Seminar Advanced Topics in Rendering

Matthias Teschner

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Computer Graphics

Rendering

Modeling

Simulation

Computer Graphics

CGMeetup: CGI VFX Breakdown HD "Making of Share a Coke Vfx by ARMA" | CGMeetup. [Youtube]

Graphics Courses

- Key course
 - Image processing and computer graphics (modeling, rendering, simulation)
- Specialization courses
 - Advanced computer graphics (global illumination)
 - Simulation in computer graphics (solids and fluids)
- B.Sc. / M.Sc. project, lab course, B.Sc. / M.Sc. thesis
 - Simulation track, rendering track
 - By appointment per email, semester-aligned

Seminars / Projects / Theses in Graphics

Semester	Simulation Track	Rendering Track
Winter	Simulation Course	
Summer	Key Course Lab Course - Simple fluid solver Simulation Seminar	Key Course Lab Course - Simple Ray Tracer Rendering Seminar
Winter	Master Project - PPE fluid solver Rendering Seminar	Rendering Course Master Project - Monte Carlo RT Simulation Seminar
Summer	Master Thesis Research-oriented topic	Master Thesis Research-oriented topic

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Requirements

- Oral presentation of a rendering topic
 - English / German
 - Slides should be in English
- Written report
 - English / German

Goal

- Familiarize yourself with a topic
- Prepare a comprehensible presentation
- Presentation should be based on scientific publications
 - Do not just reproduce the material
 - Adapt the organization and the focus of the material in order to get a comprehensible presentation

Presentations

- Take place at the same time and in the same room as the introduction
 - Announced in the course catalog and on our web page https://cg.informatik.uni-freiburg.de/teaching.htm
 - Advanced Topics in Rendering
 - Schedule
- Attendance is mandatory

Report and Submissions

- Written report (approx. 10 pages)
- Submission of presentation slides and written report in two separate PDF files
 - YourLastName_report.pdf
 - YourLastName_presentation.pdf
- Per email to Prof. Teschner
- Until the last day of lectures of the semester

Consultations

- Voluntary
- Requested per email
- General discussion of the outline
- Content questions
- Discussion of the fully prepared presentation
- Not later than one week prior the presentation

Registration

- Check for available topics and dates
 - https://cg.informatik.uni-freiburg.de/teaching.htm
 - Advanced Topics in Rendering
 - Schedule
- Send an email to Prof. Teschner with your registration request stating name, topic, date, matriculation number
- Do not forget to check your registration in the campus management system

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Presentation

- 25 min 35 min per presentation
- 10 min 15 min discussion
 - Technical questions
 - Form of the presentation
- Example presentation and example report on our web page

Preparation

- Know your topic
 - Examine relevant material thoroughly
 - Do not try to circumvent problems
- Create slides
 - Allow 1 to 2 minutes per slide
 - Slides should be uniform and not too dense
 - Incorporate illustrations, slide titles should be helpful
- Rehearse your presentation
 - Gather feedback, adapt your presentation accordingly

Presentation

- Introduction
 - Introduce yourself and the title of your presentation
- Overview
 - Give an idea, but not too detailed
- Motivation
 - Illustrate the principle and / or applications
 - Explain the goal of your presentation
 - The audience should be eager to listen your presentation

Presentation

- Results
 - Discuss capabilities, properties, benefits, drawbacks
- Main part
 - Should be structured in sections
 - Separate different sections of the presentation explicitly
 - Each section should be introduced and summarized
- Summary
 - Tell the audience what you have told them
 - Ask for questions

References

Third-party material has to be labeled

Good Good Bad

[1]

[Gissler et al. 2020]

[C. Gissler, A. Henne, S. Band, A. Peer, M. Teschner, An Implicit Compressible SPH Solver for Snow Simulation, ACM Transactions on Graphics (Proc. SIGGRAPH 2020), vol. 39, no. 4, pp. 1-16, August 2020.]

Bibliography

Examples

- [1] C. Gissler, A. Henne, S. Band, A. Peer, M. Teschner, An Implicit Compressible SPH Solver for Snow Simulation, ACM Transactions on Graphics (Proc. SIGGRAPH 2020), vol. 39, no. 4, pp. 1-16, August 2020.
- [Gissler et al. 2020] C. Gissler, A. Henne, S. Band, A. Peer, M. Teschner,
 "An Implicit Compressible SPH Solver for Snow Simulation", ACM TOG, 2020.

General form

 [...] Authors; Title of the material; Name of journal, conference, book, thesis, tutorial, web page, date.

Wrong form

[1] https://cg.informatik.uni-freiburg.de/publications/2020_SIGGRAPH_snow_v6.pdf

Presentation

- Check the presentation environment prior to the presentation
- Avoid idiosyncrasies
- Stay in time

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Topics

- General concepts
- Rasterization
- Radiosity
- Ray tracing
- Related topics

General Concepts

- Human visual system / light modeling / radiometry
- Materials / shading models / BRDFs
- Rendering equation
- Monte Carlo integration
- Aliasing / Antialiasing
- Sampling / Reconstruction

Rasterization, Radiosity

- Rasterization
 - Topics, not covered in the key course
 - E.g. shadows
- Radiosity
 - Concept

Ray Tracing, Related Topics

- Ray tracing
 - Path tracing
 - Bidirectional methods, e.g. photon mapping
 - Volume ray tracing
- Related topics
 - Acceleration data structures
 - Dual Conturing, (Marching Cubes)

Sources

- Andrew Glassner
 Principles of Digital Image Synthesis http://www.realtimerendering.com/ raytracing.html
- Matt Pharr, Wenzel Jakob, Greg Humphreys Physically Based Rendering http://www.pbr-book.org/

Sources

- Philip Dutre, Kavita Bala, Philippe Bekaert Advanced Global Illumination
 A K Peters
- Eric Haines, Thomas Akenine-Moeller Ray Tracing Gems Apress https://link.springer.com/book/ 10.1007/978-1-4842-4427-2

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Summary

- Oral presentation of 25-35 min
- Written report of 10 pages
- Topics overview and presentation dates
 - https://cg.informatik.uni-freiburg.de/teaching.htm
 - Advanced Topics in Rendering