aus Schlüssel und Satellitendaten.
- Satellitendaten werden mit Schlüssel umsortiert.
- Im Folgenden werden Satellitendaten ignoriert. Konzepte werden immer lediglich für Schlüssel erläutert.
- Allgemeine Sortierverfahren basieren auf Schlüsselvergleichen und ändern ggf. die Reihenfolge der Datensätze.

Sortieren - Bedeutung

- sehr fundamentales Problem
- als eigenständiges Problem
 - Notenlisten (nach Note oder nach Matrikelnummer)
- als Unterroutine
 - als Vorbereitung für Sweep-Algorithmen
- beweisbare untere Schranke
 - kann zur Analyse anderer Algorithmen verwendet werden

Strategien - Einführung

- Sortieren von Spielkarten
- Bubble Sort
 - Aufnehmen aller Karten vom Tisch
 - vertausche ggf. benachbarte Karten, bis Reihenfolge korrekt
- Selection Sort
 - Aufnehmen der jeweils niedrigsten Karte vom Tisch
 - Anfügen der Karte am Ende
- Insertion Sort
 - Aufnehmen einer beliebigen Karte
 - Einfügen der Karte an der korrekten Position
- optimales Verfahren meist nicht ausschließlich durch die mittlere Laufzeit bestimmt, sondern z. B. auch durch die Beschaffenheit der Eingabemenge

Eigenschaften

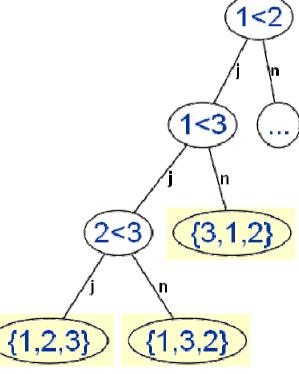
- Effizienz
 - Best-, Average-, Worst-Case
- Speicherbedarf
 - in-place (zusätzlicher Speicher von der Eingabegröße unabhängig)
 - out-of-place (Speichermehrbedarf von Eingabegröße abhängig)
- rekursiv oder iterativ
- Stabilität
 - stabile Verfahren verändern die Reihenfolge von äquivalenten Elementen nicht (wichtig bei mehrfacher Sortierung nach verschiedenen Schlüsseln)
- verwendete Operationen
 - Vertauschen, Auswählen, Einfügen
- Verwendung spezieller Datenstrukturen

Untere Schranke für vergleichsbasiertes Sortieren

Schlüsselvergleiche und Elementvertauschungen

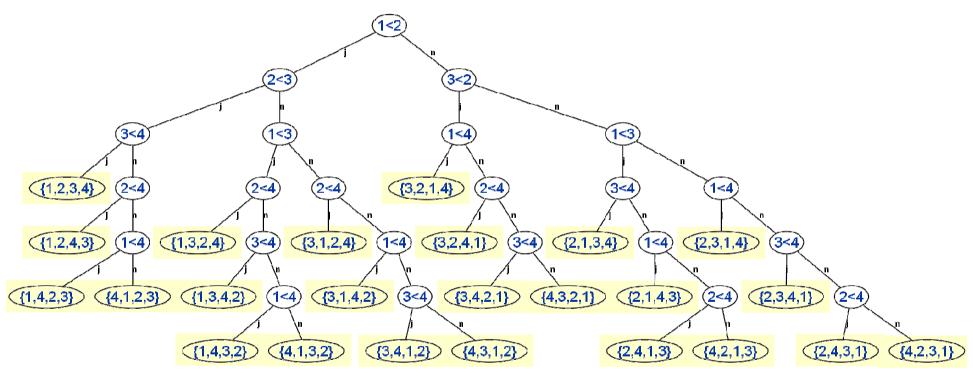
 Ausgabe entspricht einer aus n! Permutationen der Eingabe

- Entscheidungsbaum
 - Knoten liefern Informationen, um die in Frage kommenden Permutationen in zwei Teile zu zerlegen
 - Blätter enthalten Permutation, die alle vorhergehenden Relationen erfüllen
 - z. B. {1,2,3}



Entscheidungsbaum

24 mögliche Lösungen für {1,2,3,4}



24 (n!) Blätter eines binären Baums

Abschätzung der Tiefe des Entscheidungsbaums

 in Entscheidungsbaum mit n! Blättern ist die mittlere und die maximale Tiefe eines Blattes bestenfalls log n!

$$\log n! = \log (1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n)$$

$$= \log (1 \cdot 2 \cdot \ldots \cdot (\frac{n}{2} - 1) \cdot \frac{n}{2} \cdot \ldots \cdot (n-1) \cdot n)$$

$$\geq \log (\frac{n}{2} \cdot \ldots \cdot (n-1) \cdot n)$$

$$\geq \log (\frac{n}{2})^{\frac{n}{2}}$$

$$= \frac{n}{2} (\log (n) - 1)$$

$$\in \Omega(n \log n)$$

• untere Schranke für vergleichsbasiertes Sortieren $\Omega(n \log n)$

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

- durchlaufe die Menge
- vertausche zwei aufeinanderfolgende Elemente, wenn ihre Reihenfolge nicht stimmt
- durchlaufe die Menge gegebenenfalls mehrmals, bis bei einem Durchlauf keine Vertauschungen mehr durchgeführt werden mussten

Illustration

55	7	78	12	42
7	55	78	12	42
7	55	78	12	42
7	55	12	78	42
7	55	12	42	78
7	55	12	42	78
7	12	55	42	78
7	12	42	55	78
7	12	42	55	78
7	12	42	55	78
7	12	42	55	78
7	12	42	55	78

```
sortiert = true
55<7? tausche(7,55); sortiert = false;
55<78?
78<12? tausche(78,12);
78<42? tausche(78,42); Ende: sortiert? sortiert=true;
7<55?
55<12? tausche(55,12); sortiert=false;
55<42? tausche(55,42);
55<78? Ende: sortiert? sortiert=true;
7<12?
12<42?
42<55?
55<78? Ende: sortiert? Fertig.
```

Implementierung


```
public void sort(int[] array) {
  boolean sortiert;
  do {
    sortiert = true;
    for (int i=1; i<array.length; i++) {</pre>
      if (array[i-1]>array[i]) {
        int tmp=array[i-1];
        array[i-1]=array[i];
        array[i]=tmp;
        sortiert=false;
  } while (!sortiert);
```

Eigenschaften

- iterativ, nicht rekursiv
- stabil
 (gleiche benachbarte Schlüssel werden nicht getauscht)
- in-place (konstanter zusätzlicher Speicheraufwand)
- effizient für vorsortierte Mengen

Laufzeit

schlechtester Fall

- Eingabe ist umgekehrt sortiert: n, n-1, ..., 2, 1
- n-1 Vertauschungen im ersten Durchlauf (n von Pos. 1 nach n)
- n-2 Vertauschungen im zweiten Durchlauf (n-1 von Pos. 1 nach n-1)
- · ...
- 1 Vertauschung im n-ten Durchlauf (2 von Pos. 1 nach 2)

$$\sum_{i=1}^{n-1} i = \frac{n \cdot (n-1)}{2} \in O(n^2)$$

bester Fall

- Eingabe ist sortiert: 1,2, ... n-1, n
- ein Durchlauf O(n)
- durchschnittlicher Fall $O(n^2)$

Verbesserungen

Problem

 große Elemente am Anfang werden schnell nach hinten getauscht, aber kleine Elemente am Ende werden nur langsam nach vorn getauscht

Lösungsansatz

- ullet Shaker-Sort (Cocktail-Sort, BiDiBubble-Sort) $O(n^2)$
 - Feld wird abwechselnd von oben und von unten durchlaufen
- Comb-Sort
 - vergleicht Elemente, die gap Indizes auseinanderliegen, gap > 1
 - gap wird nach jedem Durchlauf reduziert, beispielsweise mit Faktor 0.7, bis gap = 1 erreicht
 - für gap = 1 entspricht Combsort dann Bubblesort

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

- durchlaufe die Menge, finde das kleinste Element
- vertausche das kleinste Element mit dem ersten Element
- vorderer Teil ist sortiert (k Elemente nach Durchlauf k), hinterer Teil ist unsortiert (n-k Elemente)
- durchlaufe die hintere, nichtsortierte Teilmenge, finde das n-kleinste Element
- vertausche das n-kleinste Element mit dem n-ten Element

Illustration

a[1]	a[2]	a[3]	a[4]	a[5]	
55	7	78	12	42	
7	55	78	12	42	
7	12	78	55	42	
7	12	42	55	78	

- 1. Durchlauf: 7 = min(1..n); tausche 7 mit a[1];
- 2. Durchlauf: 12 = min(2..n); tausche 12 mit a[2];
- 3. Durchlauf: 42 = min(3..n); tausche 42 mit a[3];
- 4. Durchlauf: 55 = min(4..n); tausche 55 mit a[4];

Implementierung


```
private int minimum (int[] array, int anfang, int ende)
  int minIdx = anfang;
  for (int index=anfang+1; index<=ende; index++) {</pre>
    if (array[index] < array[minIdx]) minIdx = index;</pre>
  return minIdx;
public void selectionSort (int[] array) {
  for (int index=0; index<array.length-1; index++) {</pre>
    int minIdx = minimum(array,index,array.length-1);
    vertausche(array,index,minIdx);
         Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung
```

Eigenschaften

- iterativ, nicht rekursiv
- instabil
 - gleiche benachbarte Schlüssel werden getauscht
 - lässt sich auch stabil implementieren
- in-place (konstanter zusätzlicher Speicheraufwand)

Laufzeit

- bester, mittlerer, schlechtester Fall
 - für n Einträge werden n-1 Minima gesucht
 - n-1 Vergleiche für erstes Minimum
 - n-2 Vergleiche für zweites Minimum
 - **...**
 - 1 Vergleich für Minimum n-1

$$\sum_{i=1}^{n-1} i = \frac{n \cdot (n-1)}{2} \in O(n^2)$$

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

- erstes Element ist sortiert,
 hinterer Teil mit n 1 Elementen ist unsortiert
- entnehme der hinteren, unsortierten Menge ein Element und füge es an die richtige Position der vorderen, sortierten Menge ein (n-1 mal)
- Einfügen in die vordere, sortierte Menge erfordert das Verschieben von Elementen

Illustration

5	2	4	6	1	3	Elemente 11 sind sortiert, 2n unsortiert			
						Vergleiche 2 mit ellen Elementen der sertierten Monge			
5	2	4	6	1		beginnend mit dem größten. Wenn ein Element größer			
						als 2 ist, schiebe es eins nach rechts, sonst füge 2 ein.			
2	5	4	6	1	3	Elemente 12 sind sortiert, 3n unsortiert			
2	5	4	6	1	3	Vergleiche 4 mit allen Elementen der sortierten Menge. Wenn ein Element größer als 4 ist, verschiebe es.			
						vverin ein Eiernent großer als 4 ist, verschiebe es.			
2	4	5	6	1	3	Elemente 13 sind sortiert. Einfügen von 6.			
2	4	5	6	1	3	Elemente 14 sind sortiert. Einfügen von 1 (Dazu			
						 werden Elemente 6,5,4 und 2 jeweils um eins nach rechts verschoben. Danach wird 1 an Pos. eins eingefe 			
1	2	4	5	6	3				
1	2	3	4	5	6				

Implementierung


```
public int insertionSort (int[] array) {
  for (int j=1 to array.length-1) {
    int key = array[j];
    int i = j-1;
    while (i \ge 0 \&\& array[i] > key) { Vorsicht mit i=-1
      array[i+1] = array[i];
      i = i-1;
    array[i+1] = key;
```

Eigenschaften

- iterativ, nicht rekursiv
- stabil
 - gleiche benachbarte Schlüssel werden nicht getauscht
- in-place (konstanter zusätzlicher Speicheraufwand)
- effizient für vorsortierte Mengen

Laufzeit

- bester Fall
 - Menge ist vorsortiert
 - innere while-Schleife wird nicht durchlaufen
 - O(n)
- schlechtester Fall
 - Menge ist umgekehrt sortiert
 - k-1 Verschiebeoperationen für das k-te Element
 - $O(n^2)$
- mittlerer Fall
 - $O(n^2)$

Verbesserungen

Problem

Elemente müssen teilweise über große Bereiche verschoben werden

Lösungsansatz

- Shell-Sort
- führe Insertion-Sort für z. B. jedes 4. Element, dann für jedes 2.
 Element und dann für jedes Element durch
- statt 1,2,4, ..., 2k wird auch 1,4, 13, ..., 3(k-1)+1 verwendet
- Sortieren von Feld a[0..2k-1]:
 - sortiere a[0], a[4], a[8], a[12], ...
 - sortiere a[0], a[2], a[4], a[6], ...
 - sortiere a[0], a[1], a[2], a[3], ...
- ullet reduzierte Zahl von Verschiebeoperationen $\,O(n\,\log\,(n^2))\,$

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

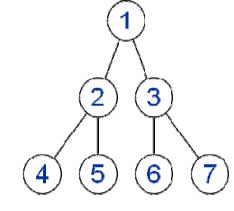
- Repräsentation der Daten durch einen Max-Heap
 - Binärbaum, in dem der Schlüssel eines Knoten immer größer ist als die Schlüssel der beiden Nachfolgeknoten
 - Wurzelknoten enthält größtes Element
- Iteratives Vorgehen
 - Entnahme des Wurzelknotens als größtes Element
 - Herstellen eines Max-Heaps aus den verbleibenden Elementen
- Motivation
 - n Iterationen mit Aufwand log (n)
 - n Elemente müssen entnommen werden
 - Wiederherstellung des Heaps in log (n)

Illustration - Heap

Elemente eines Feldes können als Binärbaum angeordnet

werden

Indizes eines Feldes



Repräsentation der Indizes durch einen Binärbaum

- Für Indizes im Baum gilt
 - Indizes eines Nachfolgeknotens k ergeben sich als 2k und 2k+1
- Baum wird zum besseren Verständnis betrachtet
- Implementierung erfolgt in-place auf dem Feld

Illustration - Heap

- Folge von Daten ist ein Max-Heap, wenn
- die Schlüssel beider Nachfolgeknoten eines jeden Knotens k äquivalente Aussagen kleiner sind als der Schlüssel von Knoten k
 - der Schlüssel des Feldes an Stelle k kleiner ist als die Schlüssel an den Stellen 2k und 2k+1
 - über die Relationen anderer Knoten ist nichts bekannt
 - aus den Anforderungen ergibt sich, dass der Wurzelknoten den größten Schlüssel enthält

Beispiel: Folge ist ein Max-Heap

7 5 6 4 2 1 3

Feldrepräsentation

7 5 6 4 2 1 3

Beispiele - Heap

Beispiel: gleiche Menge, alternative Anordnung, Folge ist ein Max-Heap

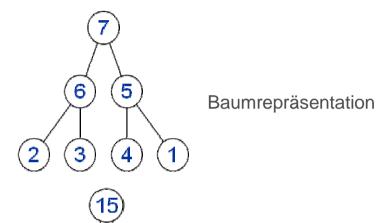
7 6 5 2 3 4 1

Feldrepräsentation

Beispiel: Folge ist kein Max-Heap

15 2 43 17 4 8 47 60

Feldrepräsentation



8

- Motivation für Heap-Sort:
 - Initialisierung eines Max-Heap in O(n)
 - Wiederherstellung nach Löschen der Wurzel in O(log n)

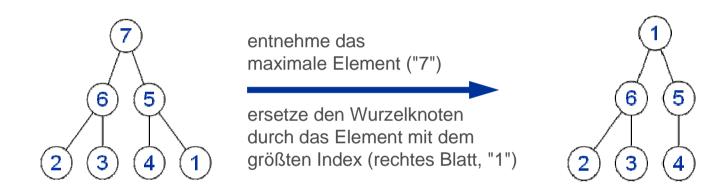
(60)

Prinzip - Wiederholung

- Initialisierung
 - Aufbau eines Max-Heaps für ein Feld in O(n)
- n Iterationen
 - Entnahme des größten Elements (Wurzelknoten)
 - Wiederherstellung des Max-Heaps aus den verbleibenden Elementen in O(log n)

Schritt

Heap-Repräsentation

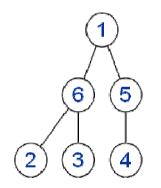


Feldrepräsentation

vertausche erstes und letztes Element

Schritt

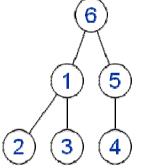
- Wiederherstellung eines Max-Heaps (versickern eines Elements, percolate)
- Heap-Repräsentation



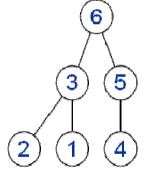
- Versickern des Wurzelknotens

 vergleiche das zu versickernde Element mit dem Maximum der beiden nachfolgenden Knoten

 tausche Wurzelknoten mit dem Maximum aller drei Elemente



wiederhole
 Vergleiche für das zu versickernde
 Element



wiederhergestellter Max-Heap (Maximum steht in der Wurzel)

maximal log n Versickerungs-Schritte

Schritt

- Wiederherstellung eines Max-Heaps (versickern eines Elements, percolate)
- Feldrepräsentation

	1	2	3	4	5	6	7
а	6	1	5	2	3	4	7

- Versickern des ersten Elements a[1]
- Vergleiche mit Maximum der Elemente a[2·1] und a[2·1+1]
- Tausche entsprechend
- Vergleiche a[2] mit Maximum der Elemente a[2·2] und a[2·2+1]
- Tausche entsprechend

wiederhergestellter Max-Heap (Maximum von a[1..6] steht in a[1]) a[7] ist bereits sortiert

maximal log n Versickerungs-Schritte

Versickern

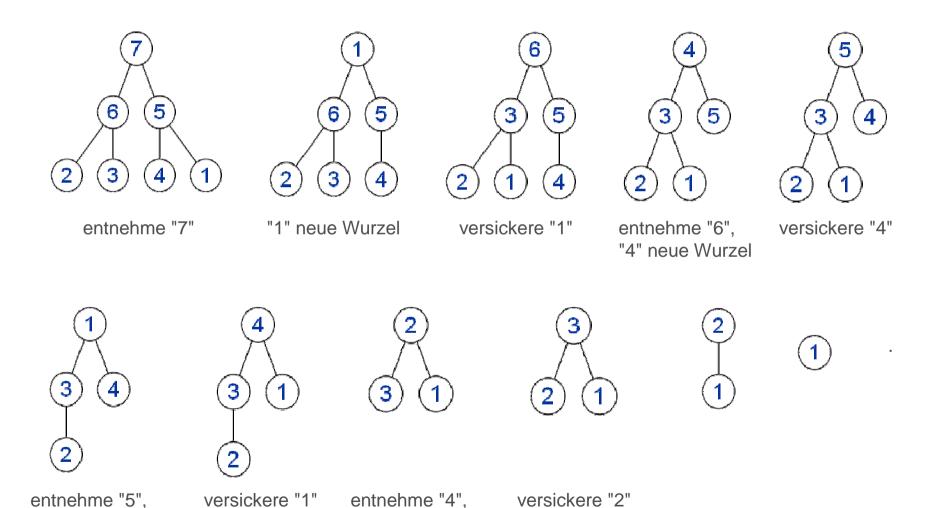
- vertausche mit dem größeren der Nachfolger, solange dieser größer als das zu versickernde Element ist
- Versickern des ersten Elements eines Feldes a in den Grenzen j und t

```
void percolate (int[] a, int j, int t)
   while (int h=2*j <=t) {
                                                        Nachfolgerindex im
                                                        gültigen Bereich?
      if (h<t && a[h+1]>a[h]) h++;
                                                        h zeigt auf größeres
      if (a[h]>a[j]) {
                                                        der Nachfolgerelemente
         swap(a,h,j);
                                                        tausche ggf. erstes
                                                        Element a[j] mit a[h]
          j=h;
                                                        aktualisiere Index i des
                                                        zu versickernden El.
      else break;
       while-Schleife wird maximal log-n-mal durchlaufen.
```

Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung

Schritte - Illustration

"1" neue Wurzel



Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung

"2" neue Wurzel

Schritte - Illustration

7	6	5	2	3	4	1	
1	6	5	2	3	4	7	
6	3	5	2	1	4	7	
4	3	5	2	1	6	7	
5	3	4	2	1	6	7	
1	3	4	2	5	6	7	
4	3	1	2	5	6	7	
2	3	1	4	5	6	7	
3	2	1	4	5	6	7	
	1						

entnehme "7", setze "1" an erste Position versickere "1" entnehme "6", setze "4" an erste Position versickere "4" entnehme "5", setze "1" an erste Position versickere "1" entnehme "4", setze "2" an erste Position versickere "2"

..

Implementierung


```
void heapSort (int[] a) {
  int j, hi = a.length-1;
  for (j=hi/2; j>=1; j--)
    percolate(a,j,hi);
  for (j=hi; j>1; j--) {
    swap(a,1,j);
    percolate(a,1,j-1);
```

Initialisierung:

Versickere die ersten n/2 Elemente in umgekehrter Reihenfolge. Die zweite Hälfte genügt automatisch einem Max-Heap.

O(n) Iterationen

O(1) entnehme das Maximum

O(log n) versickere Element

Aufwand der Schleife:

O (n log n)

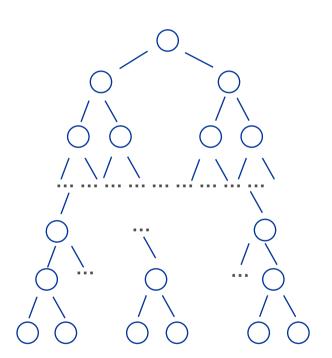
Aufwand der Initialisierung:

Versickere n/2 Elemente Konservative Abschätzung O(n log n) ⇒ Gesamtaufwand O (n log n)

Aufwand der Initialisierung

Aufwand

(zwei Vergleich pro Knoten und Ebene)



Ebene	Knoten	Knoten und Ebene)
k	20	2·k
k-1	21	2·(k-1)
k-2	2 ²	2·(k-2)
	•••	
2	2 ^{k-2}	2.2
1	2 ^{k-1}	2·1
0	2 ^k	2.0

Zahl der Elemente: $n=\sum_{i=0}^k 2^i=2^{k+1}-1$

Gesamtkosten: $2 \cdot (2^0 \cdot k + 2^1 \cdot (k-1) + \ldots + 2^{k-1} \cdot 1 + 2^k \cdot 0)$

Aufwand der Initialisierung

Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung


```
void heapSort (int[] a) {
  int j, hi = a.length-1;
  for (j=hi/2; j>=1; j--)
    percolate(a,j,hi);
  for (j=hi; j>1; j--) {
    swap(a,1,j);
    percolate(a,1,j-1);
  }
}
```

bester, mittlerer, schlechtester Fall
 O (n log n)

Eigenschaften

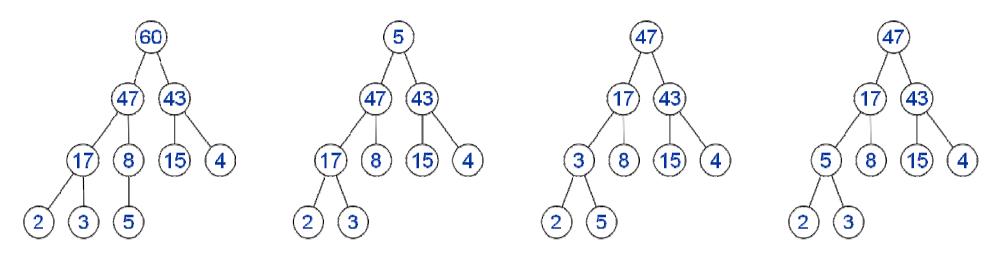
- iterativ, nicht rekursiv
- nicht stabil
 - gleiche benachbarte Schlüssel werden eventuell getauscht
- in-place (konstanter zusätzlicher Speicheraufwand)
- optimale Effizienz von O (n log n)

Verbesserungen

Problem

- Elemente müssen über viele Ebenen versickert werden (2 Vergleichsoperationen pro Element und Ebene)
- Lösungsansatz
 - verringere die Zahl der Vergleichsoperationen beim Versickern
 - Bottom-up Heap Sort
 - vergleiche nur die beiden Nachfolgeelemente (1 Vergleich)
 - tausche das zu versickernde Element in jedem Fall mit dem maximalen Nachfolgeelement (0 Vergleiche)
 - bewege Element eventuell wieder etwas nach oben, wenn Blatt erreicht
 - Verbesserung der Effizienz um konstanten Faktor

Beispiel



entnehme "60", "5" neue Wurzel tausche "5" in jedem Fall mit dem maximalen Nachfolger (1 statt 2 Vergleiche) bewege "5" nach oben, wenn Vorgänger kleiner

Bottom-up Heap Sort

 es ist günstiger, Elemente mit nur einem statt zwei Vergleichen bis zu einem Blatt zu versickern und dann eventuell etwas nach oben zu korrigieren

Bottom-up Heap Sort


```
void percolateB (int[] a, int j, int t) {
   while (int h=2*j <=t) {
      if (h<t && a[h+1]>a[h]) h++;
     if (a[h]>a[j]) {
        swap(a,h,j);
        j=h;
     else break;
   bubbleUp (a, j);
```

Bottom-up Heap Sort


```
void bubbleUp (int[] a, int j) {
  int x = a[j];
  for (; j>1 && a[j/2]<x; j/=2) Ziehe kleinere Elemente
    a[j] = a[j/2];
  a[j] = x;
}</pre>
Plaziere x an die
korrekte Position.
```

Ist bestimmt effizient, aber auch ein schönes Beispiel dafür, dass die Lesbarkeit bei zuviel Effizienz leiden kann.

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

- Teile-und-Herrsche-Ansatz
 - aufwendiger Teile-Schritt, einfacher Merge-Schritt
- Mengen mit einem oder keinem Element sind sortiert
- ansonsten
 - Aufteilung des Problems in zwei Teilmengen, wobei alle Elemente einer Teilmenge kleiner als alle Elemente der anderen Teilmenge sind
 - rekursiver Aufruf des Algorithmus für beide Teilmengen
- Verbindung der Teilergebnisse
 - implizit gegeben, da Sortierung der Teilmengen in-place
- Aufteilung in Teilmengen
 - Wahl eines Schlüssels / Pivotelements
 - Elemente, die kleiner als das Pivotelement sind, werden der linken Teilmenge zugeordnet
 - Elemente, die größer als das Pivotelement sind, werden der rechten Teilmenge zugeordnet Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung

Prinzip - Illustration


```
Quicksort (L)
      if (|L| <= 1) return L;
      else
          waehle Pivotelement p aus L;
          L1 = \{ a in L \mid a 
                                                Aufteilung in zwei
                                                Teilmengen L1, L2
          L2 = \{ a in L \mid a > p \};
          Quicksort (L1);
          Quicksort (L2);
                                           p
                                                kein merge-Schritt, da
                                                in-place-Sortierung:
                                                L1 
                              L2
              D
```

Aufteilung in Teilmengen Illustration


```
p, k
                                                                    p – erstes Element,
                                                                                               i – letztes Element von L1
                                       3
Feld a
                                              5
                                                     6
                                                                    r – letztes Element
                                                                                               k – erstes Element hinter L2
                                                                        (Pivotelement)
                  k
                                                                    a[k] \leftarrow a[r] \rightarrow i+=1; tausche ( a[i], a[k]); k+=1;
                                       3
                                              5
                                                     6
                                                                    a[k] > a[r] \rightarrow k+=1;
                                       3
                                              5
                                                     6
                                                                    a[k] > a[r] \rightarrow k+=1:
                                       3
                                              5
                                                     6
                                                            4
                                                                    a[k] \leftarrow a[r] \rightarrow i+=1; tausche ( a[i], a[k]); k+=1;
                                              5
                                                     6
                                                                    a[k] \leftarrow a[r] \rightarrow i+=1; tausche ( a[i], a[k]); k+=1;
                                                     6
                                                                    a[k] > a[r] \rightarrow k+=1;
                         3
                                                     6
                                                                    a[k] > a[r] \rightarrow k+=1;
                                              5
                                                     6
                                                                    i+=1; tausche (a[i], a[k]);
           2
                         3
                                                     6
```

Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung

Implementierung


```
int aufteilung (int[] a, int p, int r) {
  int pivot = a[r];
  int i = p - 1;
  for (k = p; k \le r-1; k++)
    if (a[k]<=pivot) { i+=1; tausche(a[i],a[k]); }
  i+=1; tausche (a[i],a[k]);
  return i;
void quickSort (int[] a, int p, int r) {
  if (p<r) {
    int i = aufteilung (a, p, r);
    quickSort (a, p, i-1);
    quickSort (a, i+1, r);
```

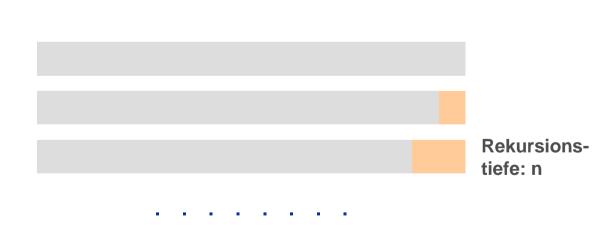


```
int aufteilung (int[] a, int p, int r) {
  int pivot = a[r];
  int i = p - 1;
  for (k = p; k \le r-1; k++)
                                                       O (n)
    if (a[k]<=pivot) { i+=1; tausche(a[i],a[k]); }
  i+=1; tausche (a[i],a[k]);
  return i;
void quickSort (int[] a, int p, int r) {
  if (p<r) {
    int i = aufteilung (a, p, r);
                                                       O (n)
    quickSort (a, p, i-1);
                                                       T (n-k)
    quickSort (a, i+1, r);
                                                       T (k)
```


O(n) Schritte pro Rekursionsebene

- bester Fall: Aufteilung $n \rightarrow (n/2) + (n/2)$ $O(n \log n)$
- Rekursions-tiefe: log n

• schlechtester Fall: Aufteilung $n \rightarrow (n-1) + (1)$ $O(n^2)$



• bester Fall: Master-Theorem für $T(n) = aT\left(\frac{n}{b}\right) + f(n)$

$$T(n) \in \Theta\left(n^{\log_b a} \log n\right) \text{ falls } f(n) \in \Theta\left(n^{\log_b a}\right)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

$$a = 2$$
, $b = 2$, $f(n) = O(n)$, $\log_b a = \log_2 2 = 1$

$$f(n) \in \Theta\left(n^{\log_2 2}\right) \to T(n) \in \Theta(n\log n)$$

• mittlerer Fall: $O(n \log n)$

Eigenschaften

- rekursiv
- in-place (konstanter zusätzlicher Speicheraufwand)
- nicht stabil
- optimale mittlere Laufzeit von O (n log n)
- ungünstige schlechteste Laufzeit von O (n²)

Verbesserungen

- Vermeidung eines schlechten Pivotelements
 - Suchen nach dem mittleren Schlüsselwert nicht möglich, da nicht in konstanter Zeit
- Alternativ
 - mittleres Element von (erster Schlüssel, mittlerer Schlüssel, letzter Schlüssel)
 - randomisierte Wahl des Pivotelements (große Wahrscheinlichkeit zur Vermeidung des schlechtesten Falls)

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

- Teile-und-Herrsche-Ansatz
- Mengen mit einem oder keinem Element sind sortiert
- ansonsten
 - Aufteilung des Problems in zwei gleich große Teilmengen
 - rekursiver Aufruf des Algorithmus für beide Teilmengen
 - Verbindung der Teilmengen
- Motivation gegenüber Quick-Sort
 - simple Unterteilung im Vergleich zu Quick-Sort
 - optimale Rekursionstiefe von log n
 - aufwendiger Merge-Schritt

Verbinden der Teillösungen Illustration

	l,j		m-1	m,k		h	i						
а	2	4	5	1	3	7							tmp
	j				k			i					$a[k] < a[j] \rightarrow tmp[i++] = a[k++]$
	2	4	5	1	3	7	1						
		j			k				i				$a[k]>a[j] \rightarrow tmp[i++]=a[j++]$
	2	4	5	1	3	7	1	2					
		j				k				i			$a[k] < a[j] \rightarrow tmp[i++] = a[k++]$
	2	4	5	1	3	7	1	2	3				
			j			k		'		•	i		$a[k]>a[j] \rightarrow tmp[i++]=a[j++]$
	2	4	5	1	3	7	1	2	3	4			
				j		k		•		•		i	a[k]>a[j] → tmp[i++]= a[j++]
	2	4	5	1	3	7	1	2	3	4	5		
				j			k						_i j>m-1 → tmp[i++]= a[k++]
	2	4	5	1	3	7	1	2	3	4	5	7	
		•	•		•	•							k>h && j>m-1 → fertig

Implementierung


```
void mergeSort ( int[] a, int l, int h ) {
  if (1 < h) {
     int m = (1+h) / 2;
     mergeSort (a,1,m-1);
     mergeSort (a,m,h);
                                                         Verbindung
     int[] tmp = new int[h-1+1];
                                                         der Teillösungen
     for (int i=0, j=1, k=m; i<tmp.length;)</pre>
        if ((k>h) | ((j<m) && (a[j]<a[k])))
           tmp[i++] = a[j++];
                                                  - vergleiche die kleinsten
                                                  Schlüssel der Teillösungen
        else
                                                   - kleinster Schlüssel wird
           tmp[i++] = a[k++];
                                                  nach tmp kopiert
     for (int i=0; i<tmp.length; i++)</pre>
        a[l+i]=tmp[i];
                                                  kopiere tmp zurück nach a
    // else ... Triviallfall, tue nichts
         Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung
```



```
void mergeSort ( int[] a, int l, int h ) {
  if (1 < h) {
     int m = (1+h) / 2;
    mergeSort (a,1,m-1);
                                                     T (n/2)
                                                     T (n/2)
    mergeSort (a,m,h);
     int[] tmp = new int[h-1+1];
     for (int i=0, j=1, k=m; i<tmp.length;) o(n)</pre>
       if ((k>h) || ((j<m) && (a[j]<a[k])))
         tmp[i++] = a[j++];
       else
         tmp[i++] = a[k++];
     for (int i=0; i<tmp.length; i++)</pre>
       a[l+i]=tmp[i];
        Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung
```


bester, mittlerer, schlechtester Fall

Master-Theorem für
$$T(n)=aT\left(\frac{n}{b}\right)+f(n)$$

$$T(n)\in\Theta\left(n^{\log_b a}\log n\right) \text{ falls } f(n)\in\Theta\left(n^{\log_b a}\right)$$

$$T(n)=2T\left(\frac{n}{2}\right)+O(n)$$

$$a=2,\quad b=2,\quad f(n)=O(n),\quad \log_b a=\log_2 2=1$$

$$f(n)\in\Theta\left(n^{\log_2 2}\right)\to T(n)\in\Theta(n\log n)$$

Eigenschaften

- rekursiv
- je nach Implementierung in-place oder zusätzlicher
 Speicheraufwand von O (n) oder O (n log n)
- stabil
- optimale mittlere Laufzeit von O (n log n)
- beste und schlechteste Laufzeit von O (n log n)
- im Gegensatz zu Quick-Sort immer garantierte Aufteilung in zwei gleichgroße Teilprobleme

Verbesserungen

- Generieren und Löschen von tmp ist relativ teuer
 - einmaliges Generieren
 - Vermeiden des Rück-Kopierens
- Verbinden der Teillösungen
 - wenn eine Teillösung vollständig abgearbeitet ist, kann die andere Teillösung ohne Vergleiche kopiert werden
- trotz des besseren schlechtesten Falls gegenüber Quick-Sort wird Quick-Sort in der Praxis bevorzugt

Überblick

- Einführung
- Bubble-Sort
- Selection-Sort
- Insertion-Sort
- Heap-Sort
- Quick-Sort
- Merge-Sort
- Counting-Sort

Prinzip

- vereinfachte Sortierung bei bekanntem Wertebereich a[i] = 0 ... k
- Wenn in einem Feld a[0..n] = 0..n jeder Schlüssel genau einmal vorkommt, kann jeder Schlüssel ohne Vergleichsoperationen an die korrekte Stelle platziert werden s[a [i]] = a [i].
- Counting-Sort basiert auf dem Prinzip der geschickten Platzierung von Elemente ohne Vergleichsoperationen, kann aber auch mehrfaches Auftreten einzelner Schlüssel behandeln.

Implementierung


```
void countingSort (int[] a, int[] b, int max)
   int i; int[] c = new int[max+1];
   for (i=0; i<=max; i++) c[i]=0;
                                                            c[i] qibt an,
   for (i=0; i<a.length; i++) c[a[i]]++;
                                                            wie oft Schlüs-
                                                            sel i auftritt.
                                            c[i] gibt an,
   for (i=1; i<=max; i++)
                                            wieviel Elemente
                                            einen Schlüssel kleiner
     c[i]=c[i]+c[i-1];
                                            oder gleich i haben.
   for (i=a.length; i>=1; i--) {
                                                 Plaziere jeden Schlüssel an
                                                 die korrekte Position im Feld b.
     b[c[a[i]]-1]=a[i];
                                                 Aktualisiere c entsprechend
     c[a[i]]--;
          Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung
```

Illustration

								7
а	2	5	2	0	3	3	0	3

			2			
С	2	0	2	3	0	1

Erste Initialisierung von c. c[i] gibt an, wie oft Schlüssel i in a enthalten ist.

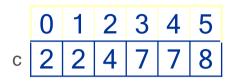
	0	1	2	3	4	5
С	2	2	4	7	7	8

Zweite Initialisierung von c. c[i] gibt an, wieviel Elemente von a einen Schlüssel enthalten, der kleiner oder gleich i ist. Daraus können Schlussfolgerungen für die Positionen von Schlüsseln im sortierten Feld abgeleitet werden. z. B. kann ein Schlüssel "5" an die 8-te Position plaziert werden, da 8 Elemente kleiner oder gleich "5" sind. "0" kann an Position 2 plaziert werden usw.

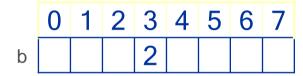
Nach der Plazierung eines Schlüssels i wird c [i] um eins reduziert, um das mehrfache Auftreten eines Schlüssels zu behandeln.

z. B. "0" wird an Position 2 plaziert. c [0] wird um eins reduziert, d. h. die nächste "0" wird an Position 1 plaziert.

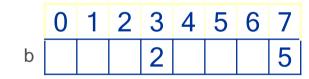
Illustration



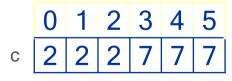
a[0] = 2; $c[a[0]]-1=3 \rightarrow b[3]=2$; c[2]--



a[1] = 5; $c[a[1]]-1=7 \rightarrow b[7]=5$; c[5]--



a[2] = 2; $c[a[2]]-1=2 \rightarrow b[2]=2$; c[2]--



a[3] = 0; $c[a[3]]-1=1 \rightarrow b[1]=0$; c[0]—

.

Laufzeit


```
void countingSort (int[] a, int[] b, int max)
  int i; int[] c = new int[max+1];
  for (i=0; i<=max; i++) c[i]=0;</pre>
                                                      O (max)
  for (i=0; i<a.length; i++) c[a[i]]++;
                                                     O(n)
  for (i=1; i<=max; i++)
                                                      O (max)
     c[i]=c[i]+c[i-1];
  for (i=a.length-1; i>=0; i--) {
                                                      O (n)
     b[c[a[i]]-1]=a[i];
     c[a[i]]--;
                                      Gesamtlaufzeit O (max + n) bzw.
                                      O(n), wenn max = O(n)
        Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung
```

Eigenschaften

- iterativ
- zusätzlicher Speicheraufwand von O (n)
- stabil
 - Zu sortierendes Feld a wird von hinten nach vorn bearbeitet.
 Andernfalls wäre das Verfahren nicht stabil, da gleiche Elemente voreinander in Feld b abgelegt werden.
- Laufzeit von O (n + k), wobei k die Größe des Wertebereichs der Elemente des zu sortierenden Feldes angibt
- verwendet keinerlei Vergleichsoperationen
 - daher gilt die untere Schranke von O (n log n) nicht zwangsläufig

Erweiterung – Radix-Sort

Beispiel:

- Postleitzahl kann als Menge von fünf Schlüsseln mit Wertebereich
 0..9 betrachtet werden, Geburtstag besteht aus drei Schlüsseln
- Sortierung kann durch eine Sequenz stabiler Sortierverfahren realisiert werden:
 - Counting-Sort der letzten Ziffer
 - Counting-Sort der vorletzten Ziffer,
 - · ...,
 - Counting-Sort der ersten Ziffer
- radixSort (A, d)
 for i=1 to d do countingSort(A, i); sortiere nach
 Schlüsseli

Variante – Bucket-Sort

- sehr ähnlich zu Counting-Sort
- wird verwendet, wenn wenig verschiedene Schlüsselwerte häufig auftreten
 - k verschiedene Schlüsselwerte,
 - n Elemente
 - k << n</p>
- Prinzip
 - ermittle die Häufigkeit jedes Schlüssels
 - daraus ergibt sich die Position im sortierten Feld

Implementierung

Schlüsselwerte 0..anzahlBuckets

```
void bucketsort(int z[], int anzahlBuckets)
                                                                   erstelle
   int buckets[] = new int[anzahlBuckets];
                                                                   Histogramm:
   for (int i=0; i<z.length; i++) {</pre>
                                                                  buckets [i] gibt an,
                                                                   wie oft Schlüssel i
     buckets[z[i]]++;
                                                                   auftritt.
   int x=0;
                                                           Schlüssel "0" wird an den
   for (int i=0; i<anzahlBuckets; i++)</pre>
                                                           ersten buckets [0] Positionen
                                                           in z eingetragen.
     while (buckets[i] > 0) {
                                                           Schlüssel "1" wird an den
         z[x++] = i;
                                                           folgenden buckets [1]
        buckets[i]--;
                                                           Positionen in z eingetragen.
                                                           Schlüssel "2" wird an den
                                                           folgenden buckets [2]
                                                           Positionen in z eingetragen.
   Einschränkung: Funktioniert nicht für Datensätze mit Satellitendaten.
```

Universität Freiburg - Institut für Informatik - Graphische Datenverarbeitung

Zusammenfassung Vergleichsbasiertes Sortieren

- beweisbare untere Schranke von Ω (n log n)
- Bubble-, Selection-, Insertion-Sort
 - intuitive Strategien (Vertauschen benachbarter Elemente, Auswahl des Minimums und Anfügen an sortierte Teilmenge, Einsortieren eines Elements in sortierte Teilmenge)

Heap-Sort

- basiert auf einer speziellen Datenstruktur mit schnellem Zugriff auf das maximale Element einer Menge (Max-Heap)
- n-malige Entnahme des maximalen Elements, wobei der restliche Max-Heap jedes Mal in O (log n) aktualisiert werden kann.

Zusammenfassung Vergleichsbasiertes Sortieren

- Quick-, Merge-Sort
 - Teile-und-Herrsche-Ansätze
 - bei Quick-Sort ist das Aufteilen aufwendig in O (n), aber das Zusammenfügen der Teillösungen implizit gegeben
 - bei Merge-Sort ist das Aufteilen einfach, aber das Zusammenfügen aufwendig in O (n)
 - Quick-Sort hat einen schlechteren schlechtesten Fall als Merge-Sort

Zusammenfassung Nicht-vergleichsbasiertes Sortieren

- Counting-, Radix-, Bucket-Sort
 - Schlüsselwerte müssen in eingeschränktem Wertebereich 0..k liegen
 - keine Vergleichsoperationen
 - Position eines Elements wird mit Hilfe eines Histogramms ermittelt
 - effizient, Laufzeit in O (n)

Zusammenfassung

Verfahren	bester Fall O (x)	mittlerer Fall O (x)	schlechtester Fall O (x)	stabil	rekursiv	Speicher O (x)
Bubble	n	n ²	n^2	ja	nein	1
Selection	n^2	n^2	n^2	ja	nein	1
Insertion	n	n^2	n^2	ja	nein	1
Heap	n log n	n log n	n log n	nein	nein	1
Quick	n log n	n log n	n^2	nein	ja	1
Merge	n log n	n log n	n log n	ja	ja	n
Counting	n	n	n	ja	nein	n
Radix	n	n	n	ja	nein	n
Bucket	n	n	n	ja	nein	n

Zusätzliche Referenzen

- http://de.wikipedia.org/wiki/Sortierverfahren
- http://de.wikipedia.org/wiki/Bubblesort
- http://siebn.de/index.php?page=anisort/anisort
- http://de.wikipedia.org/wiki/Cocktailsort
- http://de.wikipedia.org/wiki/Combsort
- http://de.wikipedia.org/wiki/Countingsort
- http://de.wikipedia.org/wiki/Bucketsort

Nächstes Thema

- Algorithmen
 - Suchverfahren