Advanced Topics in Animation - Seminar

Introduction

Matthias Teschner

Computer Science Department
University of Freiburg
Contact

- Matthias Teschner
 Computer Graphics
 Freiburg University

- Georges-Koehler-Allee 052 / 01-005

- teschner@informatik.uni-freiburg.de

- https://cg.informatik.uni-freiburg.de
Outline

- introduction
- presentation
- organization
- topics
Course Information

- key course
 - pattern recognition and computer graphics (rasterization-based rendering)

- specialization courses
 - advanced computer graphics (ray tracing)
 - simulation in computer graphics (e.g., fluids)

- master project, lab course, Master thesis
 - two tracks: simulation, rendering
Seminars / Projects / Theses in Graphics

<table>
<thead>
<tr>
<th>Semester</th>
<th>Simulation Track</th>
<th>Rendering Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Rasterization Course</td>
<td>Rasterization Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Course</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Lab Course</td>
<td>Raytracing Course</td>
</tr>
<tr>
<td></td>
<td>- simple fluid solver</td>
<td>Lab Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Seminar</td>
<td>- simple raytracer</td>
</tr>
<tr>
<td>Winter</td>
<td>Master Project</td>
<td>Master Project</td>
</tr>
<tr>
<td></td>
<td>- PPE fluid solver</td>
<td>- Monte Carlo raytracer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendering Seminar</td>
</tr>
<tr>
<td>Summer</td>
<td>Master Thesis</td>
<td>Master Thesis</td>
</tr>
<tr>
<td></td>
<td>- research-oriented topic</td>
<td>- research-oriented topic</td>
</tr>
</tbody>
</table>
Topics in Graphics

- animation
 - rigid objects
 - deformable objects
 - fluids
 - collision handling
- rendering
 - ray tracing, volume rendering, image-based rendering, rasterization
- modeling / geometry processing
 - mesh simplification
 - surface reconstruction
Topics - Example

- 500 M particles (with Fifty2 Technology)
Topics - Example

- automotive industry (with Fifty2 Technology)
Goals

- familiarize yourself with a topic
 - based on scientific publications
 - using information from the authors' web pages
 - using additional sources (internet, books)
- prepare a comprehensible presentation
- do not just reproduce the paper
- adapt the organization and the focus of the paper in order to get a comprehensible presentation
 - you can skip some content
 - you can add content from additional sources
Outline

- introduction
- presentation
- organization
- topics
Preparation

- know your topic
 - examine relevant material thoroughly
 - do not try to circumvent problems

- prepare slides
 - allow 1 to 2 minutes per slide
 - slides should be uniform and not too dense
 - incorporate illustrations
 - slide titles should be helpful

- rehearse your presentation
 - gather feedback
 - adapt your presentation accordingly
 - check your slides with Matthias Teschner one week before your talk
Presentation

- introduction
 - introduce yourself, the title of your presentation

- overview
 - give an idea, but not too detailed

- motivation
 - illustrate the principle and/or applications
 - explain the goal of your presentation
 - cite references
 - the audience should be eager to listen your presentation
Presentation

- main part
 - should consist of distinguished parts
 - separate different parts of the presentation explicitly
 - each part should be introduced and summarized

- summary
 - tell the audience what you have told them
 - ask for questions
Structure of the Presentation

- title
- motivation, introduction to the topic
- information on author, affiliation, source
- outline of the presentation
- description of the problem
- methods to solve the problem
- results
- discussion of benefits, drawbacks, problems
- summary
Presentation - Summary

- introduce the title and yourself
- motivate and introduce your topic thoroughly
 - it is essential to arouse the interest of the audience right at the beginning
- give a brief overview
 - avoid too many details
- structure your presentation
 - introduce and summarize parts of your presentation
- summarize the entire presentation
- clearly mark the end of your presentation
 - e.g. “Thank you for your attention.”
General Comments

- check the presentation environment prior to the presentation
- do not occlude the projection
- avoid idiosyncrasies
- stay in time
Presentation

- do not learn your talk by heart
- do not read your talk
- do not read slides, but explain every item on your slide
- do not be shy or quiet
- communicate self-confidence
Outline

- introduction
- presentation
- organization
- topics
Requirements

- presentation of a topic, 30 min
- discussion (technical aspects, form), 15 min
- written documentation
- English or German

- attendance of all presentations is mandatory

- information on https://cg.informatik.uni-freiburg.de/teaching.htm
Registration

- obtain the papers from https://cg.informatik.uni-freiburg.de/intern/seminar/
- check the syllabus and the topic list for available papers and dates
- choose a paper / topic
- choose a date
- send an email to Matthias Teschner teschner@informatik.uni-freiburg.de with your registration request stating name, topic, date
- do not forget to register the seminar at the online portal / examination office
Goals

- familiarize yourself with a computer graphics topic
 - based on scientific publications
 - using information from the authors' web pages
 - using additional sources (internet, books)
- prepare a comprehensible presentation
- do not just reproduce the paper
- adapt the organization and the focus of the paper in order to get a comprehensible presentation
 - you can skip some content
 - you can add content from additional sources
Outline

- introduction
- presentation
- organization
- topics
Overview

- raytracing
- radiosity
- rasterization
- surface reconstruction
- volume rendering
- all animation topics
Publications

<table>
<thead>
<tr>
<th>File Name</th>
<th>Date</th>
<th>Time</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataStructures_2005_CGF_collisionDetection.pdf</td>
<td>04-Apr-2013</td>
<td>16:55</td>
<td>2.7M</td>
</tr>
<tr>
<td>dataStructures_2011_CGF_dataStructuresSPH.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
<td>3.1M</td>
</tr>
<tr>
<td>dataStructures_Onderik_EfficientNeighborSearchForParticleBasedFluids.pdf</td>
<td>09-Oct-2008</td>
<td>09:54</td>
<td>4.2M</td>
</tr>
<tr>
<td>gridFluids_StableFluids.pdf</td>
<td>27-Aug-2013</td>
<td>10:22</td>
<td>1.3M</td>
</tr>
<tr>
<td>gridFluids_StableFluidsImplementation.pdf</td>
<td>29-Apr-2014</td>
<td>12:33</td>
<td>1.0M</td>
</tr>
<tr>
<td>gridFluids_EulerParticle.pdf</td>
<td>10-Apr-2013</td>
<td>10:17</td>
<td>1.0M</td>
</tr>
<tr>
<td>gridFluids_fluid_flow_for_the_rest_of_us.pdf</td>
<td>10-Apr-2013</td>
<td>10:18</td>
<td>553K</td>
</tr>
<tr>
<td>gridFluids_particleFluids_2007_SIGGRAPH_course.pdf</td>
<td>29-Apr-2014</td>
<td>12:57</td>
<td>5.5M</td>
</tr>
<tr>
<td>particleFluids_2014_StateOfTheArt.pdf</td>
<td>07-Mar-2014</td>
<td>17:00</td>
<td>46M</td>
</tr>
<tr>
<td>particleFluids_Solenthaler-pcisph.pdf</td>
<td>08-Feb-2012</td>
<td>10:52</td>
<td>6.5M</td>
</tr>
<tr>
<td>positionBasedDynamics_2013_EG_positionBased.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
<td>17M</td>
</tr>
<tr>
<td>positionBasedFluids_2014_SIGGRAPH.pdf</td>
<td>31-Aug-2013</td>
<td>16:41</td>
<td>5.6M</td>
</tr>
<tr>
<td>rigidFluidCoupling_2009_TVCGrigidFluidCoupling.pdf</td>
<td>04-Apr-2013</td>
<td>16:57</td>
<td>1.5M</td>
</tr>
<tr>
<td>rigidFluidCoupling_2010_VRIPHYS_boundaryHandling.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
<td>1.8M</td>
</tr>
<tr>
<td>rigidFluidCoupling_2012_SIGGRAPH_rigidFluidCoupling.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
<td>23M</td>
</tr>
<tr>
<td>surfaceReconstruction_2012_VRIPHYS_surfacePipeline.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
<td>22M</td>
</tr>
<tr>
<td>surfaceReconstruction_sol_cavw07.pdf</td>
<td>04-Apr-2013</td>
<td>16:57</td>
<td>1.9M</td>
</tr>
<tr>
<td>surfaceReconstruction_survey_of_marching_cubes.pdf</td>
<td>04-Apr-2013</td>
<td>16:59</td>
<td>527K</td>
</tr>
<tr>
<td>surfaceReconstruction_zhu_siggraph05_sandfluid.pdf</td>
<td>04-Apr-2013</td>
<td>16:58</td>
<td>1.7M</td>
</tr>
<tr>
<td>surfaceTracking_siggraph2011.pdf</td>
<td>04-Apr-2013</td>
<td>17:03</td>
<td>33M</td>
</tr>
<tr>
<td>volumeRenderingInVisualEffects2010.pdf</td>
<td>10-Apr-2013</td>
<td>10:12</td>
<td>65M</td>
</tr>
</tbody>
</table>