CONTINUUM MECHANICS

Timo Probst

CONTINUUM MECHANICS

Real-life applications

Concepts of continuum mechanics

Elastic materials

REAL-LIFE APPLICATIONS

Figure 2: 3D Printing

REAL-LIFE APPLICATIONS

Figure 3: Structural Analysis

REAL-LIFE APPLICATIONS

24 ms

124.66 trame/sec

60 ms

Figure 4: Mechanics of brain tissue

REAL-LIFE APPLICATIONS

Figure 5: Animation of elastic materials

Real-life applications

Concepts of continuum mechanics

Elastic materials
OUTLINE

CONCEPTS OF CONTINUUM MECHANICS

Studies motion of deformable bodies

- General laws for all materials
- Individual material properties (constitutive equations)
- Elastic materials
- Liquids and gases

No molecular structure but continuum
" Density and velocity at each point in space
" Field theory

Our goal: Compute forces at all points in the material depending on the deformation.

deformation map $\vec{\phi}$

Initial positions $\vec{X} \rightarrow$ current positions \vec{X}

$$
\vec{\phi}(\overrightarrow{\mathrm{x}})=\overrightarrow{\mathrm{x}}
$$

initial state $\overrightarrow{\mathrm{X}}$
current state $\overrightarrow{\mathrm{X}}$

DEFORMATION GRADIENT F

Jacobian of $\vec{\phi}$

$$
\mathbf{F}_{\phi}=\frac{\partial \vec{\phi}}{\partial \overrightarrow{\mathrm{X}}}=\left(\begin{array}{lll}
\frac{\partial \phi_{x}}{\partial \mathrm{X}_{x}} & \frac{\partial \phi_{x}}{\partial \mathrm{X}_{y}} & \frac{\partial \phi_{x}}{\partial \mathrm{X}_{z}} \\
\frac{\partial \phi_{y}}{\partial \mathrm{X}_{x}} & \frac{\partial \phi_{y}}{\partial \mathrm{X}_{y}} & \frac{\partial \phi_{y}}{\partial \mathrm{X}_{z}} \\
\frac{\partial \phi_{z}}{\partial \mathrm{X}_{x}} & \frac{\partial \phi_{z}}{\partial \mathrm{X}_{y}} & \frac{\partial \phi_{z}}{\partial \mathrm{X}_{z}}
\end{array}\right)
$$

EXAMPLES

Translation by vector \vec{t}
$\vec{\phi}(\overrightarrow{\mathrm{x}})=\overrightarrow{\mathrm{x}}+\vec{t}$
$\mathbf{F}=\mathbf{I}$

initial state \vec{X}

EXAMPLES

Non-uniform scaling

$$
\vec{\phi}(\overrightarrow{\mathrm{X}})=\binom{2 \mathrm{X}_{x}}{0.5 \mathrm{X}_{y}} \quad \mathbf{F}=\left(\begin{array}{cc}
2 & 0 \\
0 & 0.5
\end{array}\right)
$$

EXAMPLES

Rotating by a given angle α

$$
\vec{\phi}(\overrightarrow{\mathrm{X}})=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\mathrm{X}_{x}}{\mathrm{X}_{y}} \quad \mathbf{F}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

initial state \vec{X}
current state $\overrightarrow{\mathrm{X}}$

EXAMPLES

Shearing x-coordinate with respect to y-coordinate

$$
\vec{\phi}(\vec{X})=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{X_{x}}{X_{y}} \quad \mathbf{F}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

STRAIN

Description of the deformation

Computed from deformation gradient \mathbf{F}
Should exclude rigid body transformations
Green strain tensor $\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right)$
Infinitesimal strain tensor $\boldsymbol{\epsilon}=\frac{1}{2}\left(\mathbf{F}^{\top}+\mathbf{F}\right)-\mathbf{I}$

- Approximates \mathbf{E} for small deformations (including rotations)
" Linear \& faster to compute

STRESS $\boldsymbol{\sigma}$

Internal forces that particles of a continuous material exert on each other
Strain-stress relation is given by constitutive equation
\rightarrow material defined
Different materials react differently to strain
Example elastic materials: Hooke's law for isotropic materials

HOOKE'S LAW FOR ISOTROPIC MATERIALS

Young modulus E and Poisson's ratio v

$$
\left(\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\sigma_{y z} \\
\sigma_{x z} \\
\sigma_{x y}
\end{array}\right)=\frac{E}{(1+v)(1-2 v)}\left(\begin{array}{cccccc}
1-v & v & v & 0 & 0 & 0 \\
v & 1-v & v & 0 & 0 & 0 \\
v & v & 1-v & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-2 v}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1-2 v}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right)\left(\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
\epsilon_{z z} \\
\epsilon_{y z} \\
\epsilon_{x z} \\
\epsilon_{x y}
\end{array}\right)
$$

Stainless Steel: $E=1.8 \cdot 10^{11} \mathrm{~Pa}, v=0.3$
Rubber: $E=1.0 \cdot 10^{7} \mathrm{~Pa}, v=0.4999$

ACCELERATIONS \vec{a}

Cauchy momentum equation

$$
\overrightarrow{\mathrm{a}}=\frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=\frac{1}{\rho} \vec{\nabla} \cdot \boldsymbol{\sigma}+\overrightarrow{\mathrm{a}}_{\text {external }}
$$

EXAMPLE: RUBBER DUCK

EXAMPLE: RUBBER DUCK

1. Deformation map

$$
\begin{aligned}
\vec{\phi}(\overrightarrow{\mathrm{X}}) & =\left(\begin{array}{cc}
\cos 30^{\circ} & -\sin 30^{\circ} \\
\sin 30^{\circ} & \cos 30^{\circ}
\end{array}\right)\left(\begin{array}{cc}
0.5 & 0 \\
0 & 1
\end{array}\right)\binom{\mathrm{X}_{x}}{\mathrm{X}_{y}} \\
& =\left(\begin{array}{cc}
0.433 & -0.500 \\
0.250 & 0.866
\end{array}\right)\binom{\mathrm{X}_{x}}{\mathrm{X}_{y}}
\end{aligned}
$$

2. Deformation Gradient

$$
\mathbf{F}=\frac{\partial \vec{\phi}}{\partial \overrightarrow{\mathrm{X}}}=\left(\begin{array}{cc}
0.433 & -0.500 \\
0.250 & 0.866
\end{array}\right)
$$

3. Strain

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right)=\left(\begin{array}{cc}
0.250 & 0 \\
0 & 1
\end{array}\right)
$$

EXAMPLE: RUBBER DUCK

3. Strain

$$
\mathbf{E}=\left(\begin{array}{cc}
0.250 & 0 \\
0 & 1
\end{array}\right)
$$

4. Stress

Rubber: $E=1.0 \cdot 10^{7} \mathrm{~Pa}, v=0.4999$

$$
\begin{aligned}
& \left(\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right)=\frac{E}{(1+v)(1-2 v)}\left(\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right)\left(\begin{array}{c}
\mathrm{E}_{x x} \\
\mathrm{E}_{y y} \\
\mathrm{E}_{x y}
\end{array}\right)=\left(\begin{array}{c}
2.08 \cdot 10^{10} \\
2.08 \cdot 10^{10} \\
0
\end{array}\right) \mathrm{Pa} \\
& \boldsymbol{\sigma}=\left(\begin{array}{cc}
2.08 \cdot 10^{10} & 0 \\
0 & 2.08 \cdot 10^{10}
\end{array}\right) \mathrm{Pa}
\end{aligned}
$$

EXAMPLE: RUBBER DUCK

4. Stress

$$
\boldsymbol{\sigma}=\left(\begin{array}{cc}
2.08 \cdot 10^{10} & 0 \\
0 & 2.08 \cdot 10^{10}
\end{array}\right)
$$

5. Accelerations in the material

$$
\overrightarrow{\mathrm{a}}=\frac{1}{\rho} \vec{\nabla} \cdot \sigma+\overrightarrow{\mathrm{a}}_{\text {external }}=\frac{1}{\rho} \vec{\nabla} \cdot\left(\begin{array}{cc}
2.08 \cdot 10^{10} & 0 \\
0 & 2.08 \cdot 10^{10}
\end{array}\right)=\binom{0}{0}
$$

Accelerations on the surface of the material
\rightarrow non-zero divergence of the stress
\rightarrow non-zero accelerations

CONCEPTS - SUMMARY

ELASTIC MATERIALS

Finite elements as a discretization method
Material is subdivided into tetrahedrons

ELASTIC MATERIALS

Goal: Compute forces at all vertices depending on deformation

ELASTIC MATERIALS

Simulation step:

1. Translate \vec{X} and \vec{X} such that $\vec{X}_{0}=\vec{x}_{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
2. Compute deformation map
3. Compute deformation gradient
4. Compute strain
5. Compute stress
6. Compute forces at surface $\overrightarrow{\mathrm{n}}$
7. Equally distribute surface forces over \vec{X}_{i}
$\vec{\phi}(\overrightarrow{\mathrm{X}})=\left[\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right]\left[\mathrm{X}_{1}, \overrightarrow{\mathrm{X}}_{2}, \overrightarrow{\mathrm{X}}_{3}\right]^{-1} \overrightarrow{\mathrm{X}}$ $\mathbf{F}=\left[\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right]\left[\overrightarrow{\mathrm{X}}_{1}, \overrightarrow{\mathrm{X}}_{2}, \overrightarrow{\mathrm{X}}_{3}\right]^{-1}$
$\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right)$
$\boldsymbol{\sigma}(\mathbf{E})$ (Hooke's law)
$\vec{f}(\overrightarrow{\mathrm{n}})=A \cdot \boldsymbol{\sigma} \cdot \overrightarrow{\mathrm{n}}$

EXAMPLE: TETRAHEDRON

EXAMPLE: TETRAHEDRON

1. Translate to origin

$$
\begin{array}{lll}
\overrightarrow{\mathrm{X}}_{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) & \overrightarrow{\mathrm{x}}_{1}=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right) & \overrightarrow{\mathrm{X}}_{2}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)
\end{array} \overrightarrow{\mathrm{X}}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

2. Compute deformation map $\vec{\phi}$

$$
\begin{aligned}
\vec{\phi}(\overrightarrow{\mathrm{X}})=\left[\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right]\left[\overrightarrow{\mathrm{X}}_{1}, \overrightarrow{\mathrm{X}}_{2}, \overrightarrow{\mathrm{X}}_{3}\right]^{-1} \overrightarrow{\mathrm{X}} & =\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1} \overrightarrow{\mathrm{X}} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right) \overrightarrow{\mathrm{X}}
\end{aligned}
$$

EXAMPLE: TETRAHEDRON

3. Compute deformation gradient \mathbf{F}

$$
\mathbf{F}=\frac{\partial \vec{\phi}}{\partial \overline{\mathrm{X}}}=\frac{\partial}{\partial \overline{\mathrm{X}}}\left(\begin{array}{lcc}
1 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right) \overrightarrow{\mathrm{X}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

4. Compute strain \mathbf{E}

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -0.375 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

5. Compute stress $\boldsymbol{\sigma}$ using Hooke's law with $E=1.0 \cdot 10^{7} \mathrm{~Pa}, v=0.4999$

$$
\boldsymbol{\sigma}=\left(\begin{array}{ccc}
-6.249 \cdot 10^{9} & 0 & 0 \\
0 & -6.251 \cdot 10^{9} & 0 \\
0 & 0 & -6.249 \cdot 10^{9}
\end{array}\right) \mathrm{Pa}
$$

EXAMPLE: TETRAHEDRON

5. Compute forces \vec{f} at all surfaces with $\vec{f}(\overrightarrow{\mathrm{n}})=A \cdot \boldsymbol{\sigma} \cdot \overrightarrow{\mathrm{n}}$

$$
\begin{array}{ll}
\vec{f}_{012}=1 \mathrm{~m}^{2} \cdot \boldsymbol{\sigma} \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-6.249 \cdot 10^{9}
\end{array}\right) \mathrm{N} & \vec{f}_{013}=1 \mathrm{~m}^{2} \cdot \boldsymbol{\sigma} \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
-6.251 \cdot 10^{9} \\
0
\end{array}\right) \mathrm{N} \\
\vec{f}_{023}=0.5 \mathrm{~m}^{2} \cdot \boldsymbol{\sigma} \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-3.125 \cdot 10^{9} \\
0 \\
0
\end{array}\right) \mathrm{N} & \vec{f}_{123}=\frac{3}{2} \mathrm{~m}^{2} \cdot \boldsymbol{\sigma} \cdot\left(\begin{array}{c}
-\frac{1}{3} \\
-\frac{2}{3} \\
-\frac{2}{3}
\end{array}\right)=\left(\begin{array}{c}
3.125 \cdot 10^{9} \\
6.251 \cdot 10^{9} \\
6.249 \cdot 10^{9}
\end{array}\right) \mathrm{N}
\end{array}
$$

EXAMPLE: TETRAHEDRON

5. Compute forces \vec{f} at all surfaces with $\vec{f}(\overrightarrow{\mathrm{n}})=A \cdot \boldsymbol{\sigma} \cdot \overrightarrow{\mathrm{n}}$

$$
\vec{f}_{012}=1 \mathrm{~m}^{2} \cdot \boldsymbol{\sigma} \cdot\left(\begin{array}{l}
0 \tag{f}\\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-6.249 \cdot 10^{9}
\end{array}\right) \mathrm{N}
$$

EXAMPLE: TETRAHEDRON

5. Compute forces \vec{f} at all surfaces with $\vec{f}(\overrightarrow{\mathrm{n}})=A \cdot \boldsymbol{\sigma} \cdot \overrightarrow{\mathrm{n}}$

EXAMPLE: TETRAHEDRON

6. Equally distribute surface forces over vertices

$$
\begin{aligned}
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{0}\right)=\frac{1}{3}\left(\vec{f}_{012}+\vec{f}_{013}+\vec{f}_{023}\right)=\left(\begin{array}{c}
-1.04 \\
-2.08 \\
-2.08
\end{array}\right) \cdot 10^{9} \mathrm{~N} \\
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{1}\right)=\frac{1}{3}\left(\vec{f}_{012}+\vec{f}_{013}+\vec{f}_{123}\right)=\left(\begin{array}{c}
1.04 \\
0 \\
0
\end{array}\right) \cdot 10^{9} \mathrm{~N} \\
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{2}\right)=\frac{1}{3}\left(\vec{f}_{012}+\vec{f}_{023}+\vec{f}_{123}\right)=\left(\begin{array}{c}
0 \\
2.08 \\
0
\end{array}\right) \cdot 10^{9} \mathrm{~N} \\
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{3}\right)=\frac{1}{3}\left(\vec{f}_{013}+\vec{f}_{023}+\vec{f}_{123}\right)=\left(\begin{array}{c}
0 \\
0 \\
2.08
\end{array}\right) \cdot 10^{9} \mathrm{~N}
\end{aligned}
$$

EXAMPLE: TETRAHEDRON

6. Equally distribute surface forces over vertices

EXAMPLE: TETRAHEDRON

6. Equally distribute surface forces over vertices

EXAMPLE: TETRAHEDRON

6. Equally distribute surface forces over vertices

$$
\begin{aligned}
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{0}\right)=\frac{1}{3}\left(\vec{f}_{012}+\vec{f}_{013}+\vec{f}_{023}\right)=\left(\begin{array}{c}
-1.04 \\
-2.08 \\
-2.08
\end{array}\right) \cdot 10^{9} \mathrm{~N} \\
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{1}\right)=\frac{1}{3}\left(\vec{f}_{012}+\vec{f}_{013}+\vec{f}_{123}\right)=\left(\begin{array}{c}
1.04 \\
0 \\
0
\end{array}\right) \cdot 10^{9} \mathrm{~N} \\
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{2}\right)=\frac{1}{3}\left(\vec{f}_{012}+\vec{f}_{023}+\vec{f}_{123}\right)=\left(\begin{array}{c}
0 \\
2.08 \\
0
\end{array}\right) \cdot 10^{9} \mathrm{~N} \\
& \vec{f}\left(\overrightarrow{\mathrm{x}}_{3}\right)=\frac{1}{3}\left(\vec{f}_{013}+\vec{f}_{023}+\vec{f}_{123}\right)=\left(\begin{array}{c}
0 \\
0 \\
2.08
\end{array}\right) \cdot 10^{9} \mathrm{~N}
\end{aligned}
$$

SUMMARY

Continuum Mechanics have many real-life applications.
Can be used to simulate a wide range of materials

- Similar procedure for all materials possible

For implementation we need discretization methods

- Finite Elements
- SPH
- MPM

REFERENCES

Peer, A., Gissler, C., Band, S., \& Teschner, M. (2018, September). An implicit SPH formulation for incompressible linearly elastic solids. In Computer Graphics Forum (Vol. 37, No. 6, pp. 135-148).

Ratajczak, M., Ptak, M., Chybowski, L., Gawdzińska, K., \& Będziński, R. (2019). Material and structural modeling aspects of brain tissue deformation under dynamic loads. Materials, $12(2), 271$.

Sifakis, E., \& Barbic, J. (2012). FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 courses (pp. 1-50).

Teschner, M. (2020). Simulation in Computer Graphics Exercises - Notes, lecture notes, University of Freiburg, delivered 29.04.2020.

RESOURCES

Figure 1: Tower, GDJ, Web, accessed 5.6.2020 in
https://openclipart.org/detail/233894/detailed-eiffel-tower-trace-2
Figure 2: 3D Printing, metalurgiamontemarO, Web, accessed 05.06.2020 in https://pixabay.com/de/photos/ball-3d-druck-gestaltung-597523/
Figure 3: Structural Analysis, Web, accessed 05.06.2020 in https://pixabay.com/de/photos/golden-gate-br\�\�cke-san-francisco-388917/

Figure 4: Mechanics of brain tissue from Ratajczak, M., Ptak, M., Chybowski, L., Gawdzińska, K., \& Będziński, R. (2019). Material and structural modeling aspects of brain tissue deformation under dynamic loads. Materials, $12(2), 271$.

Figure 5: Animation of elastic materials from Peer, A., Gissler, C., Band, S., \& Teschner, M. (2018, September). An implicit SPH formulation for incompressible linearly elastic solids. In Computer Graphics Forum (Vol. 37, No. 6, pp. 135-148).

Figure 6: Finite element mesh, Web, accessed 14.06.2020 in https://gmsh.info/

FLUIDS

Navier-Stokes equation for incompressible fluids

$$
\overrightarrow{\mathrm{a}}=-\frac{1}{\rho} \vec{\nabla} p+\frac{\eta}{\rho} \vec{\nabla}^{2} \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{a}}_{\text {external }}
$$

Cauchy momentum equation

$$
\overrightarrow{\mathrm{a}}=\frac{1}{\rho} \vec{\nabla} \cdot \boldsymbol{\sigma}+\overrightarrow{\mathrm{a}}_{\text {external }}
$$

Stress in fluids:

$$
\boldsymbol{\sigma}=-p \mathbf{I}+\eta\left(\vec{\nabla} \overrightarrow{\mathrm{v}}+(\vec{\nabla} \overrightarrow{\mathrm{v}})^{\top}\right)
$$

PRESSURE

Strain E corresponds to density ρ

$$
\mathbf{E}=\left(\begin{array}{lll}
\rho & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & \rho
\end{array}\right)
$$

Pressure stress $\boldsymbol{\sigma}$ corresponds to negative pressure p

$$
\boldsymbol{\sigma}=\left(\begin{array}{ccc}
-p & 0 & 0 \\
0 & -p & 0 \\
0 & 0 & -p
\end{array}\right)
$$

Constitutive equation to relate strain and stress is a state equation:

$$
\begin{aligned}
& p=k \cdot \rho \\
& p=k_{1} \cdot\left(\frac{\rho}{\rho_{0}}-1\right)^{k_{2}}
\end{aligned}
$$

VISCOSITY

Deformation can also depend on a velocity field that doesn't match a rest velocity field.

Strain rate tensor E

$$
\mathbf{E}=\frac{1}{2}\left(\vec{\nabla} \vec{v}+\vec{\nabla} \vec{v}^{\top}\right)
$$

In Newtonian fluids strain and stress are linearly dependent with 2η.
Viscous stress tensor $\boldsymbol{\sigma}$

$$
\boldsymbol{\sigma}=2 \eta \cdot \mathbf{E}=\eta\left(\vec{\nabla} \vec{v}+\vec{\nabla}^{\top}\right)
$$

