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Particle Fluids in Animation
Cooperation with 
Pixar Animation Studios

10 million fluid + 
4 million rigid particles, 
50 s simulated, 
50 h computation time 
on a 16-core PC, 
www.youtube.com/cgfreiburg
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Particle Fluids in Commercials

Copyright
NHB 
Studios,
Berlin, 
Hamburg,
Dusseldorf
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Particle Fluids in Engineering

PreonLab
FIFTY2 Technology

FORD F-150

Water wading
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Validation of Particle Concepts

PreonLab
FIFTY2 Technology
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CFD in Engineering

Johan Idoffsson
Chalmers University

Volvo Cars

PreonLab
FIFTY2 Technology
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Concept 
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Fluid Representation

− Fluid body is subdivided into small moving
parcels, i.e. particles, with fluid properties

Fluid body Set of fluid 
parcels
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Particles / Fluid Parcels

− Represent small fluid portions
− Are represented by a sample position
− Move with their velocity
− Have a fixed mass
− Volume and density are related by

− Preservation of density / volume over time 
is one of the challenges of a fluid simulator

− Shape is not considered
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Typical Setup

− Define overall fluid volume      
and fluid density

− Define number     of 
particles

− Compute particle mass 
as 

− Particles of uniform size
− Sample      represents a 

particle in the simulation
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Particle Shape

− Typically initialized as a cube
− Implicitly handled as Voronoi cell by the simulation  
− Typically visualized as a sphere

PreonLab, FIFTY2 Technology GmbH Adrian Secord: Weighted Voronoi
Stippling, NPAR 2002. 
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Fluid Simulation

− Computation of positions and
velocities of fluid parcels over time
− Velocity change from current time    

to subsequent time

− Position change
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Example

Fluid Fluid
parcels

Known
current

state

Unknown
future
state
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Accelerations

− Gravity
− Viscosity

− Resistance to deformation 
− Accelerate parcel towards the average 

velocity of adjacent fluid parcels
− Pressure acceleration 

− Prevent fluid parcels from density / volume changes
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Simulation Step - Example

− Gravity and viscosity would change the parcel volume

− Pressure acceleration avoids the volume/density change
Gravity Viscosity

Pressure
acceleration
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Simulation Step - Example

− Current state

− Overall acceleration

− Subsequent state
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Neighboring Parcels 

− Computations require 
neighboring parcels

− Density or volume

− Pressure acceleration

− Smoothed Particle Hydrodynamics SPH
− Gingold and Monaghan, Lucy
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Simulation Step - Implementation

− Determine adjacent particles / neighbors
of particle          (         is neighbor of         !)

− Compute accelerations                          
as sums of neighbors 

− Advect the particles, 
e.g. Euler-Cromer

− Determine neighbors
of particle 

− …      
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Governing Equations

− Particles /sample positions      and the respective 
attributes are advected with the local fluid velocity

− Time rate of change of the velocity      of an 
advected sample is governed by the 
Lagrange form of the Navier-Stokes equation
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Accelerations

− : acceleration due to pressure differences
− Preserves the fluid volume / density
− Acts in normal direction at the surface of the fluid element
− Small and preferably constant density deviations 

are important for high-quality simulation
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Accelerations

− : acceleration due to friction forces 
between particles with different velocities
− Friction forces act in tangential and normal 

direction at fluid elements
− Kinematic viscosity                        : larger friction 

is less realistic, but can improve the stability
− Dynamic viscosity

− : e.g., gravity
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Accelerations
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Lagrangian Fluid Simulation

− Fluid simulators compute the velocity field over time
− Lagrangian approaches compute the velocities for

samples      that are advected with their velocity
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Moving Parcels vs. Static Cells

Lagrangian: Acceleration 
of a moving parcel.

Eulerian: Acceleration 
at a static cell.

or
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Smoothed Particle Hydrodynamics

− Proposed by Gingold / Monaghan and Lucy (1977) 
− SPH interpolates quantities at arbitrary positions and 

approximates spatial derivatives with a finite number 
of samples, i.e. adjacent particles
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SPH for Fluids

− SPH in a Lagrangian fluid simulation
− Fluid is represented with particles
− Particle positions and velocities are governed

by                and
− ,              ,            and          are computed with SPH 
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SPH Interpolation

− Quantity      at an arbitrary position      is approximately
computed with a set of known quantities       at
sample positions      :
− is not necessarily a sample position
− If      is a sample position, it contributes to the sum

− is a kernel function that weights the contributions
of sample positions      according to their distance to
−

− is typically the particle size
− for, e.g. 
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Kernel Function

− Close to a Gaussian, but with compact support
− Support typically between      and

− E.g. cubic spline (1D:             2D:                  3D:              )

− Number of considered neighbors depends on 
− Dimensionality, kernel support, particle spacing
− E.g., 3D, cubic spline, support      , particle spacing  

results in 30-40 neighboring particles
− Number of neighbors influences performance / accuracy
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Kernel and Kernel Derivative in 1D
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SPH for Fluids

− SPH in a Lagrangian fluid simulation
− Fluid is represented with particles
− Particle positions and velocities are governed

by                and
− ,              ,            and          are computed with SPH 
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Spatial Derivatives with SPH

− Original approximations

− Currently preferred approximations
preserves linear and angular momentum,
when used for pressure forces

more robust as it avoids 
the second derivative of W

gives zero for constant A
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Density

− Explicit form
−

− Comparatively exact
− Erroneous for incomplete neighborhood 

− Differential update 
− Using the continuity equation
− Time rate of change of the density is related 

to the divergence of the velocity field

− Drift 
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Pressure

− Quantifies fluid compression
− E.g., state equation
− Rest density of the fluid
− User-defined stiffness

− Pressure acceleration
−

− Accelerates particles from high to low pressure, 
i.e. from high to low compression to minimize 
density deviation 

Pressure values in SPH 
implementations should 
always be non-negative.
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Simple SPH Fluid Solver

− Find neighbors of all particles
− Compute density
− Compute pressure     
− Compute non-pressure accelerations, 

e.g. viscosity, gravity
− Compute pressure acceleration
− Update velocity and position

Contact handling, i.e.
boundary handling is
often realized as 
pressure acceleration.
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Simple SPH Fluid Solver

Compute density
Compute pressure

Compute non-pressure accelerations
Compute pressure acceleration
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SPH Discretizations

− Density computation
− Pressure acceleration
− Viscosity acceleration
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Boundary Handling

− Boundaries can be represented with static fluid samples
− Computations incorporate boundary samples, e.g.

− Fluid sample at boundary
− Density and pressure increases
− Pressure acceleration resolves contact 

Fluid samples Boundary samples

Fluid samples Boundary samples
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Boundary Handling

− Boundary handling: How to compute                   ? 

Fluid
particle

Solid
particles

Kernel
support
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Setting

− Kernel has to be defined, e.g. cubic with support of
− Particle mass       has to be specified

− E.g.,                  for a particle spacing of 
− Spacing governs particle mass
− Ratio of support vs. spacing governs the number of neighbors

− Numerical integration scheme
− Semi-implicit Euler (symplectic Euler or

Euler-Cromer) is commonly used
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Setting

− Time step
− Size is governed by the 

Courant-Friedrich-Levy (CFL) condition
− E.g.,                       with              and particle spacing
− Motivation: For          , a particle moves 

less than its size / diameter per time step 
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Force Types

− Momentum equation

− Body forces
− Surface forces

− Normal stress related to 
volume deviation

− Normal and shear stress 
related to friction due to 
velocity differences

Normal
stress

Shear
stress

Gravity

Volume
deviation

Velocity
difference
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Pressure Force in x-direction

− Pressure force
acts orthogonal
to the surface of
the fluid element

− Resulting pressure 
force

dxdy

dz

p dy dz - ( p + p/ x dx ) dy dz
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Overall Pressure Force

− Pressure force at particle 

− Pressure acceleration
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Cauchy Momentum Equation

− Lagrange form
− is the stress tensor (a 3x3 matrix in 3D) describing 

the pressure distribution at the surface of a fluid 
element

− is the resulting force per volume 
− is the viscous stress tensor
− is the resulting 

viscosity force per volume
−
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Simple SPH Fluid Solver

Compute density
Compute pressure

Compute non-pressure accelerations
Compute pressure acceleration
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SPH Discretizations

− Density computation
− Pressure acceleration
− Viscosity acceleration
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SPH Concept

− Reconstruction of a function and its derivatives, 
e.g.                   , from discrete samples

− Convolution of discrete samples with a filter / kernel
Reconstructed
function

Function samples
(particle data)

Convolution
kernel (reversed
SPH kernel)

Convolution kernel for
the first derivative (reversed 
derivative of the SPH kernel)
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SPH Concept

− Quantity     at position    can be written as 

− Dirac delta                                and
−

− Dirac delta is approximated with a kernel 
function with limited local support, e.g.

− Convolution:

Particle size h

Reversed kernel 
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First Derivative

−

− Follows from  
−

−

−

−

Fourier transform. See, 
e.g. Bracewell 1965.

Reversed
kernel 

derivative
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Second Derivative

−

− Follows from  
−

−

−

−

Reversed
second kernel 

derivative
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Kernel Function - Properties

− Integral should be 
normalized (unity condition)

− Support should be compact
− Should be symmetric 
− Should be non-negative
− Should converge to 

the Dirac delta for
− Should be differentiable:                 should exist 

This is the actual parameterization of W.
x’ and x are reversed in SPH convolutions. 
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Particle Approximation

−

− Consider a limited number of samples / particles
representing a mass

− Typical notation 
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Particle Approximation of Derivatives

− First derivative

− Second derivative
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Kernel Function - Example

− Cubic spline 

with            (1D),                 (2D),               (3D)              
− Close to a Gaussian

− Compact support between     and
− Number of considered samples depends on 

− Dimensionality, kernel support, particle spacing
− Number of neighbors should not be too small
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Kernel Function - Illustration

depends on the distance between samples
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Kernel Function - Implementation

− Reversed kernel function as used 
in SPH sums for the convolution

− Implementation
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First Kernel Derivative

−

− Cubic spline
Derivative of q with respect to xj
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Kernel Derivative - Illustration
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SPH computes a convolution
of       and             to approxi-
mate        . Therefore, the re-
versed kernel derivative 

is used:

Convolution with First Kernel Derivative

is anti-symmetric.

Kernel derivative Reversed kernel derivative

SPH notation:

Convolution:



University of Freiburg – Computer Science Department – 64

Kernel Derivative - Implementation

− Reversed kernel derivative as used in SPH sums for 
the convolution

− Implementation
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Second Kernel Derivative

−

− Cubic spline

− Symmetric

d is the dimensionality

Used in SPH convolutions
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Design of a Kernel Function - 1D

− Definition of a shape, followed by normalization

− 1D: integration over a line segment

Integration by substitution
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Design of a Kernel Function – 2D, 3D

− 2D: Integration over the area of a circle

− 3D: Integration over the volume of a sphere
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Derivatives – Original SPH Forms

− Original forms 

− However, resulting forces do not preserve momentum 
and are not necessarily zero for constant values
in case of erroneous sampling
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First Derivative - Anti-symmetric Form

− Momentum-preserving form 

− SPH approximation

− Applied to pressure gradient, linear and angular 
momentum is preserved for arbitrary samplings
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First Derivative – Symmetric Form

− Term that vanishes for constant function values 

− SPH approximation

− Applied to velocity divergence, zero divergence 
for a constant velocity field is obtained for arbitrary 
samplings
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Second Derivative with First Kernel Derivative

− Second derivative is error prone 
and sensitive to particle disorder

− Too few samples to appropriately 
approximate the second kernel derivative

− Therefore, the Laplacian is typically approximated with 
a finite difference approximation of the first derivative

d is the dimensionality
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Derivatives - Summary

− Original approximations

− Currently preferred approximations
− Robustness in case of particle disorder, i.e.

Preserves linear and 
angular momentum

Avoids the second kernel derivative

Zero for uniform velocity field
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Some Kernel Properties

− In case of ideal sampling
−

−

−

−

−

− Can be used for test purposes 
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Kernel Illustration – 1D
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Kernel Illustration – 2D
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Kernel Illustration – Density Computation

− Is not a reconstruction of the function , 
but detects erroneous sampling

Correct sampling Dense irregular sampling
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Kernel Derivative Illustration – 1D

central difference
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Kernel Derivative Illustration – 2D Test
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Kernel Derivative Illustration – 2D Test
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Kernel Derivative Illustration – 3D Sampling

− Kernel derivative detects irregular samplings
(vector from low to high sample concentration)



Matthias Teschner

Simulation in Computer Graphics
Particle Fluids 3



University of Freiburg – Computer Science Department – 82

Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Simple SPH Fluid Solver

Compute density
Compute pressure

Compute non-pressure accelerations
Compute pressure acceleration
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SPH Simulation Step With a State Equation (SESPH)

− For each particle do
− Compute density
− Compute pressure

− For each particle do
− Compute accelerations
− Update velocities and positions

− Density and acceleration computations 
process all neighbors of a particle 
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Neighbor Search

− For the computation of SPH sums in 3D, each particle 
needs to know at least 30-40 neighbors in each step

− Example setting
− 30 million fluid particles
− Up to 1 billion neighbors
− 10000 simulation steps
− Up to 1013 neighbors processed per simulation

− Efficient construction and processing of 
dynamically changing neighbor sets is essential
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Performance – [Ihmsen et al. 2011]
Up to 30 million fluid particles, 
11 s computation time for 
neighbor search on a 16-core PC
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Performance – [Band et al. 2019]

Million
samples

Neighbor
search 

[s]

Simulation
step
[s]

Memory 
[GB] Cores

0.2 0.005 0.04 0.1 12

200 5 15 28 12

1300 33 355 172 24

7400 67 530 873 112
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Characteristics

− SPH computes sums 
− Dynamically changing sets of neighboring particles
− Temporal coherence

− Spatial data structures accelerate the neighbor search
− Fast query
− Fast generation (at least once for each simulation step)
− Sparsely, non-uniformly filled simulation domain 
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Characteristics

− Space subdivision 
− Each particle is placed in a 

convex space cell, e.g. a cube
− Similarities to collision detection 

and intersection tests in raytracing
− However, cells adjacent to the cell 

of a particle have to be accessed  
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Characteristics

− Hierarchical data structures are less efficient
− Construction in O (n log n), access in O (log n)

− Uniform grid is 
generally preferred
− Construction in O (n), 

access in O (1)
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Characteristics

− Neighbor storage is generally expensive
− Might be avoided for, e.g., a low number of neighbor 

queries per step or in case of very efficient computation
− Data structures have to process

− Fluid particles of multiple phases, e.g. air
− Rigid particles (static or moving)
− Deformable particles 
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search

− Uniform grid
− Index sort
− Spatial hashing
− Discussion

− …
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Concept

− Particle is stored in a cell 
− In d-D, potential neighbors 

in 3d cells are queried to
estimate actual neighbors

− Cell size equals the kernel 
support of a particle
− Smaller cells increase the 

number of tested cells  
− Larger cells increase the 

number of tested particles

Edge length
equals kernel
support

Potential
neighbors

Actual
neighbors



University of Freiburg – Computer Science Department – 94

Concept - Variant

− Verlet lists
− Neighbor candidates are computed within a distance larger 

than the kernel support every nth step 
− Actual neighbors are computed from

neighbor candidates in each step
− Neighbor candidates 

are valid for n steps 
− Motivated by temporal coherence: 

Particle does not move farther 
than its size in one step.

Kernel
support

Search
area
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Concept - Variant

− Verlet lists
− Proposed in 1967
− Still popular in Lagrangian simulations
− Acceleration data structure 

− Is only updated every nth step
− Is memory-intensive, requires storage 

of  a comparatively large number of 
neighbor candidates
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search

− Uniform grid
− Index sort
− Spatial hashing
− Discussion

− …
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Construction

− Compute cell index                                   for all particles
with, e.g.
− K and L denote the number of cells in x and y direction

− Particles are sorted with respect to their cell index
− Each grid cell

with index    stores 
a reference to the 
first particle in the 
sorted list

Cell indices of
a linearized
uniform grid

Cell indices 
of particles

Sorted with respect
to cell index

C

L
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0

2 3

1

Construction

Compute cell indices for particles 
and increment counter in C

1

2

3

4

5 6

7 0

C 0 1 2 3 4

counter 3 1 2 2

Accumulate counters in C
C 0 1 2 3 4

accum 3 4 6 8 8

C 0 1 2 3 4

index 3 4 6 7 8

L 0 1 2 3 4 5 6 7

particle 0

Associate particle i with cell j: L [ -- C [ j ].counter ].particle = i

C 0 1 2 3 4

index 3 3 6 7 8

L 0 1 2 3 4 5 6 7

particle 1 0

C 0 1 2 3 4

index 3 3 5 7 8

L 0 1 2 3 4 5 6 7

particle 1 2 0

C 0 1 2 3 4

index 0 3 4 6 8

L 0 1 2 3 4 5 6 7

particle 6 5 3 1 7 2 4 0

…
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Construction

− Particles are sorted with respect to grid cell
− Index points to first particle in a cell
− Difference of two subsequent indices 

indicates the particle number of a grid cell

C 0 1 2 3 4

index 0 3 4 6 8

L 0 1 2 3 4 5 6 7

particle 6 5 3 1 7 2 4 0
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Construction

− Two iterations over particles
− One iteration over grid cells
− Entire simulation domain has to be represented 
− Parallelizable
− Memory allocations are avoided
− Constant memory consumption
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Query

− For a particle
− Indices to grid cell and to adjacent cells are computed

(Once for all particles in the same grid cell)
− All particles in grid cell and adjacent cells are tested

− Parallelizable
− Improved cache-hit rate

− Particles in the same cell are close in memory
− Particles of neighboring cells are not necessarily 

close in memory 
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Space-filling Curves

− Alternative computation
for grid cell indices

− E.g., particles are sorted with
respect to a z-curve index

− Improved cache-hit rate
− Particles in adjacent cells

are close in memory
− Efficient computation of

z-curve indices
z-curve
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Sorting

− Particle attributes and z-curve indices 
can be processed separately

− Handles (particle identifier, z-curve index) 
are sorted in each time step
− Reduced memory transfer
− Spatial locality is only marginally 

influenced due to temporal coherence
− Attribute sets are sorted every nth step

− Restores spatial locality
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Sorting

− Radix sort or insertion sort can be employed
− O (n) for almost sorted arrays
− Due to temporal coherence, a small percentage of all 

particles change their cell, i.e. z-curve index, in each step 
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Z-Index Sort - Reordering

Particle color indicates
memory location

Spatial compactness 
using a z-curve
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search

− Uniform grid
− Index sort
− Spatial hashing
− Discussion

− …
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Spatial Hashing

− Hash function maps a grid cell to a hash cell 
− 3D domain is mapped to a finite 1D list
− Infinite domains can be handled

− Implementation
− Compute a cell index    or a cell identifier            for a particle
− Compute a hash function             or 
− Store the particle in a 1D array (hash table) at index
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1

0

Spatial Hashing

2 3

1

2
4

7 0

3

5 6

0 1 2 3 4 5 6 7 8 … n

particle 1 3 7 0

5 2 4

6

3D Grid 1D Hash map

Hash function
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Spatial Hashing

− Large hash tables reduce number of hash collisions 
− Different spatial cells with the same hash value cause 

hash collisions which slow down the query
− Reduced memory allocations

− Memory for m entries is allocated for each hash cell
− Reduced cache-hit rate

− Hash table is sparsely filled
− Alternating filled and empty entries
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Compact Hashing

− Hash cells store handles to a compact list of used cells
− Elements in the used-cell list are 

generated, if a particle is placed
in a new cell

− Elements are deleted, 
if a cell gets empty

− k entries are pre-allocated for each 
element in the list of used cells

− List of used cells is queried 
in the neighbor search
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Compact Hashing - Construction

− Larger hash table compared to spatial 
hashing to reduce hash collisions

− Temporal coherence can be employed
− List of used cells is not rebuilt, but updated
− Particles with changed cell index are estimated 
− Particle is removed from the old cell and 

added to the new cell 
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Compact Hashing - Query

− Processing of used cells
− Bad spatial locality 
− Used cells close in memory are not close in space 

− Hash-collision flag
− If there is no hash collision in a cell, hash indices of 

adjacent cells have to be computed only once for all 
particles in this cell
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Compact Hashing - Query

− Particles are sorted with respect 
to a z-curve every nth step

− After sorting, the list of used cells is rebuilt
− If particles are serially inserted into the list of 

used cells, the list is consistent with the z-curve
− Improved cache hit rate during 

the traversal of the list of used cells
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search

− Uniform grid
− Index sort
− Spatial hashing
− Discussion

− …
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Comparison

− Measurements in ms for 130 k particles
− Ongoing research

− Focus on sorting, parallelization and vectorization
− Octrees, k-D trees, BVHs can also be realized with sorting

Method Construction Query Total
Basic grid 26 38 64
Index sort 36 29 65
Z-index sort 16 27 43
Spatial hashing 42 86 128
Compact hashing 8 32 40
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Summary

− Index sort
− Fast construction based on sorting
− Fast query
− Particles are processed in the order of cell indices

− Z-index sort
− Sorting with respect to a space filling 

curve improves cache-hit rate
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Summary

− Spatial hashing
− Less efficient query due to hash collisions and due 

to the traversal of the sparsely filled hash table
− Compact hashing

− Fast construction (or update due to temporal coherence)
− Fast query due to the compact list of used cells,

due to the hash-collision flag and due to the z-curve



Matthias Teschner

Simulation in Computer Graphics
Particle Fluids 4



University of Freiburg – Computer Science Department – 119

Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Simple SPH Fluid Solver

Compute density
Compute pressure

Compute non-pressure accelerations
Compute pressure acceleration
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Concept

− Boundaries are sampled with particles that contribute to 
density, pressure and pressure acceleration of the fluid

− Boundary handling: How to compute                   ? 

Fluid
particle

Solid
particles

Kernel
support
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Several Layers with Uniform Boundary Samples

− Boundary particles are handled as static fluid samples

− Pressure acceleration

Fluid

Solid

Contributions from fluid neighbors Contributions from boundary neighbors

Boundary neighbors
contribute to the density

All samples have the 
same size, i.e. same 
mass and rest density

All samples have the 
same size, i.e. same 
mass and rest density
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Pressure at Boundary Samples

− Pressure acceleration at boundaries 
requires pressure at boundary samples

− Various solutions, e.g. mirroring, extrapolation, PPE
− Mirroring

− Formulation with unknown boundary pressure
−

− Mirroring of pressure and density from fluid to boundary
−
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Boundary Contribution to Pressure Acceleration



University of Freiburg – Computer Science Department – 125

One Layer of Uniform Boundary Samples

− Contributions of missing samples have to be added

− Pressure acceleration

Fluid

Solid

Offset typically implement-
ted as scaling coefficient

Missing 
samples

x is an approximation
of the contribution from
missing samples

Kernel
property

Kernel gradient property
Pseudo inverse
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Correction of Missing Contributions

− The motivation of     and     is to compensate 
contributions of missing samples to             
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One Layer of Non-Uniform Boundary Samples

− Non-uniform contributions from boundary samples

− Pressure acceleration

Fluid

Solid
Contribution, i.e. mass
of a boundary sample is
approximated from its
boundary neighborsMissing 

samples

Non-uniform sizes,
i.e. masses of 
boundary samples



University of Freiburg – Computer Science Department – 128

One Layer of Non-Uniform Boundary Samples

− In 3D,             

For perfect sampling For perfect sampling

For arbitrary sampling
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Typical Boundary Representation

Color-coded volume
of boundary samplesBoundary samples
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Rigid-Fluid Coupling
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Rigid-Fluid Coupling
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Summary

− Boundary is sampled with static fluid particles 
− One layer of non-uniform samples

− Arbitrary triangulated meshes can be used as boundary
− Non-uniform boundary samples can be handled
− Missing contributions to fluid density and pressure 

acceleration have to be corrected
− Pressure is mirrored from fluid to boundary
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Incompressibility

− Is essential for a realistic fluid behavior
− Less than 0.1% volume / density deviation in typical scenarios

− Inappropriate compression leads, e.g.,
to volume oscillations or volume loss 

− Significant influence on the performance
− Simple approaches require small time steps
− Complex approaches work with large time steps
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Approaches

− Minimization of density / volume errors
− Measure difference of actual and desired density
− Compute pressure and pressure accelerations

that reduce density / volume deviations
− Minimization of velocity divergence

− Measure the divergence of the velocity field
− Compute pressure and pressure accelerations

that reduce the divergence of the velocity field
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Approaches

− Velocity change per time step due to pressure 
acceleration and non-pressure acceleration

− Predicted velocity after non-pressure acceleration

− Computation of pressure such that pressure 
acceleration either minimizes the divergence of     or 
the density error after advecting the samples with 

− Final velocity                                      with minimized diver-
gence or minimized density error at advected samples 
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Density Invariance vs. Velocity Divergence

− Continuity equation: Time rate of change of the 
density is related to the divergence of the velocity
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Density Invariance vs. Velocity Divergence

− Density invariance
− Measure and minimize density deviations

− Velocity divergence
− Measure and minimize the divergence of the velocity field
− Zero velocity divergence corresponds to zero density 

change over time                                 , i.e. the initial density 
does not change over time

− Notion of density is not required
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Challenges

− Minimizing density deviations can 
result in volume oscillations
− Density error is 

going up and down
− Erroneous fluid dynamics
− Only very small density 

deviations are tolerable,
e.g. 0.1%

https://www.youtube.com/watch?v=hAPO0xBp5WU
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Challenges

− Minimizing the velocity 
divergence can result 
in volume loss
− Divergence errors 

result in density drift
− No notion of actual

density 

Zhu, Lee, Quigley, Fedkiw, SIGGRAPH 2015
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State Equations (EOS, SESPH)

− Pressure based on density deviations
− Pressure accelerations resolve compression 

induced by non-pressure accelerations 
− Density fluctuations / errors result in pressure
− Pressure gradients result in pressure accelerations 

from high to low pressure to resolve density errors
− Simple computation
− Small time steps
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State Equations (EOS, SESPH)

− Pressure is computed from density error
− E.g.                          or

− Referred to as compressible SPH
−

− Referred to as weakly compressible SPH

− Stiffness constant     does not govern the pressure,
but the compressibility of the fluid

− Larger stiffness      less compressibility      smaller
time step  

Pressure values in SPH 
implementations should 
always be non-negative.
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Simple SPH Fluid Solver

−

Compute pressure with a state equation
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Pressure - Illustration

− A fluid under gravity at rest
− Gravity cancels pressure acceleration

− Differences between      and      
are independent from 

− Smaller     results in larger density error     
to get the correct pressure 

Fluid

Solid
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SESPH with Splitting

− Split pressure and non-pressure accelerations
− Non-pressure acceleration 
− Predicted velocity
− Predicted position
− Predicted density
− Pressure    from predicted density
− Pressure acceleration
− Final velocity and position
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SESPH with Splitting

− Motivation
− Consider competing accelerations
− Take effects of non-pressure accelerations 

into account when computing the pressure 
acceleration
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Outline

− Concept of an SPH fluid simulator
− Momentum equation
− SPH basics
− Neighborhood search
− Boundary handling
− Incompressibility
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Simple SPH Fluid Solver

−

Compute pressure with a state equation
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SESPH with Splitting

−

Pressure at predicted positions

Density at predicted positions
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Differential Density Update

− Density at advected positions is approximated 
without advecting the samples

− Continuity equation and time discretization

− Space discretization with SPH

− Predicted density due to the divergence of 
Approximate density at predicted 
positions:
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Iterative SESPH with Splitting

− Pressure accelerations are iteratively refined
− Non-pressure acceleration
− Predicted velocity
− Iterate until convergence 

− Density from predicted position
− Pressure from predicted density
− Pressure acceleration
− Refine predicted velocity

− Final velocity and position
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Iterative SESPH with Splitting

− Motivation
− Iterative update is parameterized 

by a desired density error
− Provides a fluid state with a 

guaranteed density error
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Iterative SESPH with Splitting

−

user-defined density error
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Iterative SESPH - Variants

− Different quantities are accumulated
− Velocity changes (local Poisson SPH)
− Pressure (predictive-corrective SPH PCISPH)

− Advantageous, if pressure is required for other computations
− Distances (position-based fluids PBF)

−

− Different EOS and stiffness constants are used
− with                in local Poisson SPH
− with                                                             in PCISPH 
− with         in PBF
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Predictive-Corrective Incompressible SPH - PCISPH

− Goal: Computation of pressure accelerations     
that result in rest density     at all particles

− Formulation: Density at the next 
step should equal the rest density 

Discretized 
continuity
equation

Current
density

Desired
density

Density change due
to predicted velocity

Density change due to unknown
pressure acceleration
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PCISPH - Assumptions

− Simplifications to get one equation with one unknown:
− Equal pressure at all neighboring samples

− For sample j, only consider the contribution from i

Unknown pressures pi and pj

Unknown pressure pi
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PCISPH - Solution

− Solve for unknown pressure:

Intuition: This pressure causes pressure accelerations that cause velocity changes 
that correspond to a divergence that results in rest density at the sample. 
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PCISPH - Discussion

− Pressure is computed with a state equation
− is not user-defined
− Instead, an optimized value    is derived and used
− Pressure is iteratively refined
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PCISPH - Performance

− Typically three to five iterations for 
density errors between 0.1% and 1%

− Speed-up factor over non-iterative SESPH up to 50
− More computations per time step compared to SESPH
− Significantly larger time step than in SESPH
− Speed-up dependent on scenario

− Non-linear relation between time step and iterations
− Largest possible time step does not necessarily 

lead to an optimal overall performance
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Comparison

− PCISPH [Solenthaler 2009]

− Iterative pressure 
computation

− Large time step
− WCSPH [Becker and Teschner 2007]

− Efficient to compute 
− Small time step

− Computation time for the 
PCISPH scenario is 20 times shorter than WCSPH 
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Projection Schemes - Introduction

− Pressure causes pressure accelerations that 
cause velocity changes that cause displacements 
such that particles have rest density

− Projection schemes solve a linear system 
to compute the respective pressure field
− PCISPH uses simplifications to compute 

pressure per particle from one equation. 
Solving a linear system is avoided.
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Projection Schemes - Derivation
Velocity change per time step due to pressure 
acceleration and non-pressure acceleration

Predicted velocity after non-pressure acceleration

Velocity after all accelerations

Velocity change due to pressure acceleration

Divergence of the velocity change 
due to pressure acceleration
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Projection Schemes - Derivation

Constraint: Divergence of the final velocity field should 
be zero, i.e. no density change per time

Divergence of the velocity change due to
pressure acceleration should cancel the
divergence of the predicted velocity

Pressure Poisson equation 
with unknown pressure
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Density Invariance vs. Velocity Divergence

− Pressure Poisson equation PPE that minimizes 
the velocity divergence:

− PPE that minimizes the density error:
− Derivation: Continuity 

equation at time

Constraint:

Predicted density after 
sample advection with 
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PPE Forms - Interpretation

− Velocity divergence:
− Pressure    causes a pressure acceleration            that causes 

a velocity change                whose divergence      
cancels the divergence           of the predicted velocity, i.e.

− Density invariance:
− The divergence                       multiplied with density    is a 

density change per time that cancels the predicted density 
error per time          , i.e.    
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PPE Solver

− Linear system with unknown pressure values
− One equation per particle

− Iterative solvers
− Conjugate Gradient
− Relaxed Jacobi

− Fast computation per iteration
− Few non-zero entries in each equation
− Matrix-free implementations
− Very few information per particle

<A> is a discretized 
form of A
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PPE Solver

− Very large time steps
− Convergence dependent on the formulation

− SPH discretization of
− Source term (velocity divergence or density invariance)

− Accuracy issues
− Volume drift for velocity divergence
− Oscillations for density invariance  
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PPE Discretization

− Implicit incompressible SPH (IISPH) [Ihmsen et al. 2014]

− PPE with density invariance as source term: 
− Computation of    :

with
− Computation of            :

with 
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PPE System

− PPE

− Discretized PPE
− System: 
− Per particle:  

− Interpretation:   

negative of the 
predicted density error

density change due to 
pressure accelerations 

Pressure accelerations causes a velocity 
change vp whose divergence causes a 
density change.



University of Freiburg – Computer Science Department – 171

PPE Solver

− Relaxed Jacobi:
− For IISPH, typically
− Diagonal element 

− Accumulate all coefficients of      in 
−
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PPE Solver - Implementation

− Initialization:

− Solver update in iteration l: 
− First loop:
− Second loop:

If aii not equal to zero

Continue until error is small
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IISPH with Boundary Handling

− PPE:
− Discretized PPE:

Index f indicates a fluid sample.
Index b indicates a boundary sample.
ff indicates a fluid neighbor of f.
fb indicates a boundary neighbor of f.
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IISPH with Boundary Handling

− Diagonal element
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IISPH with Boundary - Implementation

− Initialization:

− Solver update in iteration l: 
− First loop:
− Second loop:

If aff not equal to zero

Continue until error is small
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PPE Solver - Comparison with PCISPH

− Breaking dam
− 100k particles with diameter 0.05m
− 0.01% average density error

− Largest possible time step does not necessarily
result in the best performance 
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Parallel Scaling

Compact hashing


