Simulation in Computer Graphics

Introduction

Matthias Teschner
Contact

– Matthias Teschner
 Computer Graphics
 University of Freiburg

– Georges-Koehler-Allee 052 / 01-005
teschner@informatik.uni-freiburg.de
https://cg.informatik.uni-freiburg.de/
Course Information

- Key course
 - Pattern recognition and computer graphics (modeling, rendering, animation)

- Specialization courses
 - Advanced computer graphics (global illumination)
 - Simulation in computer graphics (deformable and rigid solids, fluids)

- Master project, lab course, Master thesis
 - Simulation track, rendering track
Seminars / Projects / Theses in Graphics

<table>
<thead>
<tr>
<th>Semester</th>
<th>Simulation Track</th>
<th>Rendering Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Key Course</td>
<td>Key Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Course</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Lab Course</td>
<td>Rendering Course</td>
</tr>
<tr>
<td></td>
<td>- Simple fluid solver</td>
<td>Lab Course</td>
</tr>
<tr>
<td></td>
<td>Simulation Seminar</td>
<td>- Simple raytracer</td>
</tr>
<tr>
<td>Winter</td>
<td>Master Project</td>
<td>Master Project</td>
</tr>
<tr>
<td></td>
<td>- PPE fluid solver</td>
<td>- Monte Carlo raytracer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendering Seminar</td>
</tr>
<tr>
<td>Summer</td>
<td>Master Thesis</td>
<td>Master Thesis</td>
</tr>
<tr>
<td></td>
<td>- Research-oriented topic</td>
<td>- Research-oriented topic</td>
</tr>
</tbody>
</table>

University of Freiburg – Computer Science Department – 4
Outline

– Motivation
– Topics
– Organization
Course Goals

- Physically-based simulation of the dynamics of rigid bodies, deformable objects and fluids
Course Goals

- Computer science / computer graphics aspects for computer-aided engineering
- Efficient and reliable simulation components
- Versatile interplay of simulation components
Context

Modeling → Computer Graphics → Rendering → Animation

CGI Making of Share a Coke VFX Breakdown by ARMA.

University of Freiburg – Computer Science Department – 8
Keyframe vs. Physically-based Animation

– Keyframe animation
 – Interpolation between keyframes
 – Fully controllable
 – Predefined, non-interactive

– Physically-based animation
 – Driven by physical laws
 – Interactive
Computer-Aided Engineering vs. Physically-based Animation

– Computer-aided engineering
 – Focus on accuracy, substitute of real experiments
– Physically-based animation
 – Focus on accuracy and performance
 – For games: as accurate as possible considering speed and stability constraints
 – For engineering: as fast as possible considering accuracy constraints
 – Focus on data structures and algorithms
Applications

– Visual effects (cooperation with Pixar)

Applications

– Computer-aided engineering (cooperation with FIFTY2)

FIFTY2 Technology GmbH, PreonLab, 2016.
Applications

- FIFTY2 Technology GmbH
 - Spin-off
 - Simulation of fluids and solids (PreonLab)
 - Automotive applications
 - Efficiency, usability, reliability
 - Simulation speed, versatile sensors, advanced visualization

Applications

– Computer-aided engineering (coop. with DFKI Bremen)

Applications

– Art (cooperation with Studio Claudia Comte)

Studio Claudia Comte.
Applications

– Computational medicine

Pre-operative planning in cranio-maxillofacial surgery.

Interactive hysteroscopy simulation for educational purposes.

Intra-operative support in orbital reconstruction.
Applications

– Robotics

Support of robot navigation in environments with deformable objects

Acceleration of robot navigation with simulation environments
Applications

- Entertainment technologies
 - Havok Physics (Microsoft)
 - PhysX (NVIDIA)
 - CryEngine (Crytek)
 - Blender Physics
 - Pixar, Ubisoft, ...
Applications

- Interactive dynamic animations
 - Robust
 - Versatile
- Focus on the interplay of different animation aspects
 - Model generation
 - Dynamics
 - Collision handling
 - Constraints

Interacting deformable objects
Outline

– Motivation
– Topics
– Organization
Topics

- Particle motion
- Deformable solids
- Fluids
- Rigid bodies
- Collision detection
Particle Motion

- **Particles**
 - Are small parts of solids and fluids with mass m
 - Move over time t with changing position $\mathbf{x}(t)$ and velocity $\mathbf{v}(t)$ due to forces $\mathbf{F}(t)$
- Motion governed by
 $$\mathbf{F}(t) = m \frac{d\mathbf{v}(t)}{dt} = m \frac{d^2\mathbf{x}(t)}{dt^2}$$
- Numerical integration to approximate $\mathbf{x}(t)$ and $\mathbf{v}(t)$
Particle Systems

– Particle sets can be used to mimic dynamic effects
Deformable Solids

- Particle representation
- Displacement
- Strain
- Stress
- Strain energy
- Force

Deformable solid
Approximate tetrahedral mesh
Deformable Solids

- Example forces
 - Distance preservation
 - Volume preservation
 - Surface tension
- Forces from strain energy
- Finite element modeling
Geometric Constraints

- Constrained particle motion
 - Keep a mass point at a position
 - Force a point onto a curve or surface

Fluids

- Fluid is subdivided into particles
- Fluid solvers compute velocities $\mathbf{v}(t)$ over time t
- Lagrangian fluid solvers advect particle positions $\mathbf{x}(t)$ with their velocity $\mathbf{v}(t)$
- Velocity changes are computed from the Navier-Stokes equation

$$\frac{d\mathbf{v}(t)}{dt} = -\frac{1}{\rho} \nabla p(t) + \nu \nabla^2 \mathbf{v}(t) + \frac{\mathbf{F}(t)}{m_i}$$

Fluids

- Velocity change at particle is computed as sum over adjacent particles.
- E.g., acceleration due to pressure gradient, i.e. density differences

$$\frac{-1}{\rho_i} \nabla p_i(t) = - \sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij}$$
Fluids

- Key tasks
 - Neighbor search
 - For each particle, find adjacent particles within a certain distance
 - Required for the computation of particle accelerations
 - Spatial data structures: space subdivision, bounding volume hierarchies
 - Pressure computation
 - Solve a pressure Poisson equation
 \[\Delta t \nabla^2 p_i = \frac{1}{\Delta t} (\rho_0 - \rho_i^*) \Rightarrow A p = s \]
 - Required for volume preservation / zero velocity divergence
Fluids

Dam break

20M fluid particles

Fluids
Fluids

FIFTY2, PreonLab.
Fluids

CUP SCENE
KEYFRAMED ANIMATIONS - 1.2 M PARTICLES

Rigid Bodies

- Particles connected by springs with infinite stiffness
- Entire body described by one position and one orientation
- Forces at particles cause translation and rotation of the entire body
- Mass distribution, orientation, angular velocity, torque
Topics

– Particle motion
– Deformable solids
– Fluids
– Rigid bodies
– Collision detection
Collision Detection

- Detecting interferences of objects
- Avoid time-consuming primitive-primitive handling
- Bounding volumes, space subdivision, distance fields
- Various implementations
Collision Handling

Volumetric contact handling

Resting contacts

Tentative Course Syllabus

– Particle motion
 – Position and velocity computation (ODE)
– Deformable solids
 – Force computation (Energy minimization, FEM)
– Fluids
 – Force computation (mainly SPH)
– Rigid bodies
– Collision detection
 – Spatial data structures
Outline

– Motivation
– Topics
– Organization
Exercises / Exam

- Exercises
 - By appointment
 - First exercise on Oct 24
 - Smaller exercises in the first part
 - Larger project towards the end

- Exam
 - Oral
 - Based on slide sets
 - Relevant material will be summarized
Acknowledgements

- These slides were generated as course documentation only. They contain images with unknown copyright. Therefore, the slides are provided exclusively for students attending courses at the University of Freiburg. Please do neither copy nor distribute these documents.