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Motivation

— Elastic solids are modeled for particle sets, i.e. elements

— Forces at particles account for resistance to deformation,
e.g., stretch, shear, bend, volume change

Elastic solids in 1D, 2D, and 3D
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Motivation

— Element in rest state / undeformed state
= NO elastic forces

— Element in deformed state
= Elastic forces that accelerate
particles towards the rest state
of an element
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Motivation

— Different types of deformation (degrees of freedom)
can be derived from the incorporated particles

— Two particles: stretch, compression
— Three particles: area, shear
— More particles: volume, shear

00 @~ Q33 88:%:

Rest state Deformed state Rest state Deformed states
with elastic forces with elastic forces

University of Freiburg - Computer Science Department - 5



Outline

ntroduction
-lastic forces
Miscellaneous
Collision handling

— Visualization

University of Freiburg - Computer Science Department - 6



Overview

— Define elements

— Compute deformation / strain
— Compute stress

— Compute elastic energy

— Compute elastic forces

University of Freiburg - Computer Science Department - 7



Elements

— Particles form elements, e.g.
— Two particles form a line segment
— Four particles build a tetrahedron

Element J

;1 Four particles and one
tetrahedral element
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Deformation / Strain

— Define a function that describes a deformation of
element 7 based on particle positions: C;(x; 1, ..., %)

— Undeformed state: Ci(x;1,...,%in) =0
— Deformed state:  Ci(x;1,..., @) # 0

— Example: relative stretching / compressing
of two points @1, z2 with rest distance L;:

Ci(.’L‘Z’,l, CBZ"Q) = %(‘miJ — af;i’Q‘ — Li) Strain is dimensionless.
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Deformation of Line Segments

LS /,;34 Cy(xy1,T2) = L%( T — To
TN ° 03(581,334): %3(561—334
Lo 3 04(35‘1,(135) — %4( L1 — Ly

Five particles and Exemplary deformation
four elements computations for the elements
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Deformation of a Tetrahedron

Ci(iBi,h S 587;,4) — Ci(iBi,h S 587;,4) 7é 0
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Stress

— Deformation of an element causes element stress
— Internal pressure (force per area)
— Si(®iq1,...,xin) =k Ci(Ti1,. .., Tin)

— Material stiffness k;

F?Z,2
) e \
. o
® F; 4
Rest state Deformed state Stress due to deformation.

Forces due to stress.
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Elastic Energy

— Work that is performed to deform an element is
stored as elastic energy:

— E@-(azz-,l,...,azi,n) — % SZ Cf,, V; — % kz C,Lz ‘/z

— V, isthe size (volume / area / length) of an element
— Quantifies the deformation of an element

— Undeformed state: Ei(€;1,.-.,Tin) =0

— Deformed state:  E;j(®i1,...,Tin) >0
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Elastic Forces

— Accelerate particles from positions with high elastic
energy towards positions with low elastic energy

— Negative spatial gradient of the elastic energy
— Goal: Minimization of elastic energy, i.e. deformation
— For all particles 1 < j <n of an element i:

F?l,j (mi,la SRR wi,n) — 32&'4 E?l(wi,la 000 g wi,n)
— —kiWCi(m,,;,l, 500 C mi,n)a%mci(wi,la 500 o mi,n)
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Distance Change

— Two particles x; 1, z; 2form an element i

L; 1
L 1 L 2 e
L;1 = | Yi 1 L;2 = | Yi2
<i,1 27,2
— Strain

Ci(@i1, @i 2) = 7-(|2i1 — ®i2| — Li)

CH@i1,Yi1, 2i1, Ti2, %i,2, %i,2)
= 7. (V@1 —2i2)? + (i1 — vi,2)? + (261 — 202)* — L)
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Distance Change

— Spatial derivatives of the strain

oC¢
4 833i,dl Li1 — L2
801 _ 8C,L _ 1 Vi1 — Ys _ T; 1T 2
ox; 1 Oyi.1 Li|l®;1—x;, 2] t,1 1,2 Lil®;1—x; 2
oC? Zi,1 — 24,2
8Zi’1
ocd  acCd
8513?;,2 - 6332',1
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Distance Change

— Elastic force at particle x; ;
Ffl(ﬂi'i,lail‘?m) =~k L; O

_Ld s 1—®5 2| —Li ®31—T4 2
¢ Li [@i,1—xi,2

oC

8:137;,1

— Elastic force at particle ;5
oC;
FSQ(wi,lawm) = —kd L; CF =

]fd @i 1—2i2|—Li ®ig1—Xi2
v L; |2; 1 —x; 2|
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Area Change

— Three particles ; 1, x; 2, x; 3 form a triangle i

— Edges: e;1 =3 —Ti1,€i2 = T3 — T2

— Strain: C? = Aii(%|€i’1 X eijg‘ — Az)

— Forces: F?,

— S5 €2 X ti

a __
F?:’Q = S; ti X €;1

F>y = s; t; X (6@2 — 81,1)

a__ Oy
2 2|€f,;,1 ><e,,;,2|

t, =e;1 Xe;9
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3D Volume Change

— Four particles x; 1, ©; 2, x; 3, ; afOrm a tetrahedron s
— Edgesz €1 =TLj2 —Lij1,€;2 =TL;3 — ;1,63 = Tj4 — T4

— Strain: CV = %(%Ei,l(eiﬂ X €;3) — Vi)

— Forces FY, = ¢kYCY(ei2 —ein1) X (ei3 — €1

v _ 1livrrv
FZ_Esz'L ei,gxem

¢,

1
F-V3 — gk;fc,zf €;1 X €;3

¢,

FY,=3kiCY e;2 X €1

¢,
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Demo

— Tetrahedral mesh with combined strain function C4, C2, CY

FREIBURG
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../../demos/OgreDefColStudio_FMX/combined.bat

Properties of Elastic Forces

— Preserve linear and angular momentum of an element
or of a system of elements

\ -
N, “
~, \\‘
N,
\\“
~,
N,
N, ‘s\
N, ‘\‘

i,1

Vv
Fle,l

Volume forces change the volume of
the tetrahedron, but not its velocity.

Distance forces change the distance
between the two points, but not the
inear and angular velocity of the spring
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Properties of Elastic Forces

— Sum up to zero for all particles

- D imin Fij(@in, ..., @in) =0 e
— Do not change linear momentum S
— Do not cause torgue Se—p
— Do not change angular momentum Fia
, Forces sum up to zero, but
— Also referred to as internal forces change angular momentum
, of the element
— External forces can change linear = no elastic force

and angular momentum of an
element, e.g. gravitational force
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Damping

— Improves the stability of a particle system
in explicit integration schemes

— Typically omitted in implicit schemes with artificial damping
— Models friction or viscosity

— Force proportional to a velocity
— Directed in the opposite direction of a velocity
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Damping

— Particle velocity

damp
F; = — 7 Yy
Damping
parameter

— Relative velocity
FOomP = Y ((’Uj — ’Uz')|mj_wi ) |wj_mi

i,J e —xill ) ||e;—||
Damping Relative velocity Normalized
parameter projected onto direction

direction X - x;
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Damping

— Particle velocity
— External force

— Affects the global dynamics of a
particle system, i.e. slows it down

— Relative velocity
— Internal force

— Does not affect linear and angular
momentum of a particle system

— Reduces oscillations / noise
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Particle Masses

— Should be proportional to the particle size
— Discretization should not affect the simulation

Mass density partice T , ‘\‘
of the material size |
. . o SAL
— Elastic accelerations are s
accumulated at particles w’
1 f L
a;, — Z . F . P ~
' Pi (% 2 Aj) g =t Of ‘ """"""" Sz @
: — F: T o
’ J pj%AJ
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Time Step

— An element should not move farther than its size in
one simulation step, e.g. its diameter d: hjv| < d

— Time step limit: h < &

]

— h=X2L wtho<\x<1

v

— A= " can be interpreted as performance measure

— Time step size is only meaningtul if related to the
element size
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Context

— Collision of a particle of an elastic solid with a plane

3000 00
olelels OOGS
olelele O0BS

XL
Time t Time t+h
v;
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Plane Representation

— In 3D, a plane can be defined
with a point &, on the plane
and a normalized plane normal 1 pjane

— The plane is the set of points
With Teplane * (€ — @p) =0

— For a point x, the distance
to the plane is
d = Nplane * (T — )

d>0fx,
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Concept

— If a collision is detected, i.e. d <0, a collision impulse
'S computed that prevents the interpenetration of the
mass point and the plane

— We first consider the case of a

M2
particle-particle collision with n & —,
neing the normalized direction . Vs
from oo to a4

— The response scheme is later adapted
to the particle-plane case
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Coordinate Systems

— Velocities v before the collision response and V
velocities after the collision response are consideread
in the coordinate system defined by collision normal n
and two orthogonal normalized tangent axes t and k

— Eg Uln Ng TNy Tl U,z
(W — tm ty tz U1,y
U1,k kx ky kz V1,2

— The velocity V' after the response is transformed back

Vl,:z: Ty ta: ka: Vl,n
Vljy = Tly ty k‘y Vl,t
Vl,z n tz kz Vl,k
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Governing Equations

— Conservation of momentum

miVip, —mivr, = P, maVa, —maove, = -—PFP,
miVis—miviy = P maVor—movey = -5
miVig —mivie = P maVop —movar = —DF

— Coefficient of restitution, e=1 elastic, e = 0 inelastic
Vl,n — VZ,n — _e(Ul,n — U2,n)

— Friction opposes sliding motion along t and k
P =uP, P.=ukP,
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Linear System
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(0 0 0 1 0 0 -1 0 0 \ [ P \
4 1 0 0 0 0 0 0 0 P,
4 0 1 0 0 0 0 0 0 P,
1 0 0 m 0 0 0 0 0 Vin
0 -1 0 0 m 0 0 0 0 Vi | =
0 0 -1 0 0 m 0 0 0 Vik
1 0 0 0 0 0 m 0 0 Vo
0 1 0 0 0 0 0 my O Vae
\ 0 0 1 0 0 0 0 0 ms/) \ Var




Solution

_mima ___m2 _my
mi1+mso 0 0 mi+meo 0 0 mi+m2 0 0 \
mymma [ ma ma
my+ma 1 0 my+mo 0 0 mi+mo 0 0 ( —e(v1,n — v2.n) \
mima 0 1 A 0 0 —E 0 0 0
mi+ma2 mi+msz mi+ms 0
__m3 1 1
mi+mo 0 0 mi+mso 0 0 mi+maz 0 0 mivi,n
map 1 _ map 1 0 ’
m1+ma mi 0 mi(mi+ma)  m 0 m1+mo 0 0 mivy ¢
_moap 0 1 map 0o L _n 0 0 M1v1,k
my+msa my my(mi+mo) ma mi+mo
_mi 0 1 0 0 1 0 0 Mzb2n
 my+ma mi+ms mi+maz mava ¢
_map 1 p __ map 1 \
mi+me mo 0 mi+mso 0 0 mao(mi+ms) mo 0 M2v2,k /
ma 1 7 . mip 1
mi—+msz 0 mo mi—+msa 0 0 ma(mi+mz) 0 mo )
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Particle = Plane

— Plane has infinite mass and does not move: vo = V5, =0
— Columns 2, 3, 7, 8, 9 do not contribute to the solution
— To solve for the particle velocity Vi after collision

response, rows [ _ma_ 1 00
ma Mo mMi1V1.n
4, 5, 6 have tO ml—l—gzz _ml(ml—z-mz) ’n’lbl (1) mllfvllt —
. _Mmapt _ ma O 1
be considered mitmz  ma(mitma) i miv g
— Plane has 1 0 0 0 eV Vi
: Vo _ K 1 1V1,n
infinite mass T T mivy s | = | Ve
o~ e Vik
! 1 M1V k
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Implementation

V;f,n — —C€Utn n 4

V¢
Vie = v —ple+ v, k \/V;
‘/t,k — Utk — M(G R 1)Ut,n /

— p(e + vy is difficult to handle

— Vit < |vee| and sign(Vy:) = sign(ve )
should be guaranteead

—Vie=pve Vig=pver 0<pu<I
s a useful simplification
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Position Update

— The collision impulse updates the velocity
— However, the point is still in collision (d < 0)

— For low velocities, the position update in the
following integration step may not be
sufficient to resolve the collision

— Theretore, the position should be updated as well, e.g.
x:+p = ¥ — d - n which projects the point onto the plane

— The position update is not physically-motivated, it
just resolves problems due to discrete time steps
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Context

— Geometric combination of S Y iy e
— A low-resolution tetrahedral I
mesh for simulation and

— A high-resolution triangular
mesh for visualization

Tetrahedral
mesh

for geometrically complex

surface models

Triangulated
mesh
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[llustration

— Two representations for simulation and visualization
— Tetrahedral elements with °
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Barycentric Coordinates

— Surface vertex s can be represented
with the particles of a tetrahedron
T, = a1 + (T2 — ®1) + az(x3 — 1) + ou(Ts — 1)
s = (1 — g — a3 — ay)xy + ao®s + azxs + auxy
LTs = 1T1 T Q2T2 + A3T3 + Q44
a1 +oag+az+ag=1

— o, (i, 3,4 are Barycentric T4 — X
coordinates of x, with respect
O 1, X2, X3, X4
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Properties

- O< o <1
T IS inside the convex combination of @1, @, T3, T4,
.e. inside the tetrahedron
— ; — 0V N, — 1
X IS on the surface of the tetranedron
—o; <0Va; >1
T IS outside the tetrahedron
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Computation

— s = X1 +

ag (o — x1) + ag(xs — @) + as(xy — 1)

leads to the following system

( (T2 — 21

— Not solva
— a1 1S Ccom

a2
) (3’33—331) (.CL‘4—.’L‘1) ) 3 = Lg — L1
8%

Dle for degenerated tetrahedra
puted as ay =1 — as — az — ay
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Implementation

— Preprocessing
— Determine the closest tetrahedron for surface points

— Compute Barycentric coordinates for surface points
with respect to the corresponding tetrahedron

— Simulation step

— Compute surface-point positions from Barycentric
coordinates and the positions of the particles of the
corresponding tetrahedron

— Demo
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