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Goal

 Dynamic simulation of

 Rigid bodies

 Deformable objects

 Fluids
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Goal
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Goal
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Representation

 Subdivision of objects into small parts, i.e. particles

 Particles have properties

 Mass     , volume    , density

 Position    , velocity    , force

 Particles are of arbitrary shape 
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Fluid Particles

Fluid body Fluid particles Typical visualization
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Cloth Particles

Cloth Cloth particles Illustration

[Bender, Deul, 2013]
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Deformable 3D Particles

Deformable 3D object Approximate tetrahedral mesh
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Particle Forces

 Result from 

 Distortions, e.g. 
volume or shape 
change

 Gravity

 Friction, viscosity

 Contact

 …

Rest state Compression Shear

Gravity Viscosity Contact

Force
Velocity
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Particle Motion

 Particles change position     with velocity 

 Velocity governed by Newton’s Second Law

 Force at a particle equals the time 
rate of change of its momentum

 Two governing equations for two unknown functions    , 

 Can also be written as 

Coupled system of first order ODEs

Second order ODE
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Particle-based Simulation

 Object subdivision 
into particles
(spatial discretization)

 Force modeling

 Particle motion

 Transport / advection

Object Particles

Acceleration
Velocity
change

Position
change
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Particle Quantities

 Mass

 Position

 Velocity

 Force

 Acceleration
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Time Discretization

 Quantities are considered at discrete time points

 Particle simulations are concerned with the computation 
of unknown future particle quantities         ,
from known current information     ,     ,

h is the so-called
time step.
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Governing Equations

 Newton’s Second Law, motion equation

 Ordinary differential equations ODEs

 Describe the behavior of       and       in terms 
of their derivatives with respect to time

 Numerical integration is employed to
approximatively solve the ODE , i.e. 
to approximate the unknown functions       and  
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Governing Equations

 Initial value problem of second order

 Second-order ODEs can be rewritten as a
system of two coupled equations of first order

 Initial value problems of first order
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Initial Value Problem of First Order

 Functions      and      represent the particle motion

 Initial values       and       are given 

 First-order differential equations are given

 How to estimate           and          ? 



University of Freiburg – Computer Science Department – 19

Particle Accelerations

 Depend on sets of positions and velocities

 E.g., damped spring

Elastic 
acceleration

Spring
stiffness

Actual
spring
length

Rest
spring
length

Normalized
direction

Damping 
acceleration

Damping
parameter

Relative velocity 
projected onto spring

Normalized
direction

Particle
mass



University of Freiburg – Computer Science Department – 20

Particle Accelerations

 Are typically expensive to compute

 E.g., sums over adjacent particles

 Might need additional effort

 E.g., contact handling forces require collision detection
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Finite Differences

 Taylor-series approximation

 Continuous ODEs are replaced with 
discrete finite-difference equations FDEs

O(h2) – order of the truncation / discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation

ODE FDE
The first approximate 
solution of our problem
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Finite Differences 

 Line fitting (assuming                       near     )

 Resulting in
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Explicit Euler

 Governing equations

 Initialization                  ,                  ,      , 

 Explicit Euler update
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Coupled Equations

 Position update depends on velocity

 Velocity update depends on position
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Accuracy and Stability

 Discretization error is the difference between the 
solution of the ODE and the solution of the FDE

 The FDE is consistent, if the discretization error 
vanishes if the time step h approaches zero 

 The FDE is stable, if previously introduced errors 
do not grow within a simulation step

 The FDE is convergent, if the solution of the FDE 
approaches the solution of the ODE 
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Accuracy and Stability

 Although the discretization error is diminished 
by smaller time steps in consistent schemes, 
the discretization error is introduced in each 
step of the FD scheme

 If previously introduced discretization errors 
are not amplified by the FD scheme, then it 
is stable

 Consistent and stable schemes are convergent 
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Stability

 If stability is influenced by the time step, 
the FD scheme is conditionally stable

 If the FD scheme is stable or unstable for arbitrary 
time steps, it is unconditionally stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 Schemes with improved stability work with larger 
time steps  reduced overall computation time
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Time Step

 Larger time steps result in less simulation steps and 
speed-up the overall computation time of a simulation

 Different FD schemes allow for different time steps

 E.g. due to different error orders 

 Computing complexity also differs
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Goal

 Stable scheme with maximized ratio between time 
step and computing complexity per simulation step
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Second-Order Runge Kutta - Midpoint Method

‒ One derivative computation
‒ Discretization error

Euler Midpoint

‒ Two derivative computations
‒ Requires intermediate 

positions and velocities 
‒ Discretization error
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Midpoint Implementation - Spring

 Acceleration at time   : 

 Intermediate position and velocity at time          : 

 Intermediate acceleration at time           
using intermediate positions and 
velocities: 

 Final position and velocity at time 
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Midpoint Implementation

Current
state

Compute
all final
pos. and vel.

Compute all
accelerations

Compute all 
predicted 
accelerations

Compute all 
predicted 
pos. and vel.



University of Freiburg – Computer Science Department – 35

Second-Order Runge Kutta - Heun













University of Freiburg – Computer Science Department – 36

Second-Order Runge Kutta - Ralston
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Fourth-Order Runge Kutta - Classic





















‒ Four derivative 
computations

‒ Discretization error
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Fourth-Order Runge Kutta – 3/8 Rule
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Accuracy

Wikipedia: Runge-Kutta-Verfahren

Euler h O(h2) 

Euler h/2 O(h2) 

Exact
RK4 h O(h5)
RK2 h O(h3)

 Discretization error and 
time step influence 
the accuracy
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Performance

 Computation dominated by derivatives, actually only
by the accelerations

 RK4 is four times as expensive as Euler

 RK2 is two times as expensive as Euler

 RK4 is more accurate than RK2 which is more accurate 
than Euler. Error: 

 RK4 allows larger time steps than RK2 which allows 
larger times steps than Euler
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Performance

 If, e.g., RK4 runs with a time step four times larger 
than Euler, the overall computation time is the same

 Comparison: RK4 : Euler

 Time per simulation step: 4 : 1

 Simulation steps: 1 : 4

 Overall computation time: 1 : 1 
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Accelerations

 can be very expensive to compute

 E.g., if the accelerations consider contact forces,
collision detection has to be performed four times
for different sets of positions 
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 Current and previous accelerations (multistep)

 Two acceleration computations per step

 Previous accelerations have to be stored

Explicit Adams-Bashforth
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 Next, current and previous accelerations (multistep)

Implicit Adams-Moulton
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A Predictor-Corrector Example

 Initialization

 Prediction

 Correction

Accelerations at pre-
dicted positions using 
predicted velocities
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Discussion

 Two accelerations

 Improved accuracy, larger time steps

 Not necessarily true for discontinuous functions,
e.g., in case of contact handling

 Initialization of previous steps

 Iterative correction steps possible
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Explicit vs. Implicit Schemes

 Explicit Euler

 One unknown per equation

 Direct computation 
of unknowns

 Non-linear equations do 
not affect the approach

 Non-analytical, procedural 
forces can be handled

 Implicit Euler

 System of algebraic equations

 Simultaneous computation of 
unknowns

 Solution of a linear system

 Linearization of 
non-linear equations



University of Freiburg – Computer Science Department – 51

Implicit Schemes

 Challenge

 Solving a linear system

 Implementation

 Benefit

 Largely improved stability

 Issue

 Reduced accuracy

 Discretization error plus linearization error 
plus approximate solution of a linear system 
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Implicit Schemes – Example Overview

 Linearization of accelerations

 Linear system with unknown velocities

 Position update

Here, accelerations depend only on positions.

J is a 3x3 Jacobi matrix. h•v is a 
small displacement. a(x) + J•h•v
is an approximation of the accele-
ration at position x + h•v. 
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Linearization







f: 1D field of scalar values

f: 3D field of scalar values

a: 3D field of 3D values

Gradient

Jacobi matrix
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Jacobi Matrix - Application
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Linearization

 Approximation of the acceleration at position
using the acceleration at position     , the Jacobi 
matrix        of the acceleration at position      and the
small displacement                                : 

 Equation                                           with unknown
velocities and positions can be rewritten with
unknown velocities only: 
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 Set of particles with, e.g., interconnecting springs

 Force at a particle depends 
on particle and its neighbors 

 E.g.

 Position       , acc.        and mass
of particle     at time    

 Rest distance        and stiffness
between particles     and 

Particle System



University of Freiburg – Computer Science Department – 57

Notation
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Linear System – Implicit Euler

 Linear system for      particles



 Jacobian



 Spatial derivatives of all accelerations 
with respect to all positions   
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Jacobian - Example

 E.g.,                                                  
depends on two positions     and

Mueller et al. , Real-time Physics.  SIGGRAPH 2008. 
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Jacobian

 is built from 3x3 matrices

 If position      influences
acceleration     , then 

 Otherwise, 
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Solver



 Iterative. Start with a guess, e.g. 

 Iterative updates

 Result

Here, superscript
indicates the iteration. 
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Solver – Conjugate Gradient

Scaling factor for the solution update. 

Update of the solution with a scaled direction. 

Residual. Exit loop, when sufficiently small.

Direction for the solution update.

Iteration count.
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Solver – Conjugate Gradient

 Works (converges ) for symmetric, 
positive-definite matrices

 Exact solution of an           system in     steps

 Frequently used for deformable objects

 Typically used with a fixed iteration count, e.g. 3-5
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Solver - Jacobi



 diagonal elements of 

 determines convergence and convergence rate

 , in practical settings typically

 Per-component update 
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Solver - Implementation

 is not explicitly built or stored

 is not explicitly built or stored 

 Instead

 Per-particle information is stored at particles, e.g. 

 Per-element information is stored at elements, 
e.g.          for an elastic spring between    and    ,

and                     can be reconstructed

 Matrix-free implementation of solver steps
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Solver - Implementation

 is computed and stored per particle 

Stored per
particle.Stored per

element,
e.g. spring.
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Solver - Implementation

 is computed by iterating over elements

 E.g., spring connects particles     and 

For each spring:

For each particle:
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Solver - Discussion

 Jacobi vs. Conjugate Gradient CG:

 CG converges faster

 Jacobi is good-natured, e.g. in case of clamping 
intermediate solutions to implement constraints

 Implementation, e.g., in a particle-spring model

 Matrix-free

 All solver information is stored at particles and springs

 All solver steps are realized by iterating over particles 
and springs
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Implicit Schemes – Summary

 Implicit Euler 

 Linearization

 Solve a linear system for velocities

 Update positions according to implicit Euler
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Semi-implicit Euler (Euler-Cromer)

 Explicit Euler for the velocity update

 Implicit Euler for the position update

 No linear system
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Initial Value Problem of Second Order

 Function      represents the particle motion

 Second-order differential equation is given

 Initial values       and       are given 

 How to estimate           ?
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Motivation

 Schemes for coupled first-order ODEs 
update     and     simultaneously

 Schemes for second-order ODEs update     ,
but not necessarily
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Verlet

 Taylor approximations of          and

 Adding both approximations
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Verlet - Discussion

 One acceleration computation per step

 Same computation cost as explicit Euler

 Discretization error of order 4

 More accurate than explicit Euler

 Larger time step and improved performance
compared to explicit Euler 
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Verlet - Discussion

 Velocity representation not necessarily required

 But: 

 Velocity typically used for collision handling and damping

 E.g. 
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Leap-Frog

 Implementation, e.g.

Verlet
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Velocity Verlet

 Same accuracy for position and velocity

 One acceleration computation per step
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Beeman

 One acceleration computation per step

 Improved accuracy compared to Velocity Verlet

 Possibly larger time step
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Gear

 Taylor approximation

 Notation 
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Gear
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Gear - Prediction
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Gear - Correction

 Error / inconsistency between the predicted acceleration 
at time         and the acceleration          

at predicted positions         and velocities           :

 Correction:

with coefficients
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Gear - Implementation

 Initialization:

 Prediction:

 Error:

 Correction:
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Comparison

 Deformable cube on a plane (4k particles, 
17k tetrahedra, 22k edges), spring forces,
volume preservation, gravity, contact

Scheme Error order Time step 
[ms]

Computation 
time [ms]

Ratio

Explicit Euler 1 0.5 9.5 0.05

RK 2 2 3.8 18.9 0.20

Implicit Euler 1 49.0 172.0 0.28

RK 4 4 17.0 50.0 0.34

Verlet 3 11.5 9.5 1.21
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Time Step

 Larger time steps are generally 
advantageous for the performance

 However, the time step size is limited:

 A particle should not move farther than its size in 
one simulation step, e.g. its diameter   :  
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Time Step

 Critical states that can be avoided by a time step limit

 Inverted elements

 Unresolvable contacts 

Rest state Inverted elements

State at t+h:
Contact

State at t:
No contact
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Explicit Schemes

 Error order determines accuracy

 Improved accuracy may correspond to an improved 
stability for larger time steps

 Improved accuracy may correspond to higher costs

 Time steps are comparatively small

 Stability is generally an issue
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Implicit Schemes

 Generally stable and robust

 Handle larger time steps

 Less accurate (scheme, linearization, solver)

 Typically artificial damping / viscosity

 Decreasing accuracy for larger time steps

 Same as for explicit schemes, but explicit schemes get 
unstable, while implicit schemes stay stable


