Seminar
Advanced Topics in Rendering

Matthias Teschner
Contact

- Matthias Teschner
 Computer Graphics
 University of Freiburg

- Georges-Koehler-Allee 052 / 01-024
- teschner@informatik.uni-freiburg.de
- https://cg.informatik.uni-freiburg.de
Outline

– Introduction
– Presentation
– Organization
– Topics
Course Information

- Key course
 - Pattern recognition and computer graphics (rasterization)

- Specialization courses
 - Advanced computer graphics (ray tracing)
 - Simulation in computer graphics (e.g., fluids)

- Master project, lab course, Master thesis
 - Simulation track
 - Rendering track
Seminars / Projects / Theses

<table>
<thead>
<tr>
<th>Semester</th>
<th>Simulation Track</th>
<th>Rendering Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Rasterization Course</td>
<td>Rasterization Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Course</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Lab Course</td>
<td>Ray Tracing Course</td>
</tr>
<tr>
<td></td>
<td>- Simple fluid solver</td>
<td>- Simple ray tracer</td>
</tr>
<tr>
<td></td>
<td>Simulation Seminar</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>Master Project</td>
<td>Master Project</td>
</tr>
<tr>
<td></td>
<td>- PPE fluid solver</td>
<td>- Monte Carlo ray tracer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rendering Seminar</td>
</tr>
<tr>
<td>Summer</td>
<td>Master Thesis</td>
<td>Master Thesis</td>
</tr>
<tr>
<td></td>
<td>- Research-oriented topic</td>
<td>- Research-oriented topic</td>
</tr>
</tbody>
</table>
Topics in Graphics

- Animation
 - Rigid objects
 - Deformable objects
 - Fluids
 - Collision handling

- Rendering
 - Ray tracing, volume rendering, rasterization

- Modeling / geometry processing
 - Mesh simplification, surface reconstruction
Topics - Example

- 500 M particles (with FIFTY2 Technology)
Topics - Example

– Automotive Industry (with FIFTY2 Technology)
Goals

- Familiarize yourself with a topic
 - Based on scientific publications
 - Using information from the authors' web pages
 - Using additional sources (internet, books)
- Prepare a comprehensible presentation
- Do not just reproduce the paper
- Adapt the organization and the focus of the paper in order to get a comprehensible presentation
 - You can skip some content
 - You can add content from additional sources
Outline

– Introduction
– Presentation
– Organization
– Topics
Preparation

– Know your topic
 – Examine relevant material thoroughly
 – Do not try to circumvent problems
– Prepare slides
 – Allow 1 to 2 minutes per slide
 – Slides should be uniform and not too dense
 – Incorporate illustrations
 – Slide titles should be helpful
Preparation

- Rehearse your presentation
 - Gather feedback
 - Adapt your presentation accordingly
 - Check your slides with Matthias Teschner one week before your talk
Presentation

- Introduction
 - Introduce yourself, the title of your presentation
- Overview
 - Give an idea, but not too detailed
- Motivation
 - Illustrate the principle and/or applications
 - Explain the goal of your presentation
 - Cite references
 - The audience should be eager to listen to your presentation
Presentation

- Main part
 - Should consist of distinguished parts
 - Separate different parts of the presentation explicitly
 - Each part should be introduced and summarized

- Summary
 - Tell the audience what you have told them
 - Ask for questions
Structure of the Presentation

- Title
- Motivation, introduction to the topic
- Information on author, affiliation, source
- Outline of the presentation
- Description of the problem
- Methods to solve the problem
- Results
- Discussion of benefits, drawbacks, problems
- Summary
Presentation - Summary

– Introduce the title and yourself
– Motivate and introduce your topic thoroughly
 – It is essential to arouse the interest of the audience
– Give a brief overview (avoid too many details)
– Structure your presentation
 – Introduce and summarize parts of your presentation
– Summarize the entire presentation
– Clearly mark the end of your presentation
General Comments

– Check the presentation environment prior to the presentation
– Do not occlude the projection
– Avoid idiosyncrasies
– Stay in time
Presentation

– Do not learn your talk by heart
– Do not read your talk
– Do not read slides, but explain every item on your slide
– Do not be shy or quiet
– Communicate self-confidence
Outline

– Introduction
– Presentation
– Organization
– Topics
Requirements

- Presentation of a topic, 30 min, (English or German)
- Discussion (technical aspects, form), 15 min
- Written documentation (English or German)
- Attendance of all presentations is mandatory
- Information on https://cg.informatik.uni-freiburg.de/teaching.htm
- Submission deadline for presentation (YourLastName_presentation.pdf) and report (YourLastName_report.pdf): End of July
Registration

– Obtain the papers from
 https://cg.informatik.uni-freiburg.de/intern/seminar/
– Check for available topics, papers and dates
– Choose a paper / topic, choose a date
– Send an email to Prof. Teschner
teschner@informatik.uni-freiburg.de with your registration request stating name, topic, date
– Do not forget to register the seminar at the online portal / examination office
Goals

– Familiarize yourself with a computer graphics topic
 – Based on scientific publications
 – Using information from the authors' web pages
 – Using additional sources (internet, books)
– Prepare a comprehensible presentation
– Do not just reproduce the paper
– Adapt the organization and the focus of the paper in order to get a comprehensible presentation
 – You can skip some content
 – You can add content from additional sources
Outline

– Introduction
– Presentation
– Organization
– Topics
Overview

- Raytracing
- Radiosity
- Rasterization
- Volume rendering
- Surface reconstruction
- ...
- All animation topics
Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataStructures 2005 CGF collisionDetection.pdf</td>
<td>04-Apr-2013 16:55 2.7M</td>
<td></td>
</tr>
<tr>
<td>dataStructures 2011 CGF dataStructuresSPH.pdf</td>
<td>04-Apr-2013 16:56 3.1M</td>
<td></td>
</tr>
<tr>
<td>dataStructures Underik - Efficient Neighbor Search for Particle-based Fluids.pdf</td>
<td>09-Oct-2008 09:54 4.2M</td>
<td></td>
</tr>
<tr>
<td>gridFluids StableFluids.pdf</td>
<td>27-Aug-2013 10:22 1.3M</td>
<td></td>
</tr>
<tr>
<td>gridFluids StableFluidsImplementation.pdf</td>
<td>29-Apr-2013 12:33 1.0M</td>
<td></td>
</tr>
<tr>
<td>gridFluids fluidSolverParticle.pdf</td>
<td>10-Apr-2013 10:17 1.0M</td>
<td></td>
</tr>
<tr>
<td>gridFluids flow for the rest of us.pdf</td>
<td>10-Apr-2013 10:18 553K</td>
<td></td>
</tr>
<tr>
<td>gridFluids particleFluids 2007 SIGGRAPH course.pdf</td>
<td>29-Apr-2014 12:57 5.5M</td>
<td></td>
</tr>
<tr>
<td>particleFluids 2014 StateOfTheArt.pdf</td>
<td>07-Mar-2014 17:00 46M</td>
<td></td>
</tr>
<tr>
<td>particleFluids Solenthaler-poise.pdf</td>
<td>08-Feb-2012 10:52 6.5M</td>
<td></td>
</tr>
<tr>
<td>positionBasedDynamics 2013 EG positionBased.pdf</td>
<td>04-Apr-2013 16:56 17M</td>
<td></td>
</tr>
<tr>
<td>positionBasedFluids 2014 SIGGRAPH.pdf</td>
<td>31-Aug-2013 16:41 5.6M</td>
<td></td>
</tr>
<tr>
<td>rigidFluidsCoupling 2009 TVCG rigidFluidCoupling.pdf</td>
<td>04-Apr-2013 16:57 1.5M</td>
<td></td>
</tr>
<tr>
<td>rigidFluidsCoupling 2010 VRPHYS rigidFluidCoupling.pdf</td>
<td>04-Apr-2013 16:56 1.8M</td>
<td></td>
</tr>
<tr>
<td>rigidFluidsCoupling 2012 SIGGRAPH rigidFluidCoupling.pdf</td>
<td>04-Apr-2013 16:56 23M</td>
<td></td>
</tr>
<tr>
<td>surfaceReconstruction 2012 VRPHYS surfaceReconstruction.pdf</td>
<td>04-Apr-2013 16:56 22M</td>
<td></td>
</tr>
<tr>
<td>surfaceReconstruction sal caram07.pdf</td>
<td>04-Apr-2013 16:57 1.9M</td>
<td></td>
</tr>
<tr>
<td>surfaceReconstruction surface marching cubes.pdf</td>
<td>04-Apr-2013 16:58 527K</td>
<td></td>
</tr>
<tr>
<td>surfaceReconstruction plus-signgraphM3-onfluid.pdf</td>
<td>04-Apr-2013 16:58 1.7M</td>
<td></td>
</tr>
<tr>
<td>surfaceTracking signgraph2011.pdf</td>
<td>04-Apr-2013 17:03 33M</td>
<td></td>
</tr>
<tr>
<td>volumeRenderingInVisualEffects2010.pdf</td>
<td>10-Apr-2013 10:12 65M</td>
<td></td>
</tr>
</tbody>
</table>