
Matthias Teschner

Simulation in Computer Graphics
Particle Motion 1

University of Freiburg – Computer Science Department – 2

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 3

Goal

 Dynamic simulation of

 Rigid bodies

 Deformable objects

 Fluids

University of Freiburg – Computer Science Department – 4

Goal

University of Freiburg – Computer Science Department – 5

Goal

University of Freiburg – Computer Science Department – 6

Representation

 Subdivision of objects into small parts, i.e. particles

 Particles have properties

 Mass , volume , density

 Position , velocity , force

 Particles are of arbitrary shape

University of Freiburg – Computer Science Department – 7

Fluid Particles

Fluid body Fluid particles Typical visualization

University of Freiburg – Computer Science Department – 8

Cloth Particles

Cloth Cloth particles Illustration

[Bender, Deul, 2013]

University of Freiburg – Computer Science Department – 9

Deformable 3D Particles

Deformable 3D object Approximate tetrahedral mesh

University of Freiburg – Computer Science Department – 10

Particle Forces

 Result from

 Distortions, e.g.
volume or shape
change

 Gravity

 Friction, viscosity

 Contact

 …

Rest state Compression Shear

Gravity Viscosity Contact

Force
Velocity

University of Freiburg – Computer Science Department – 11

Particle Motion

 Particles change position with velocity

 Velocity governed by Newton’s Second Law

 Force at a particle equals the time
rate of change of its momentum

 Two governing equations for two unknown functions ,

 Can also be written as

Coupled system of first order ODEs

Second order ODE

University of Freiburg – Computer Science Department – 12

Particle-based Simulation

 Object subdivision
into particles
(spatial discretization)

 Force modeling

 Particle motion

 Transport / advection

Object Particles

Acceleration
Velocity
change

Position
change

University of Freiburg – Computer Science Department – 13

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 14

Particle Quantities

 Mass

 Position

 Velocity

 Force

 Acceleration

University of Freiburg – Computer Science Department – 15

Time Discretization

 Quantities are considered at discrete time points

 Particle simulations are concerned with the computation
of unknown future particle quantities ,
from known current information , ,

h is the so-called
time step.

University of Freiburg – Computer Science Department – 16

Governing Equations

 Newton’s Second Law, motion equation

 Ordinary differential equations ODEs

 Describe the behavior of and in terms
of their derivatives with respect to time

 Numerical integration is employed to
approximatively solve the ODE , i.e.
to approximate the unknown functions and

University of Freiburg – Computer Science Department – 17

Governing Equations

 Initial value problem of second order

 Second-order ODEs can be rewritten as a
system of two coupled equations of first order

 Initial value problems of first order

University of Freiburg – Computer Science Department – 18

Initial Value Problem of First Order

 Functions and represent the particle motion

 Initial values and are given

 First-order differential equations are given

 How to estimate and ?

University of Freiburg – Computer Science Department – 19

Particle Accelerations

 Depend on sets of positions and velocities

 E.g., damped spring

Elastic
acceleration

Spring
stiffness

Actual
spring
length

Rest
spring
length

Normalized
direction

Damping
acceleration

Damping
parameter

Relative velocity
projected onto spring

Normalized
direction

Particle
mass

University of Freiburg – Computer Science Department – 20

Particle Accelerations

 Are typically expensive to compute

 E.g., sums over adjacent particles

 Might need additional effort

 E.g., contact handling forces require collision detection

University of Freiburg – Computer Science Department – 21

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 22

Finite Differences

 Taylor-series approximation

 Continuous ODEs are replaced with
discrete finite-difference equations FDEs

O(h2) – order of the truncation / discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation

ODE FDE
The first approximate
solution of our problem

University of Freiburg – Computer Science Department – 23

Finite Differences

 Line fitting (assuming near)

 Resulting in

University of Freiburg – Computer Science Department – 24

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …

University of Freiburg – Computer Science Department – 25

Explicit Euler

 Governing equations

 Initialization , , ,

 Explicit Euler update

University of Freiburg – Computer Science Department – 26

Coupled Equations

 Position update depends on velocity

 Velocity update depends on position

University of Freiburg – Computer Science Department – 27

Accuracy and Stability

 Discretization error is the difference between the
solution of the ODE and the solution of the FDE

 The FDE is consistent, if the discretization error
vanishes if the time step h approaches zero

 The FDE is stable, if previously introduced errors
do not grow within a simulation step

 The FDE is convergent, if the solution of the FDE
approaches the solution of the ODE

University of Freiburg – Computer Science Department – 28

Accuracy and Stability

 Although the discretization error is diminished
by smaller time steps in consistent schemes,
the discretization error is introduced in each
step of the FD scheme

 If previously introduced discretization errors
are not amplified by the FD scheme, then it
is stable

 Consistent and stable schemes are convergent

University of Freiburg – Computer Science Department – 29

Stability

 If stability is influenced by the time step,
the FD scheme is conditionally stable

 If the FD scheme is stable or unstable for arbitrary
time steps, it is unconditionally stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 Schemes with improved stability work with larger
time steps reduced overall computation time

University of Freiburg – Computer Science Department – 30

Time Step

 Larger time steps result in less simulation steps and
speed-up the overall computation time of a simulation

 Different FD schemes allow for different time steps

 E.g. due to different error orders

 Computing complexity also differs

University of Freiburg – Computer Science Department – 31

Goal

 Stable scheme with maximized ratio between time
step and computing complexity per simulation step

University of Freiburg – Computer Science Department – 32

Second-Order Runge Kutta - Midpoint Method

‒ One derivative computation
‒ Discretization error

Euler Midpoint

‒ Two derivative computations
‒ Requires intermediate

positions and velocities
‒ Discretization error

University of Freiburg – Computer Science Department – 33

Midpoint Implementation - Spring

 Acceleration at time :

 Intermediate position and velocity at time :

 Intermediate acceleration at time
using intermediate positions and
velocities:

 Final position and velocity at time

University of Freiburg – Computer Science Department – 34

Midpoint Implementation

Current
state

Compute
all final
pos. and vel.

Compute all
accelerations

Compute all
predicted
accelerations

Compute all
predicted
pos. and vel.

University of Freiburg – Computer Science Department – 35

Second-Order Runge Kutta - Heun

University of Freiburg – Computer Science Department – 36

Second-Order Runge Kutta - Ralston

University of Freiburg – Computer Science Department – 37

Fourth-Order Runge Kutta - Classic

‒ Four derivative
computations

‒ Discretization error

University of Freiburg – Computer Science Department – 38

Fourth-Order Runge Kutta – 3/8 Rule

University of Freiburg – Computer Science Department – 39

Accuracy

Wikipedia: Runge-Kutta-Verfahren

Euler h O(h2)

Euler h/2 O(h2)

Exact
RK4 h O(h5)
RK2 h O(h3)

 Discretization error and
time step influence
the accuracy

University of Freiburg – Computer Science Department – 40

Performance

 Computation dominated by derivatives, actually only
by the accelerations

 RK4 is four times as expensive as Euler

 RK2 is two times as expensive as Euler

 RK4 is more accurate than RK2 which is more accurate
than Euler. Error:

 RK4 allows larger time steps than RK2 which allows
larger times steps than Euler

University of Freiburg – Computer Science Department – 41

Performance

 If, e.g., RK4 runs with a time step four times larger
than Euler, the overall computation time is the same

 Comparison: RK4 : Euler

 Time per simulation step: 4 : 1

 Simulation steps: 1 : 4

 Overall computation time: 1 : 1

University of Freiburg – Computer Science Department – 42

Accelerations

 can be very expensive to compute

 E.g., if the accelerations consider contact forces,
collision detection has to be performed four times
for different sets of positions

Matthias Teschner

Simulation in Computer Graphics
Particle Motion 2

University of Freiburg – Computer Science Department – 44

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …

University of Freiburg – Computer Science Department – 45

 Current and previous accelerations (multistep)

 Two acceleration computations per step

 Previous accelerations have to be stored

Explicit Adams-Bashforth

University of Freiburg – Computer Science Department – 46

 Next, current and previous accelerations (multistep)

Implicit Adams-Moulton

University of Freiburg – Computer Science Department – 47

A Predictor-Corrector Example

 Initialization

 Prediction

 Correction

Accelerations at pre-
dicted positions using
predicted velocities

University of Freiburg – Computer Science Department – 48

Discussion

 Two accelerations

 Improved accuracy, larger time steps

 Not necessarily true for discontinuous functions,
e.g., in case of contact handling

 Initialization of previous steps

 Iterative correction steps possible

University of Freiburg – Computer Science Department – 49

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …

University of Freiburg – Computer Science Department – 50

Explicit vs. Implicit Schemes

 Explicit Euler

 One unknown per equation

 Direct computation
of unknowns

 Non-linear equations do
not affect the approach

 Non-analytical, procedural
forces can be handled

 Implicit Euler

 System of algebraic equations

 Simultaneous computation of
unknowns

 Solution of a linear system

 Linearization of
non-linear equations

University of Freiburg – Computer Science Department – 51

Implicit Schemes

 Challenge

 Solving a linear system

 Implementation

 Benefit

 Largely improved stability

 Issue

 Reduced accuracy

 Discretization error plus linearization error
plus approximate solution of a linear system

University of Freiburg – Computer Science Department – 52

Implicit Schemes – Example Overview

 Linearization of accelerations

 Linear system with unknown velocities

 Position update

Here, accelerations depend only on positions.

J is a 3x3 Jacobi matrix. h•v is a
small displacement. a(x) + J•h•v
is an approximation of the accele-
ration at position x + h•v.

University of Freiburg – Computer Science Department – 53

Linearization

f: 1D field of scalar values

f: 3D field of scalar values

a: 3D field of 3D values

Gradient

Jacobi matrix

University of Freiburg – Computer Science Department – 54

Jacobi Matrix - Application

University of Freiburg – Computer Science Department – 55

Linearization

 Approximation of the acceleration at position
using the acceleration at position , the Jacobi
matrix of the acceleration at position and the
small displacement :

 Equation with unknown
velocities and positions can be rewritten with
unknown velocities only:

University of Freiburg – Computer Science Department – 56

 Set of particles with, e.g., interconnecting springs

 Force at a particle depends
on particle and its neighbors

 E.g.

 Position , acc. and mass
of particle at time

 Rest distance and stiffness
between particles and

Particle System

University of Freiburg – Computer Science Department – 57

Notation

University of Freiburg – Computer Science Department – 58

Linear System – Implicit Euler

 Linear system for particles

 Jacobian

 Spatial derivatives of all accelerations
with respect to all positions

University of Freiburg – Computer Science Department – 59

Jacobian - Example

 E.g.,
depends on two positions and

Mueller et al. , Real-time Physics. SIGGRAPH 2008.

University of Freiburg – Computer Science Department – 60

Jacobian

 is built from 3x3 matrices

 If position influences
acceleration , then

 Otherwise,

University of Freiburg – Computer Science Department – 61

Solver

 Iterative. Start with a guess, e.g.

 Iterative updates

 Result

Here, superscript
indicates the iteration.

University of Freiburg – Computer Science Department – 62

Solver – Conjugate Gradient

Scaling factor for the solution update.

Update of the solution with a scaled direction.

Residual. Exit loop, when sufficiently small.

Direction for the solution update.

Iteration count.

University of Freiburg – Computer Science Department – 63

Solver – Conjugate Gradient

 Works (converges) for symmetric,
positive-definite matrices

 Exact solution of an system in steps

 Frequently used for deformable objects

 Typically used with a fixed iteration count, e.g. 3-5

University of Freiburg – Computer Science Department – 64

Solver - Jacobi

 diagonal elements of

 determines convergence and convergence rate

 , in practical settings typically

 Per-component update

University of Freiburg – Computer Science Department – 65

Solver - Implementation

 is not explicitly built or stored

 is not explicitly built or stored

 Instead

 Per-particle information is stored at particles, e.g.

 Per-element information is stored at elements,
e.g. for an elastic spring between and ,

and can be reconstructed

 Matrix-free implementation of solver steps

University of Freiburg – Computer Science Department – 66

Solver - Implementation

 is computed and stored per particle

Stored per
particle.Stored per

element,
e.g. spring.

University of Freiburg – Computer Science Department – 67

Solver - Implementation

 is computed by iterating over elements

 E.g., spring connects particles and

For each spring:

For each particle:

University of Freiburg – Computer Science Department – 68

Solver - Discussion

 Jacobi vs. Conjugate Gradient CG:

 CG converges faster

 Jacobi is good-natured, e.g. in case of clamping
intermediate solutions to implement constraints

 Implementation, e.g., in a particle-spring model

 Matrix-free

 All solver information is stored at particles and springs

 All solver steps are realized by iterating over particles
and springs

University of Freiburg – Computer Science Department – 69

Implicit Schemes – Summary

 Implicit Euler

 Linearization

 Solve a linear system for velocities

 Update positions according to implicit Euler

University of Freiburg – Computer Science Department – 70

Semi-implicit Euler (Euler-Cromer)

 Explicit Euler for the velocity update

 Implicit Euler for the position update

 No linear system

Matthias Teschner

Simulation in Computer Graphics
Particle Motion 3

University of Freiburg – Computer Science Department – 72

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 73

Initial Value Problem of Second Order

 Function represents the particle motion

 Second-order differential equation is given

 Initial values and are given

 How to estimate ?

University of Freiburg – Computer Science Department – 74

Motivation

 Schemes for coupled first-order ODEs
update and simultaneously

 Schemes for second-order ODEs update ,
but not necessarily

University of Freiburg – Computer Science Department – 75

Verlet

 Taylor approximations of and

 Adding both approximations

University of Freiburg – Computer Science Department – 76

Verlet - Discussion

 One acceleration computation per step

 Same computation cost as explicit Euler

 Discretization error of order 4

 More accurate than explicit Euler

 Larger time step and improved performance
compared to explicit Euler

University of Freiburg – Computer Science Department – 77

Verlet - Discussion

 Velocity representation not necessarily required

 But:

 Velocity typically used for collision handling and damping

 E.g.

University of Freiburg – Computer Science Department – 78

Leap-Frog

 Implementation, e.g.

Verlet

University of Freiburg – Computer Science Department – 79

Velocity Verlet

 Same accuracy for position and velocity

 One acceleration computation per step

University of Freiburg – Computer Science Department – 80

Beeman

 One acceleration computation per step

 Improved accuracy compared to Velocity Verlet

 Possibly larger time step

University of Freiburg – Computer Science Department – 81

Gear

 Taylor approximation

 Notation

University of Freiburg – Computer Science Department – 82

Gear

University of Freiburg – Computer Science Department – 83

Gear - Prediction

University of Freiburg – Computer Science Department – 84

Gear - Correction

 Error / inconsistency between the predicted acceleration
at time and the acceleration

at predicted positions and velocities :

 Correction:

with coefficients

University of Freiburg – Computer Science Department – 85

Gear - Implementation

 Initialization:

 Prediction:

 Error:

 Correction:

University of Freiburg – Computer Science Department – 86

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 87

Comparison

 Deformable cube on a plane (4k particles,
17k tetrahedra, 22k edges), spring forces,
volume preservation, gravity, contact

Scheme Error order Time step
[ms]

Computation
time [ms]

Ratio

Explicit Euler 1 0.5 9.5 0.05

RK 2 2 3.8 18.9 0.20

Implicit Euler 1 49.0 172.0 0.28

RK 4 4 17.0 50.0 0.34

Verlet 3 11.5 9.5 1.21

University of Freiburg – Computer Science Department – 88

Time Step

 Larger time steps are generally
advantageous for the performance

 However, the time step size is limited:

 A particle should not move farther than its size in
one simulation step, e.g. its diameter :

University of Freiburg – Computer Science Department – 89

Time Step

 Critical states that can be avoided by a time step limit

 Inverted elements

 Unresolvable contacts

Rest state Inverted elements

State at t+h:
Contact

State at t:
No contact

University of Freiburg – Computer Science Department – 90

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 91

Explicit Schemes

 Error order determines accuracy

 Improved accuracy may correspond to an improved
stability for larger time steps

 Improved accuracy may correspond to higher costs

 Time steps are comparatively small

 Stability is generally an issue

University of Freiburg – Computer Science Department – 92

Implicit Schemes

 Generally stable and robust

 Handle larger time steps

 Less accurate (scheme, linearization, solver)

 Typically artificial damping / viscosity

 Decreasing accuracy for larger time steps

 Same as for explicit schemes, but explicit schemes get
unstable, while implicit schemes stay stable

