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Figure 2: 3D Printing
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Figure 3: Structural Analysis
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REAL-LIFE APPLICATIONS



Figure 4: Mechanics of brain tissue
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7Figure 5: Animation of elastic materials
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Studies motion of deformable bodies

 General laws for all materials

 Individual material properties (constitutive equations)

 Elastic materials

 Liquids and gases

No molecular structure but continuum

 Density and velocity at each point in space

 Field theory

Our goal: Compute forces at all points in the material depending on the deformation.
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CONCEPTS OF CONTINUUM MECHANICS



Initial positions X → current positions x

𝜙 X = x

initial state X current state x

𝜙

X1

X2 x2

x1
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DEFORMATION MAP 𝜙



Jacobian of 𝜙

𝐅𝜙 =
𝜕𝜙

𝜕X
=

𝜕𝜙𝑥

𝜕X𝑥

𝜕𝜙𝑥

𝜕X𝑦

𝜕𝜙𝑥

𝜕X𝑧

𝜕𝜙𝑦

𝜕X𝑥

𝜕𝜙𝑦

𝜕X𝑦

𝜕𝜙𝑦

𝜕X𝑧

𝜕𝜙𝑧

𝜕X𝑥

𝜕𝜙𝑧

𝜕X𝑦

𝜕𝜙𝑧

𝜕X𝑧
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DEFORMATION GRADIENT 𝐅



Translation by vector Ԧ𝑡

𝜙 X = X + Ԧ𝑡 𝐅 = 𝐈
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EXAMPLES

𝜙

initial state X current state x



Non-uniform scaling

𝜙 X =
2X𝑥
0.5X𝑦

𝐅 =
2 0
0 0.5
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EXAMPLES

𝜙

initial state X current state x



Rotating by a given angle 𝛼

𝜙 X =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

X𝑥
X𝑦

𝐅 =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼
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EXAMPLES

𝜙

initial state X current state x
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EXAMPLES

Shearing 𝑥-coordinate with respect to 𝑦-coordinate

𝜙 X =
1 1
0 1

X𝑥
X𝑦

𝐅 =
1 1
0 1

𝜙

initial state X current state x



Description of the deformation

Computed from deformation gradient 𝐅

Should exclude rigid body transformations

Green strain tensor 𝐄 =
1

2
𝐅⊤𝐅 − 𝐈

Infinitesimal strain tensor 𝝐 =
1

2
𝐅⊤ + 𝐅 − 𝐈

 Approximates 𝐄 for small deformations (including rotations)

 Linear & faster to compute
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STRAIN



Internal forces that particles of a continuous material exert on each other

Strain-stress relation is given by constitutive equation 
→ material defined

Different materials react differently to strain

Example elastic materials: Hooke’s law for isotropic materials
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STRESS 𝛔



Young modulus 𝐸 and Poisson’s ratio 𝑣

σ𝑥𝑥
σ𝑦𝑦
σ𝑧𝑧
σ𝑦𝑧
σ𝑥𝑧
σ𝑥𝑦

=
𝐸

1 + 𝑣 1 − 2𝑣

1 − 𝑣 𝑣 𝑣 0 0 0
𝑣 1 − 𝑣 𝑣 0 0 0
𝑣 𝑣 1 − 𝑣 0 0 0

0 0 0
1 − 2𝑣

2
0 0

0 0 0 0
1 − 2𝑣

2
0

0 0 0 0 0
1 − 2𝑣

2

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑦𝑧
𝜖𝑥𝑧
𝜖𝑥𝑦

Stainless Steel: 𝐸 = 1.8 ⋅ 1011 Pa, 𝑣 = 0.3

Rubber: 𝐸 = 1.0 ⋅ 107 Pa, 𝑣 = 0.4999
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HOOKE’S LAW FOR ISOTROPIC MATERIALS



Cauchy momentum equation

a =
Dv

D𝑡
=
1

𝜌
∇ ⋅ 𝝈 + aexternal
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ACCELERATIONS a



EXAMPLE: RUBBER DUCK
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EXAMPLE: RUBBER DUCK

1. Deformation map

𝜙 X =
cos 30° − sin 30°
sin 30° cos 30°

0.5 0
0 1

X𝑥
X𝑦

=
0.433 −0.500
0.250 0.866

X𝑥
X𝑦

2. Deformation Gradient

𝐅 =
𝜕𝜙

𝜕X
=

0.433 −0.500
0.250 0.866

3. Strain

𝐄 =
1

2
𝐅⊤𝐅 − 𝐈 =

0.250 0
0 1
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EXAMPLE: RUBBER DUCK
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3. Strain

𝐄 =
0.250 0
0 1

4. Stress

Rubber: 𝐸 = 1.0 ⋅ 107 Pa, 𝑣 = 0.4999

σ𝑥𝑥
σ𝑦𝑦
σ𝑥𝑦

=
𝐸

1+𝑣 1−2𝑣

1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0

0 0
1−2𝑣

2

E𝑥𝑥
E𝑦𝑦
E𝑥𝑦

=
2.08 ⋅ 1010

2.08 ⋅ 1010

0

Pa

𝛔 = 2.08 ⋅ 1010 0
0 2.08 ⋅ 1010

Pa



EXAMPLE: RUBBER DUCK

4. Stress

𝛔 = 2.08 ⋅ 1010 0
0 2.08 ⋅ 1010

5. Accelerations in the material 

a =
1

𝜌
∇ ⋅ 𝝈 + aexternal =

1

𝜌
∇ ⋅ 2.08 ⋅ 1010 0

0 2.08 ⋅ 1010
=

0
0

Accelerations on the surface of the material

→ non-zero divergence of the stress

→ non-zero accelerations
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Deformation map 𝜙

Deformation gradient 𝐅

Strain 𝐄, 𝛜

Stress 𝛔

Acceleration a

Gradient

Definition, e.g. Green strain tensor or infinitesimal strain tensor

Constitutive equation (material defined)

Cauchy momentum equation
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CONCEPTS - SUMMARY



OUTLINE

Real-life applications

Concepts of continuum 
mechanics

Elastic materials
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Finite elements as a discretization method

Material is subdivided into tetrahedrons
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ELASTIC MATERIALS

Figure 6: Finite element mesh



Goal: Compute forces at all vertices depending on deformation
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ELASTIC MATERIALS

x0

x1

x2

x3

X0

X1
X2

X3
𝜙



Simulation step:

1. Translate X and x such that X0 = x0 =
0
0
0

2. Compute deformation map 𝜙 X = x1, x2, x3 X1, X2, X3
−1
X

3. Compute deformation gradient 𝐅 = x1, x2, x3 X1, X2, X3
−1

4. Compute strain 𝐄 =
1

2
𝐅⊤𝐅 − 𝐈

5. Compute stress 𝛔 𝐄 (Hooke’s law)

6. Compute forces at surface n Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n

7. Equally distribute surface forces over x𝑖
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ELASTIC MATERIALS



EXAMPLE: TETRAHEDRON 
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X0
X1

X2

X3

x0 x1

x2

x3

𝜙

X0 =
1
1
0

X1 =
3
1
0

X2 =
1
3
0

X3 =
1
1
1

x0 =
1
1
0

x1 =
3
1
0

x2 =
1
2
0

x3 =
1
1
1



EXAMPLE: TETRAHEDRON 
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1. Translate to origin 

X0 =
0
0
0

X1 =
2
0
0

X2 =
0
2
0

X3 =
0
0
1

x0 =
0
0
0

x1 =
2
0
0

x2 =
0
1
0

x3 =
0
0
1

2. Compute deformation map 𝜙

𝜙 X = x1, x2, x3 X1, X2, X3
−1
X =

2 0 0
0 1 0
0 0 1

2 0 0
0 2 0
0 0 1

−1

X

=
1 0 0
0 0.5 0
0 0 1

X



EXAMPLE: TETRAHEDRON 
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3. Compute deformation gradient 𝐅

𝐅 =
𝜕𝜙

𝜕X
=

𝜕

𝜕X

1 0 0
0 0.5 0
0 0 1

X =
1 0 0
0 0.5 0
0 0 1

4. Compute strain 𝐄

𝐄 =
1

2
𝐅⊤𝐅 − 𝐈 =

0 0 0
0 −0.375 0
0 0 0

5. Compute stress 𝛔 using Hooke’s law with 𝐸 = 1.0 ⋅ 107 Pa, 𝑣 = 0.4999

𝛔 =
−6.249 ⋅ 109 0 0

0 −6.251 ⋅ 109 0
0 0 −6.249 ⋅ 109

Pa



5. Compute forces Ԧ𝑓 at all surfaces with Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n

Ԧ𝑓012 = 1m2 ⋅ 𝛔 ⋅
0
0
1

=
0
0

−6.249 ⋅ 109
N Ԧ𝑓013 = 1m2 ⋅ 𝛔 ⋅

0
1
0

=
0

−6.251 ⋅ 109

0
N

Ԧ𝑓023 = 0.5m2 ⋅ 𝛔 ⋅
1
0
0

=
−3.125 ⋅ 109

0
0

N Ԧ𝑓123 =
3

2
m2 ⋅ 𝛔 ⋅

−
1

3

−
2

3

−
2

3

=
3.125 ⋅ 109

6.251 ⋅ 109

6.249 ⋅ 109
N

x0 x1

x2

x3

EXAMPLE: TETRAHEDRON 
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5. Compute forces Ԧ𝑓 at all surfaces with Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n
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5. Compute forces Ԧ𝑓 at all surfaces with Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n
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EXAMPLE: TETRAHEDRON 
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6. Equally distribute surface forces over vertices

Ԧ𝑓 x0 =
1

3
Ԧ𝑓012 + Ԧ𝑓013 + Ԧ𝑓023 =

−1.04
−2.08
−2.08

⋅ 109 N

Ԧ𝑓 x1 =
1

3
Ԧ𝑓012 + Ԧ𝑓013 + Ԧ𝑓123 =

1.04
0
0

⋅ 109 N

Ԧ𝑓 x2 =
1

3
Ԧ𝑓012 + Ԧ𝑓023 + Ԧ𝑓123 =

0
2.08
0

⋅ 109 N

Ԧ𝑓 x3 =
1

3
Ԧ𝑓013 + Ԧ𝑓023 + Ԧ𝑓123 =

0
0

2.08
⋅ 109 N

x0
x1

x2

x3



EXAMPLE: TETRAHEDRON 
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EXAMPLE: TETRAHEDRON 
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EXAMPLE: TETRAHEDRON 
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6. Equally distribute surface forces over vertices
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Continuum Mechanics have many real-life applications.

Can be used to simulate a wide range of materials

 Similar procedure for all materials possible

For implementation we need discretization methods

 Finite Elements

 SPH

 MPM
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SUMMARY
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RESOURCES



Navier-Stokes equation for incompressible fluids

a = −
1

𝜌
∇𝑝 +

𝜂

𝜌
∇2v + aexternal

Cauchy momentum equation

a =
1

𝜌
∇ ⋅ 𝝈 + aexternal

Stress in fluids:

𝝈 = −𝑝𝐈 + 𝜂 ∇v + ∇v
⊤
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FLUIDS



Strain 𝐄 corresponds to density 𝜌

𝐄 =

𝜌 0 0
0 𝜌 0
0 0 𝜌

Pressure stress 𝛔 corresponds to negative pressure 𝑝

𝛔 =

−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

Constitutive equation to relate strain and stress is a state equation:

𝑝 = 𝑘 ⋅ 𝜌

𝑝 = 𝑘1 ⋅
𝜌

𝜌0
− 1

𝑘2
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PRESSURE



Deformation can also depend on a velocity field that doesn’t match a rest velocity 
field.

Strain rate tensor 𝐄

𝐄 =
1

2
∇v + ∇v⊤

In Newtonian fluids strain and stress are linearly dependent with 2𝜂.

Viscous stress tensor 𝛔

𝛔 = 2𝜂 ⋅ 𝐄 = 𝜂 ∇v + ∇v⊤
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VISCOSITY


