Simulation in Computer Graphics

Introduction

Matthias Teschner
Graphics Courses

– Key course
 – Image processing and computer graphics (modeling, rendering, simulation)

– Specialization courses
 – Advanced computer graphics (global illumination)
 – Simulation in computer graphics (solids and fluids)

– B.Sc. / M.Sc. project, lab course, B.Sc. / M.Sc. thesis
 – Simulation track, rendering track
 – By appointment per email, semester-aligned
Seminars / Projects / Theses in Graphics

<table>
<thead>
<tr>
<th>Semester</th>
<th>Simulation Track</th>
<th>Rendering Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Simulation Course</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Key Course</td>
<td>Key Course</td>
</tr>
<tr>
<td></td>
<td>Lab Course - Simple fluid solver</td>
<td>Lab Course - Simple Ray Tracer</td>
</tr>
<tr>
<td></td>
<td>Simulation Seminar</td>
<td>Rendering Seminar</td>
</tr>
<tr>
<td>Winter</td>
<td>Master Project - PPE fluid solver</td>
<td>Rendering Course</td>
</tr>
<tr>
<td></td>
<td>Rendering Seminar</td>
<td>Master Project - Monte Carlo RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulation Seminar</td>
</tr>
<tr>
<td>Summer</td>
<td>Master Thesis Research-oriented topic</td>
<td>Master Thesis Research-oriented topic</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- Topics
- Organization
Computer Graphics

Modeling → Rendering

Simulation

CGMeetup: CGI VFX Breakdown HD "Making of Share a Coke Vfx by ARMA" | CGMeetup. [Youtube]
Course Goals

- Physically-based simulation of the dynamics of rigid bodies, deformable objects and fluids

Context

- Efficient and reliable simulation components
- Versatile interplay of simulation components
- Computer science / computer graphics aspects for physically-based simulation
Terminology

– Physically based simulation
– Scientific computing
– Real-time physics
 – Interactive scenarios
– High-performance computing
 – Large scenarios
Applications

– Visual effects (cooperation with Pixar)

Applications

– Computer-aided engineering (cooperation with FIFTY2)

Applications

- FIFTY2 Technology GmbH
 - Spin-off
 - Simulation of fluids and solids (PreonLab)
 - Automotive applications
 - Efficiency, usability, reliability
 - Simulation accuracy and speed, versatile sensors, advanced visualization

Applications

Johan Idoffsson
Chalmers University
Volvo Cars
PreonLab
FIFTY2 Technology
Applications

– Computational medicine

Pre-operative planning in cranio-maxillofacial surgery.

Interactive hysteroscopy simulation for educational purposes.

Intra-operative support in orbital reconstruction.
Applications

– Interactive hysteroscopy simulation
Applications

- Games
 - Havok Physics (Microsoft)
 - PhysX (NVIDIA)
 - CryEngine (Crytek)
 - Blender Physics
 - Pixar, Ubisoft, ...
Applications

- Interactive dynamic animations
 - Robust
 - Versatile
- Focus on the interplay of different animation aspects
 - Representations
 - Dynamics
 - Constraints, e.g. collisions

Interacting deformable objects
Outline

- Motivation
- Topics
- Organization
Topics

- Particle motion
- Deformable solids
- Fluids
- Rigid bodies
- Collision detection
Particle Motion

- Particles
 - Are small parts of solids and fluids with mass m
 - Move over time t with changing position $\mathbf{x}(t)$ and velocity $\mathbf{v}(t)$ due to forces $\mathbf{F}(t)$
- Motion governed by
 $$\mathbf{F}(t) = m \frac{d\mathbf{v}(t)}{dt} \quad \mathbf{v}(t) = \frac{d\mathbf{x}(t)}{dt}$$
- Numerical integration to approximate $\mathbf{x}(t)$ and $\mathbf{v}(t)$
Versatile Materials

Deformable Solids

- Particle representation
- Displacement
- Strain
- Stress
- Strain energy
- Force
Deformable Solids

- Example forces
 - Distance preservation
 - Volume preservation
 - Surface tension
Fluids

- Fluid is subdivided into particles
- Fluid solvers compute velocities $\mathbf{v}(t)$ over time t
- Lagrangian fluid solvers advect particle positions $\mathbf{x}(t)$ with their velocity $\mathbf{v}(t)$
- Velocity changes are computed from the Navier-Stokes equation

$$\frac{d\mathbf{v}(t)}{dt} = -\frac{1}{\rho} \nabla p(t) + \nu \nabla^2 \mathbf{v}(t) + \frac{\mathbf{F}(t)}{m}$$

Fluids

- Velocity change at particle \mathbf{x}_i is computed as sum over adjacent particles \mathbf{x}_j
- E.g., acceleration due to pressure gradient, i.e. density differences

$$\frac{1}{\rho_i} \nabla p_i(t) = - \sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij}$$
Fluids

- Key tasks
 - Neighbor search
 - For each particle, find adjacent particles within a certain distance
 - Required for the computation of particle accelerations
 - Spatial data structures: space subdivision, bounding volume hierarchies
 - Pressure computation
 - Solve a pressure Poisson equation
 \[\Delta t \nabla^2 p_i = \frac{1}{\Delta t} (\rho_0 - \rho_i^*) \Rightarrow Ap = s \]
 - Required for volume preservation / zero velocity divergence
Fluids

Dam break

20M fluid particles

Fluids
Fluids

FIFTY2, PreonLab.
Fluids

CUP SCENE
KEYFRAMED ANIMATIONS - 1.2 M PARTICLES

Rigid Bodies

- Particles connected by springs with infinite stiffness
- Entire body described by one position and one orientation
- Forces at particles cause translation and rotation of the entire body
- Mass distribution, orientation, angular velocity, torque
Topics

– Particle motion
– Deformable solids
– Fluids
– Rigid bodies
– Collision detection
Collision Detection

- Detecting interferences of objects
- Avoid time-consuming primitive-primitive handling
- Bounding volumes, space subdivision, distance fields
- Various implementations
Outline

− Motivation
− Topics
− Organization
Tentative Course Syllabus

- Particle motion
 - Position and velocity computation (ODE)
- Deformable solids
 - Force computation (Energy minimization, FEM)
- Fluids
 - Force computation (mainly SPH)
- Rigid bodies
- Collision detection
 - Spatial data structures
Exercises / Exam

- Exercises
 - Voluntary
- Exam
 - Written
 - Based on slide sets
 - Relevant material will be summarized
 - Text exam on our web page
Announcement

– Monday, 10:15, Advanced Computer Graphics
– Monday, 16:15, Simulation in Computer Graphics
– Wednesday, 10:15, Rendering Seminar
– Wednesday, 12:15, Animation Seminar
– Thursday, 10:15, Proseminar Graphik
– Tuesday next week, 12:15, Simulation Tutorial
– Tuesday next week, 14:15, Rendering Tutorial
– No tutorials tomorrow
Acknowledgements

- These slides were generated as course documentation only. They may contain images with unknown copyright. Therefore, the slides are provided exclusively for students attending courses at the University of Freiburg. Please do neither copy nor distribute these documents.