Seminar
Advanced Topics in Animation

Matthias Teschner
Contact

– Matthias Teschner
 Computer Graphics
 University of Freiburg

– Georges-Koehler-Allee 052 / 01-005
– teschner@informatik.uni-freiburg.de
– https://cg.informatik.uni-freiburg.de
Outline

– Introduction
– Presentation
– Organization
– Topics
Course Information

- Key course
 - Pattern recognition and computer graphics (rasterization)

- Specialization courses
 - Advanced computer graphics (ray tracing)
 - Simulation in computer graphics (e.g., fluids)

- Master project, lab course, Master thesis
 - Simulation track
 - Rendering track
<table>
<thead>
<tr>
<th>Semester</th>
<th>Simulation Track</th>
<th>Rendering Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Rasterization Course</td>
<td>Rasterization Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Course</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Lab Course</td>
<td>Ray Tracing Course</td>
</tr>
<tr>
<td></td>
<td>- Simple fluid solver</td>
<td>Lab Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Seminar</td>
<td>- Simple ray tracer</td>
</tr>
<tr>
<td>Winter</td>
<td>Master Project</td>
<td>Master Project</td>
</tr>
<tr>
<td></td>
<td>- PPE fluid solver</td>
<td>- Monte Carlo ray tracer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendering Seminar</td>
</tr>
<tr>
<td>Summer</td>
<td>Master Thesis</td>
<td>Master Thesis</td>
</tr>
<tr>
<td></td>
<td>- Research-oriented topic</td>
<td>- Research-oriented topic</td>
</tr>
</tbody>
</table>
Topics in Graphics

- Animation
 - Rigid objects
 - Deformable objects
 - Fluids
 - Collision handling
- Rendering
 - Ray tracing, volume rendering, rasterization
- Modeling / geometry processing
 - Mesh simplification, surface reconstruction
- 500 M particles (with FIFTY2 Technology)
Topics - Example

– Automotive Industry (with FIFTY2 Technology)

PreonLab: Drive Through
Goals

- Familiarize yourself with a topic
 - Based on scientific publications
 - Using information from the authors' web pages
 - Using additional sources (internet, books)
- Prepare a comprehensible presentation
- Do not just reproduce the paper
- Adapt the organization and the focus of the paper in order to get a comprehensible presentation
 - You can skip some content
 - You can add content from additional sources
Outline

– Introduction
– Presentation
– Organization
– Topics
Preparation

– Know your topic
 – Examine relevant material thoroughly
 – Do not try to circumvent problems

– Prepare slides
 – Allow 1 to 2 minutes per slide
 – Slides should be uniform and not too dense
 – Incorporate illustrations
 – Slide titles should be helpful
Preparation

– Rehearse your presentation
 – Gather feedback
 – Adapt your presentation accordingly
 – Check your slides with Matthias Teschner one week before your talk
Presentation

- Introduction
 - Introduce yourself, the title of your presentation

- Overview
 - Give an idea, but not too detailed

- Motivation
 - Illustrate the principle and/or applications
 - Explain the goal of your presentation
 - Cite references
 - The audience should be eager to listen your presentation
Presentation

- Main part
 - Should consist of distinguished parts
 - Separate different parts of the presentation explicitly
 - Each part should be introduced and summarized

- Summary
 - Tell the audience what you have told them
 - Ask for questions
Structure of the Presentation

- Title
- Motivation, introduction to the topic
- Information on author, affiliation, source
- Outline of the presentation
- Description of the problem
- Methods to solve the problem
- Results
- Discussion of benefits, drawbacks, problems
- Summary
Presentation - Summary

– Introduce the title and yourself
– Motivate and introduce your topic thoroughly
 – It is essential to arouse the interest of the audience
– Give a brief overview (avoid too many details)
– Structure your presentation
 – Introduce and summarize parts of your presentation
– Summarize the entire presentation
– Clearly mark the end of your presentation
General Comments

– Check the presentation environment prior to the presentation
– Do not occlude the projection
– Avoid idiosyncrasies
– Stay in time
Presentation

– Do not learn your talk by heart
– Do not read your talk
– Do not read slides, but explain every item on your slide
– Do not be shy or quiet
– Communicate self-confidence
Outline

– Introduction
– Presentation
– Organization
– Topics
Requirements

– Presentation of a topic, 30 min, (English or German)
– Discussion (technical aspects, form), 15 min
– Written documentation (English or German)
– Attendance of all presentations is mandatory
– Information on https://cg.informatik.uni-freiburg.de/teaching.htm
– Submission deadline for presentation (PDF) and report (PDF): End of July
Registration

– Obtain the papers from https://cg.informatik.uni-freiburg.de/intern/seminar/
– Check for available topics, papers and dates
– Choose a paper / topic, choose a date
– Send an email to Matthias Teschner teschner@informatik.uni-freiburg.de with your registration request stating name, topic, date
– Do not forget to register the seminar at the online portal / examination office
Goals

- Familiarize yourself with a computer graphics topic
 - Based on scientific publications
 - Using information from the authors' web pages
 - Using additional sources (internet, books)
- Prepare a comprehensible presentation
- Do not just reproduce the paper
- Adapt the organization and the focus of the paper in order to get a comprehensible presentation
 - You can skip some content
 - You can add content from additional sources
Outline

– Introduction
– Presentation
– Organization
– Topics
Overview

- Fluids (particles or grids)
- Deformable objects
- Rigid objects
- Collision detection
- Contact handling
- Surface reconstruction / tracking
- ...
- All rendering topics
Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataStructures_2005_CGF_collisionDetection.pdf</td>
<td>04-Apr-2013</td>
<td>16:55</td>
</tr>
<tr>
<td>dataStructures_2011_CGF_dataStructuresSPH.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
</tr>
<tr>
<td>dataStructures_Orderlik - Efficient Neighbor Search for Particle-based Fluids.pdf</td>
<td>09-Oct-2008</td>
<td>09:54</td>
</tr>
<tr>
<td>gridFluids_StableFluids.pdf</td>
<td>27-Aug-2013</td>
<td>10:22</td>
</tr>
<tr>
<td>gridFluids_StableFluidsImplementation.pdf</td>
<td>29-Apr-2014</td>
<td>12:33</td>
</tr>
<tr>
<td>gridFluids_fald_FluideParticle.pdf</td>
<td>10-Apr-2013</td>
<td>10:17</td>
</tr>
<tr>
<td>gridFluids_fluid_flow_for_the_rest_of_us.pdf</td>
<td>10-Apr-2013</td>
<td>10:18</td>
</tr>
<tr>
<td>gridFluids_particleFluids_2007_SIGGRAPH_course.pdf</td>
<td>29-Apr-2014</td>
<td>12:57</td>
</tr>
<tr>
<td>particleFluids_2014_StateOfTheArt.pdf</td>
<td>07-Mar-2014</td>
<td>17:00</td>
</tr>
<tr>
<td>particleFluids_Solenhofner-rociph.pdf</td>
<td>08-Feb-2012</td>
<td>10:52</td>
</tr>
<tr>
<td>positionBasedDynamics_2013_EG_positionBased.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
</tr>
<tr>
<td>positionBasedFluids_2014_SIGGRAPH.pdf</td>
<td>31-Aug-2013</td>
<td>16:41</td>
</tr>
<tr>
<td>rigidFluidCoupling_2009_TVCG_rigidFluidCoupling.pdf</td>
<td>04-Apr-2013</td>
<td>16:57</td>
</tr>
<tr>
<td>rigidFluidCoupling_2010_VPHYS_boundaryHandling.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
</tr>
<tr>
<td>rigidFluidCoupling_2012_SIGGRAPH_rigidFluidCoupling.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
</tr>
<tr>
<td>surfaceReconstruction_2012_VPHYS_surfacePipeline.pdf</td>
<td>04-Apr-2013</td>
<td>16:56</td>
</tr>
<tr>
<td>surfaceReconstruction_sol_carron7.pdf</td>
<td>04-Apr-2013</td>
<td>16:57</td>
</tr>
<tr>
<td>surfaceReconstruction_survey_of_matching_cubes.pdf</td>
<td>04-Apr-2013</td>
<td>16:59</td>
</tr>
<tr>
<td>surfaceReconstruction_2013_sigtovskyl-tandfluid.pdf</td>
<td>04-Apr-2013</td>
<td>16:58</td>
</tr>
<tr>
<td>surfaceTracking_sigtovskyl2011.pdf</td>
<td>04-Apr-2013</td>
<td>17:03</td>
</tr>
<tr>
<td>volumeRenderingInVisualEffects2010.pdf</td>
<td>10-Apr-2013</td>
<td>10:12</td>
</tr>
</tbody>
</table>