Simulation in Computer Graphics

Introduction

Matthias Teschner

Computer Science Department
University of Freiburg
Contact

- Matthias Teschner
 Computer Graphics
 University of Freiburg

- Georges-Koehler-Allee 052 / 01-005

- teschner@informatik.uni-freiburg.de

- http://cg.informatik.uni-freiburg.de/ -> teaching
Course Information

- key course
 - pattern recognition and computer graphics (rasterization-based rendering)

- specialization courses
 - advanced computer graphics (ray tracing)
 - simulation in computer graphics (e.g., fluids)

- master project, lab course, Master thesis
 - two tracks: simulation, rendering
Seminars / Projects / Theses in Graphics

<table>
<thead>
<tr>
<th>Semester</th>
<th>Simulation Track</th>
<th>Rendering Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Rasterization Course</td>
<td>Rasterization Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Course</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Lab Course</td>
<td>Raytracing Course</td>
</tr>
<tr>
<td></td>
<td>- simple fluid solver</td>
<td>Lab Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Seminar</td>
<td>- simple raytracer</td>
</tr>
<tr>
<td>Winter</td>
<td>Master Project</td>
<td>Master Project</td>
</tr>
<tr>
<td></td>
<td>- PPE fluid solver</td>
<td>- Monte Carlo raytracer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendering Seminar</td>
</tr>
<tr>
<td>Summer</td>
<td>Master Thesis</td>
<td>Master Thesis</td>
</tr>
<tr>
<td></td>
<td>- research-oriented topic</td>
<td>- research-oriented topic</td>
</tr>
</tbody>
</table>
Outline

- motivation
- topics overview
- organization
Course Goals

- physically-based animation of the dynamics of
 - rigid bodies
 - deformable objects
 - fluids

rigid bodies
fluids

deformable objects – 1D, 2D, 3D
Course Goals

- interplay of simulation components
 - model generation
 - collision detection, contact handling, constraints
 - effects

mesh generation contact handling constraints

phase transition
Applications

- computational medicine

- pre-operative planning in cranio-maxillofacial surgery

- interactive hysteroscopy simulation for educational purposes

- intra-operative support in orbital reconstruction
Applications

- robotics

- support of robot navigation in environments with deformable objects

- acceleration of robot navigation with simulation environments
Applications

- entertainment technologies
 - ATI (Havok)
 - NVIDIA (PhysX)
 - Crytek (CryEngine)
 - Pixar
 - Ubisoft
Applications

- entertainment technologies
- interactive dynamic animations
 - physically-plausible
 - robust
 - versatile
- focus on the interplay of different animation aspects
 - model generation
 - dynamics
 - collision handling
 - constraints

interacting deformable objects
Applications

- animation (with Pixar)
Applications

- automotive (with Fifty2)
Conventional and Physically-based Animation

- conventional animation
 - keyframes, interpolation
 - fully controllable
 - predefined, non-interactive

- physically-based animation
 - driven by physical laws
 - computed in real time
 - interactive
Scientific Computations and Physically-based Animation

- scientific computing / computational physics
 - reproduction of natural phenomena
 - substitute for real experiments

- physically-based animation
 - imitation of physical phenomena
 - plausible behavior
 - as much realism as possible within speed and stability constraints
 - focus on data structures and algorithms
Outline

- motivation
- topics overview
- organization
Topics

- particle systems
- mass-point systems
- fluids
- rigid bodies
- collision detection
Particle Systems

- collection of many small simple particles with mass m, position x, velocity v
- particle motion influenced by force F
- dynamics governed by F=ma
- time integration to compute position and velocity over time
Particle Systems

snow, dust, sand

fire

smoke
Mass-Point Models

- discretization of an object into *mass points*
- representation of forces between mass points with *springs*
- force-deformation relation, topology, constraints, damping
Generalized Spring Forces

- deformation based on constraints
 - distance preservation
 - area preservation, surface tension
 - volume preservation

- wide range of material stiffness

- melting fluid-like behavior
Geometric Constraints

- restrict the motion of mass points
 - keep a mass point at a position
 - force a point onto a curve or surface

Local Constraint Methods for Deformable Objects
Fluids

- **Lagrangian approach**
 - Velocities computed on moving particles
 - Information advected with particles

- **Eulerian approach**
 - Velocities computed on a fixed grid
 - Grid cells represent information
Fluids – Lagrangian Approach

www.youtube.com – 3 Ships – Fluid simulation with 20 million particles
Fluids – Lagrangian Approach
Fluids – Lagrangian Approach

www.youtube.com – 3 Ships – Fluid simulation with 20 million particles
Rigid Bodies

- mass points connected by springs with infinite stiffness
- entire body described by position and orientation
- forces at mass points cause translation and rotation of entire body
Topics

- particle systems
- mass-point systems
- fluids
- rigid bodies
- collision detection
Collision Detection

- detecting interferences of objects
- rigid objects represented as triangulated surfaces
- avoiding time-consuming triangle-triangle intersection tests using pre-computed data structures
 - bounding volumes, space subdivision, distance fields
Collision Handling for Deformable Objects

Volumetric contact handling

Dynamic contact

Resting contacts

Spillmann, Freiburg
Tentative Course Syllabus

- particles
 - ordinary differential equations
- mass-point systems
 - deformable objects
 - stability
 - constraints
- fluids
 - mostly Lagrangian
- rigid bodies
- collision detection
 - spatial data structures
Outline

- motivation
- topics overview
- organization
Exercises / Exam

- exercises
 - by appointment
 - first exercise on Oct 20
 - smaller exercises in the first part
 - larger project towards the end

- exam
 - oral exam based on slide sets
Simulation in Computer Graphics

Introduction

Matthias Teschner

Computer Science Department
University of Freiburg