Simulation in Computer Graphics Particle Fluids 1

Matthias Teschner

UNI FREIBURG

Particle Fluids in Animation

Cooperation with Pixar Animation Studios

10 million fluid +4 million rigid particles,50 s simulated,50 h computation timeon a 16-core PC,www.youtube.com/cgfreiburg

Particle Fluids in Commercials

University of Freiburg – Computer Science Department – 3

UNI FREIBURG

Particle Fluids in Engineering

University of Freiburg – Computer Science Department – 4

UNI FREIBURG

Validation of Particle Concepts

PreonLab FIFTY2 Technology

> UNI FREIBURG

CFD in Engineering

Johan Idoffsson Chalmers University

Volvo Cars

PreonLab FIFTY2 Technology

> UNI FREIBURG

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

UNI FREIBURG

Fluid Representation

– Fluid body is subdivided into small moving parcels, i.e. particles, with fluid properties

University of Freiburg – Computer Science Department – 9

FREIBURG

Particles / Fluid Parcels

- Represent small fluid portions
- Are represented by a sample position $oldsymbol{x}_i$
- Move with their velocity $\,oldsymbol{v}_i$
- Have a fixed mass m_i
- Volume and density are related by $V_i = \frac{m_i}{\rho_i}$
 - Preservation of density / volume over time is one of the challenges of a fluid simulator
- Shape is not considered

Typical Setup

- Define overall fluid volume V and fluid density ρ_0
- Define number n of particles $V_i = \frac{V}{n}$
- Compute particle mass as $m_i = \rho_0 \cdot V_i$
- Particles of uniform size
- Sample x_i represents a particle in the simulation

Particle Shape

- Typically initialized as a cube
- Implicitly handled as Voronoi cell by the simulation
- Typically visualized as a sphere

PreonLab, FIFTY2 Technology GmbH

Adrian Secord: Weighted Voronoi Stippling, NPAR 2002.

Fluid Simulation

- Computation of positions and velocities of fluid parcels over time
 - Velocity change from current time t to subsequent time $t + \Delta t$ $v(t + \Delta t) = v(t) + \Delta t \cdot a(t)$
 - Position change $\boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t) + \Delta t \cdot \boldsymbol{v}(t + \Delta t)$

University of Freiburg – Computer Science Department – 14

UNI FREIBURG

- Gravity \boldsymbol{g}
- Viscosity $u
 abla^2 oldsymbol{v}$
 - Resistance to deformation
 - Accelerate parcel towards the average velocity of adjacent fluid parcels
- Pressure acceleration $-\frac{1}{\rho}\nabla p$
 - Prevent fluid parcels from density / volume changes

Simulation Step - Example

- Gravity and viscosity would change the parcel volume

$$\mathbf{x}(t) = \mathbf{0}$$

$$\mathbf{v}(t) = \mathbf{0}$$

Pressure acceleration avoids the volume/density change

$$-\frac{1}{\rho}\nabla p = -g$$

Pressure acceleration

Simulation Step - Example

Current state

Overall acceleration

$$oldsymbol{x}(t) = oldsymbol{g} +
u
abla^2 oldsymbol{v}(t) - rac{1}{
ho}
abla p$$

= $oldsymbol{g} + oldsymbol{0} - oldsymbol{g} = oldsymbol{0}$

- Subsequent state

$$\boldsymbol{v}(t + \Delta t) = \boldsymbol{v}(t) + \Delta t \cdot \boldsymbol{a}(t) = \boldsymbol{0}$$
$$\boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t) + \Delta t \cdot \boldsymbol{v}(t + \Delta t) = \boldsymbol{0}$$

Neighboring Parcels

- Computations require neighboring parcels j
- Density or volume
 - $\rho_i = \sum_j m_j W_{ij}$
- Pressure acceleration

 $-\frac{1}{\rho_i}\nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla W_{ij}$

- Smoothed Particle Hydrodynamics SPH
 - Gingold and Monaghan, Lucy

Simulation Step - Implementation

- Determine adjacent particles / neighbors $x_j(t)$ of particle $x_i(t)$ ($x_i(t)$ is neighbor of $x_i(t)$!)
- Compute accelerations $\boldsymbol{a}_i(t) = \sum_j \dots$ as sums of neighbors
- Advect the particles, e.g. Euler-Cromer
- Determine neighbors of particle $\boldsymbol{x}_i(t + \Delta t)$

Governing Equations

- Particles /sample positions x_i and the respective attributes are advected with the local fluid velocity v_i $\frac{\mathrm{d}x_i}{\mathrm{d}t} = v_i$
- Time rate of change of the velocity v_i of an advected sample is governed by the Lagrange form of the Navier-Stokes equation $\frac{\mathrm{d}v_i}{\mathrm{d}t} = -\frac{1}{\rho_i}\nabla p_i + \nu \nabla^2 v_i + \frac{F_i^{\mathrm{other}}}{m_i}$

REIBURG

- $-\frac{1}{\rho_i} \nabla p_i$: acceleration due to pressure differences
 - Preserves the fluid volume / density
 - Acts in normal direction at the surface of the fluid element
 - Small and preferably constant density deviations are important for high-quality simulation

- $\nu \nabla^2 v_i$: acceleration due to friction forces between particles with different velocities
 - Friction forces act in tangential and normal direction at fluid elements
 - Kinematic viscosity $\nu \approx 10^{-6} m^2 \cdot s^{-1}$: larger friction is less realistic, but can improve the stability
- Dynamic viscosity $\eta = \mu = \nu \cdot \rho_0$ - $\frac{F_i^{\text{other}}}{m_i}$: e.g., gravity

UNI FREIBURG

$$\begin{split} -\frac{1}{\rho}\nabla p &= -\frac{1}{\rho} \begin{pmatrix} \frac{\partial p}{\partial x_x} \\ \frac{\partial p}{\partial x_y} \\ \frac{\partial p}{\partial x_z} \end{pmatrix} = -\frac{1}{\rho}\nabla \cdot \begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix} \\ \nu\nabla^2 \boldsymbol{v} &= \nabla \cdot (\nu\nabla \boldsymbol{v}) = \nabla \cdot \nu \begin{pmatrix} \frac{\partial v_x}{\partial x_x} & \frac{\partial v_x}{\partial x_y} & \frac{\partial v_x}{\partial x_z} \\ \frac{\partial v_y}{\partial x_x} & \frac{\partial v_y}{\partial x_y} & \frac{\partial v_y}{\partial x_z} \\ \frac{\partial v_z}{\partial x_x} & \frac{\partial v_z}{\partial x_y} & \frac{\partial v_z}{\partial x_z} \end{pmatrix} \\ &= \nu \begin{pmatrix} \frac{\partial^2 v_x}{\partial x_x^2} + \frac{\partial^2 v_x}{\partial x_y^2} + \frac{\partial^2 v_x}{\partial x_z^2} \\ \frac{\partial^2 v_y}{\partial x_x^2} + \frac{\partial^2 v_y}{\partial x_y^2} + \frac{\partial^2 v_z}{\partial x_z^2} \\ \frac{\partial^2 v_z}{\partial x_x^2} + \frac{\partial^2 v_z}{\partial x_y^2} + \frac{\partial^2 v_z}{\partial x_z^2} \end{pmatrix} \end{split}$$

University of Freiburg – Computer Science Department – 23

UNI FREIBURG

Lagrangian Fluid Simulation

- Fluid simulators compute the velocity field over time
- Lagrangian approaches compute the velocities for samples $oldsymbol{x}_i$ that are advected with their velocity $oldsymbol{v}_i$

 $\boldsymbol{v}_i(x_i, y_i, z_i, t) = (u_i, v_i, w_i)$ $\boldsymbol{x}_i(t) = (x_i, y_i, z_i)$

 $\boldsymbol{v}_{i}(x_{i} + \Delta t \cdot u_{i}, y_{i} + \Delta t \cdot v_{i}, z_{i} + \Delta t \cdot w_{i}, t + \Delta t)$ $\boldsymbol{x}_{i}(t + \Delta t) = (x_{i} + \Delta t \cdot u_{i}, y_{i} + \Delta t \cdot v_{i}, z_{i} + \Delta t \cdot w_{i})$

Moving Parcels vs. Static Cells

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \boldsymbol{g} + \nu \nabla^2 \boldsymbol{v} - \frac{1}{\rho} \nabla p$$
$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{v}$$
Lagrangian: Acceleration of a moving parcel.

$$\frac{\partial \boldsymbol{v}}{\partial t} = \boldsymbol{g} + \nu \nabla^2 \boldsymbol{v} - \frac{1}{\rho} \nabla p$$
$$-(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}$$

Eulerian: Acceleration at a static cell.

$$\frac{\mathbf{D}\boldsymbol{v}}{\mathbf{D}t} = \boldsymbol{g} + \nu \nabla^2 \boldsymbol{v} - \frac{1}{\rho} \nabla p$$
$$\frac{\mathbf{D}\boldsymbol{v}}{\mathbf{D}t} = \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} \quad \text{or}$$
$$\frac{\mathbf{D}\boldsymbol{v}}{\mathbf{D}t} = \frac{\mathbf{d}\boldsymbol{v}}{\mathbf{d}t} \quad \frac{\mathbf{d}\boldsymbol{x}}{\mathbf{d}t} = \boldsymbol{v}$$

Smoothed Particle Hydrodynamics

- Proposed by Gingold / Monaghan and Lucy (1977)
- SPH interpolates quantities at arbitrary positions and approximates spatial derivatives with a finite number of samples, i.e. adjacent particles

SPH for Fluids

– SPH in a Lagrangian fluid simulation

- Fluid is represented with particles
- Particle positions and velocities are governed by $\frac{d\boldsymbol{x}_i}{dt} = \boldsymbol{v}_i$ and $\frac{d\boldsymbol{v}_i}{dt} = -\frac{1}{\rho_i}\nabla p_i + \nu\nabla^2 \boldsymbol{v}_i + \frac{\boldsymbol{F}_i^{\text{other}}}{m_i}$ - ρ_i , $-\frac{1}{\rho_i}\nabla p_i$, $\nu\nabla^2 \boldsymbol{v}_i$ and $\frac{\boldsymbol{F}_i^{\text{other}}}{m_i}$ are computed with SPH

SPH Interpolation

- Quantity A_i at an arbitrary position x_i is approximately computed with a set of known quantities A_j at sample positions x_j : $A_i = \sum_j V_j A_j W_{ij} = \sum_j \frac{m_j}{\rho_j} A_j W_{ij}$ - x_i is not necessarily a sample position
 - If x_i is a sample position, it contributes to the sum
- W_{ij} is a kernel function that weights the contributions of sample positions x_j according to their distance to x_i

$$- W_{ij} = W\left(\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|}{h}\right) = W(q)$$

- -h is typically the particle size
- W(q)>0 for, e.g. $0\leq q<2$

Kernel Function

- Close to a Gaussian, but with compact support
 - Support typically between 2h and 5h
- E.g. cubic spline (1D: $\alpha = \frac{1}{6h}$ 2D: $\alpha = \frac{5}{14\pi h^2}$ 3D: $\alpha = \frac{1}{4\pi h^3}$) $W(q) = \alpha \begin{cases} (2-q)^3 - 4(1-q)^3 & 0 \le q < 1\\ (2-q)^3 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases}$ $q = \frac{\|\mathbf{x}_j - \mathbf{x}_i\|}{h}$
- Number of considered neighbors depends on
 - Dimensionality, kernel support, particle spacing
 - E.g., 3D, cubic spline, support 2h, particle spacing h results in 30-40 neighboring particles
 - Number of neighbors influences performance / accuracy

Kernel and Kernel Derivative in 1D

SPH for Fluids

– SPH in a Lagrangian fluid simulation

- Fluid is represented with particles
- Particle positions and velocities are governed by $\frac{d\boldsymbol{x}_i}{dt} = \boldsymbol{v}_i$ and $\frac{d\boldsymbol{v}_i}{dt} = -\frac{1}{\rho_i}\nabla p_i + \nu\nabla^2 \boldsymbol{v}_i + \frac{\boldsymbol{F}_i^{\text{other}}}{m_i}$ - ρ_i , $-\frac{1}{\rho_i}\nabla p_i$, $\nu\nabla^2 \boldsymbol{v}_i$ and $\frac{\boldsymbol{F}_i^{\text{other}}}{m_i}$ are computed with SPH

Spatial Derivatives with SPH

- Original approximations

$$\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij}$$
$$\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij}$$

- Currently preferred approximations $\nabla A_{i} = \rho_{i} \sum_{j} m_{j} \left(\frac{A_{i}}{\rho_{i}^{2}} + \frac{A_{j}}{\rho_{j}^{2}} \right) \nabla W_{ij}$ preserves when used

$$\nabla^2 A_i = 2 \sum_j \frac{m_j}{\rho_j} \frac{A_{ij} \cdot \boldsymbol{x}_{ij}}{\boldsymbol{x}_{ij} \cdot \boldsymbol{x}_{ij} + 0.01h^2} \nabla W_{ij}$$

preserves linear and angular momentum, when used for pressure forces

more robust as it avoids the second derivative of W

$$abla \cdot oldsymbol{A}_i = -rac{1}{
ho_i} \sum_j m_j oldsymbol{A}_{ij}
abla W_{ij}$$

gives zero for constant A

 $A_{ij} = A_i - A_j$ $A_{ij} = A_i - A_j$ $x_{ij} = x_i - x_j$

Density

- Explicit form
 - $\rho_i = \sum_j \frac{m_j}{\rho_j} \rho_j W_{ij} = \sum_j m_j W_{ij}$
 - Comparatively exact
 - Erroneous for incomplete neighborhood
- Differential update
 - Using the continuity equation
 - Time rate of change of the density is related to the divergence of the velocity field $\frac{d\rho_i}{dt} = -\rho_i \nabla \cdot v_i$ $\frac{d\rho_i}{dt} = \sum_j m_j v_{ij} \nabla W_{ij}$
 - Drift

Pressure

- Quantifies fluid compression

- E.g., state equation $p_i = \max\left(k(\frac{\rho_i}{\rho_0} 1), 0\right)$
- Rest density of the fluid ho_0
- User-defined stiffness k
- Pressure acceleration

$$- \boldsymbol{a}_{i}^{\mathrm{p}} = -\frac{1}{\rho_{i}} \nabla p_{i} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) \nabla W_{ij}$$

– Accelerates particles from high to low pressure, i.e. from high to low compression to minimize density deviation $\frac{\rho_i}{\rho_0} - 1$

Pressure values in SPH implementations should always be non-negative.

Simple SPH Fluid Solver

- Find neighbors of all particles
- Compute density
- Compute pressure
- Compute non-pressure accelerations, e.g. viscosity, gravity
- Compute pressure acceleration
- Update velocity and position

Contact handling, i.e. boundary handling is often realized as pressure acceleration.

Simple SPH Fluid Solver

for all $particle \ i \ do$	
find neighbors j	
for all $particle \ i \ do$	
$ \rho_i = \sum_j m_j W_{ij} $	Compute de
$p_i = k(\frac{p_i}{\rho_0} - 1)$	Compute pre
for all $particle \ i \ do$	
$oldsymbol{a}_i^{ ext{nonp}} = u abla^2 oldsymbol{v}_i + oldsymbol{g}$	Compute no
$oldsymbol{a}_i^{\mathrm{p}} = -rac{1}{ ho_i} abla p_i$	Compute pre
$\boldsymbol{a}_i(t) = \boldsymbol{a}_i^{\mathrm{nonp}} + \boldsymbol{a}_i^{\mathrm{p}}$	
for all $particle i do$	
$\boldsymbol{v}_i(t + \Delta t) = \boldsymbol{v}_i(t) + \Delta t \boldsymbol{a}_i(t)$	
$\boldsymbol{x}_i(t + \Delta t) = \boldsymbol{x}_i(t) + \Delta t \boldsymbol{v}_i(t + \Delta t)$	

ompute density ompute pressure

ompute non-pressure accelerations ompute pressure acceleration

University of Freiburg – Computer Science Department – 36

UNI FREIBURG
SPH Discretizations

- Density computation $\rho_i = \sum_j m_j W_{ij}$
- Pressure acceleration $-\frac{1}{\rho_i}\nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla W_{ij}$
- Viscosity acceleration $\nu \nabla^2 \boldsymbol{v}_i = 2\nu \sum_j \frac{m_j}{\rho_j} \frac{\boldsymbol{v}_{ij} \cdot \boldsymbol{x}_{ij}}{\boldsymbol{x}_{ij} \cdot \boldsymbol{x}_{ij} + 0.01h^2} \nabla W_{ij}$

Boundary Handling

- Boundaries can be represented with static fluid samples
- Computations incorporate boundary samples, e.g. $\rho_{i} = \sum_{f} m_{f} W_{if} + \sum_{b} m_{b} W_{ib}$ Fluid samples Boundary samples $-\frac{1}{\rho_{i}} \nabla p_{i} = -\sum_{f} m_{f} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{f}}{\rho_{f}^{2}}\right) \nabla W_{if} - \sum_{b} m_{b} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{b}}{\rho_{b}^{2}}\right) \nabla W_{ib}$ Fluid samples Boundary samples
- Fluid sample at boundary
 - Density and pressure increases
 - Pressure acceleration resolves contact

Boundary Handling

– Boundary handling: How to compute ρ_i, p_i, p_b, F_i^p ?

University of Freiburg – Computer Science Department – 39

UNI FREIBURG

Setting

- Kernel has to be defined, e.g. cubic with support of 2h
- Particle mass m_i has to be specified
 - E.g., $m_i = h^3 \rho_0$ for a particle spacing of h
 - Spacing governs particle mass
 - Ratio of support vs. spacing governs the number of neighbors
- Numerical integration scheme
 - Semi-implicit Euler (symplectic Euler or Euler-Cromer) is commonly used

Setting

- Time step
 - Size is governed by the Courant-Friedrich-Levy (CFL) condition
 - E.g., $\Delta t \leq \lambda \frac{h}{\|\mathbf{v}^{\max}\|}$ with $\lambda = 0.1$ and particle spacing h
 - Motivation: For $\lambda \leq 1$, a particle moves less than its size / diameter per time step

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

Force Types

- Momentum equation $\frac{\mathrm{d}\boldsymbol{v}_i}{\mathrm{d}t} = -\frac{1}{\rho_i}\nabla p_i + \nu \nabla^2 \boldsymbol{v}_i + \frac{\boldsymbol{F}_i^{other}}{m_i}$
- Body forces
- Surface forces
 - Normal stress related to volume deviation
 - Normal and shear stress related to friction due to velocity differences

University of Freiburg – Computer Science Department – 43

FREIBURG

Pressure Force in x-direction

- Pressure force
 acts orthogonal
 to the surface of
 the fluid element
- Resulting pressure force

$$\left(p - \left(p + \frac{\partial p}{\partial x} \, \mathrm{d}x\right)\right) \,\mathrm{d}y \,\mathrm{d}z = -\frac{\partial p}{\partial x} \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z = -\frac{\partial p}{\partial x} \,V$$

Overall Pressure Force

– Pressure force at particle *i*

$$\boldsymbol{F}_{i}^{\mathrm{p}} = - \begin{pmatrix} \frac{\partial p_{i}}{\partial x_{i,x}} \\ \frac{\partial p_{i}}{\partial x_{i,y}} \\ \frac{\partial p_{i}}{\partial x_{i,z}} \end{pmatrix} \quad V_{i} = -\nabla p_{i} \quad V_{i} = -\frac{m_{i}}{\rho_{i}} \nabla p_{i}$$

– Pressure acceleration

$$\boldsymbol{a}^{\mathrm{p}}_{i} = rac{\boldsymbol{F}^{\mathrm{p}}_{i}}{m_{i}} = -rac{1}{
ho_{i}} \nabla p_{i}$$

FREIBURG

Cauchy Momentum Equation

- Lagrange form $\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + \frac{\boldsymbol{F}^{other}}{m}$
- σ is the stress tensor (a 3x3 matrix in 3D) describing the pressure distribution at the surface of a fluid element $\sigma = -pI_3 + \tau$
- $\nabla \cdot \boldsymbol{\sigma} \text{ is the resulting force per volume}$ $- \boldsymbol{\tau} \text{ is the viscous stress tensor} \qquad \boldsymbol{\tau} = \nu \begin{pmatrix} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} & \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \end{pmatrix}$
- τ is the viscous stress tensor - $\nabla \cdot \tau = \nu \nabla^2 v$ is the resulting viscosity force per volume - $\frac{\mathrm{d} v_i}{\mathrm{d} t} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 v_i + \frac{F_i^{other}}{m_i}$

Simulation in Computer Graphics Particle Fluids 2

Matthias Teschner

UNI FREIBURG

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

Simple SPH Fluid Solver

for all $particle \ i \ do$	
find neighbors j	
for all $particle \ i \ do$	
$ \rho_i = \sum_j m_j W_{ij} $	Compute de
$p_i = k(\frac{p_i}{\rho_0} - 1)$	Compute pre
for all $particle \ i \ do$	
$oldsymbol{a}_i^{ ext{nonp}} = u abla^2 oldsymbol{v}_i + oldsymbol{g}$	Compute no
$oldsymbol{a}_i^{\mathrm{p}} = -rac{1}{ ho_i} abla p_i$	Compute pre
$\boldsymbol{a}_i(t) = \boldsymbol{a}_i^{\mathrm{nonp}} + \boldsymbol{a}_i^{\mathrm{p}}$	
for all $particle i do$	
$\boldsymbol{v}_i(t + \Delta t) = \boldsymbol{v}_i(t) + \Delta t \boldsymbol{a}_i(t)$	
$\boldsymbol{x}_i(t + \Delta t) = \boldsymbol{x}_i(t) + \Delta t \boldsymbol{v}_i(t + \Delta t)$	

ompute density ompute pressure

ompute non-pressure accelerations ompute pressure acceleration

University of Freiburg – Computer Science Department – 49

UNI FREIBURG

SPH Discretizations

- Density computation $\rho_i = \sum_j m_j W_{ij}$
- Pressure acceleration $-\frac{1}{\rho_i}\nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla W_{ij}$
- Viscosity acceleration $\nu \nabla^2 \boldsymbol{v}_i = 2\nu \sum_j \frac{m_j}{\rho_j} \frac{\boldsymbol{v}_{ij} \cdot \boldsymbol{x}_{ij}}{\boldsymbol{x}_{ij} \cdot \boldsymbol{x}_{ij} + 0.01h^2} \nabla W_{ij}$

SPH Concept

- Reconstruction of a function and its derivatives, e.g. $\rho, \nabla p, \nabla^2 \pmb{v}$, from discrete samples
- Convolution of discrete samples with a filter / kernel

SPH Concept

– Quantity A at position \mathbf{x} can be written as

$$A(\boldsymbol{x}) = (A * \delta)(\boldsymbol{x}) = \int_{\Omega} A(\boldsymbol{x}') \delta(\boldsymbol{x} - \boldsymbol{x}') d\boldsymbol{x}'$$

- Dirac delta $\delta(x) = \delta(x)\delta(y)\delta(z)$ and $\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$ - $\int_{-\infty}^{+\infty} \delta(x) dx = 1$
- Dirac delta is approximated with a kernel function with limited local support, e.g. 2h Particle size h $A(\boldsymbol{x}) = (A * W)(\boldsymbol{x}) = \int_{\Omega} A(\boldsymbol{x}') W(\boldsymbol{x} - \boldsymbol{x}', 2h) \mathrm{d}\boldsymbol{x}'$ Reversed kernel
- Convolution: $(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t \tau)d\tau$

First Derivative

$$-\nabla A(\boldsymbol{x}) = \nabla (A * W)(\boldsymbol{x}) = (\nabla A * W)(\boldsymbol{x}) = (A * \nabla W)(\boldsymbol{x})$$

Follows from

 $-\mathcal{F}(\nabla(A * W)(\boldsymbol{x})) = i2\pi s(a(s) \cdot w(s))$ $-\mathcal{F}((\nabla A * W)(\boldsymbol{x})) = i2\pi s \cdot a(s) \cdot w(s)$ $-\mathcal{F}((A * \nabla W)(\boldsymbol{x})) = a(s) \cdot i2\pi s \cdot w(s)$ $-\nabla A(\boldsymbol{x}) = \nabla (A * W)(\boldsymbol{x}) = (A * \nabla W)(\boldsymbol{x})$ $= \int_{\Omega} A(\boldsymbol{x}') \nabla W(\boldsymbol{x} - \boldsymbol{x}', 2h) \mathrm{d}\boldsymbol{x}'$ Reversed kernel derivative

Fourier transform. See, e.g. Bracewell 1965.

Second Derivative

$$- \nabla^2 A(\boldsymbol{x}) = \nabla^2 (A * W)(\boldsymbol{x}) = (\nabla^2 A * W)(\boldsymbol{x}) = (\nabla A * \nabla W)(\boldsymbol{x}) = (A * \nabla^2 W)(\boldsymbol{x})$$

- Follows from

$$- \mathcal{F}(\nabla^{2}(A * W)(\boldsymbol{x})) = (i2\pi s)^{2}(a(s) \cdot w(s))$$

$$- \mathcal{F}((\nabla^{2}A * W)(\boldsymbol{x})) = (i2\pi s)^{2} \cdot a(s) \cdot w(s)$$

$$- \mathcal{F}((A * \nabla^{2}W)(\boldsymbol{x})) = a(s) \cdot (i2\pi s)^{2} \cdot w(s)$$

$$- \nabla^{2}A(\boldsymbol{x}) = \nabla^{2}(A * W)(\boldsymbol{x}) = (A * \nabla^{2}W)(\boldsymbol{x})$$

$$= \int_{\Omega} A(\boldsymbol{x}')\nabla^{2}W(\boldsymbol{x} - \boldsymbol{x}', 2h)d\boldsymbol{x}'$$

Reversed
second kernel
derivative

University of Freiburg – Computer Science Department – 54

UNI FREIBURG

Kernel Function - Properties

- Integral should be normalized (unity condition) $\int_{\Omega} W(x'-x,2h) dx' = 1$
- Support should be compact $W(\mathbf{x}' \mathbf{x}, 2h) = 0$ for $\|\mathbf{x}' \mathbf{x}\| > 2h$
- Should be symmetric
- Should be non-negative
- Should converge to the Dirac delta for $h \rightarrow 0$

 $W(\boldsymbol{x}'-\boldsymbol{x},2h)=W(\boldsymbol{x}-\boldsymbol{x}',2h)$

$$W(\boldsymbol{x}'-\boldsymbol{x},2h)\geq 0$$

This is the actual parameterization of W. x' and x are reversed in SPH convolutions.

– Should be differentiable: ∇W , $\nabla^2 W$ should exist

Particle Approximation

-
$$A(\boldsymbol{x}) = \int_{\Omega} A(\boldsymbol{x}') W(\boldsymbol{x} - \boldsymbol{x}', 2h) d\boldsymbol{x}' = \int_{\Omega} \frac{A(\boldsymbol{x}')}{\rho(\boldsymbol{x}')} W(\boldsymbol{x} - \boldsymbol{x}', 2h) \rho(\boldsymbol{x}') d\boldsymbol{x}'$$

- Consider a limited number of samples / particles x_j representing a mass $m(x_j) = \rho(x_j)V(x_j)$ $A(x_i) = \sum_j A(x_j)W(x_i - x_j, 2h)V(x_j)$ $A(x_i) = \sum_j \frac{m(x_j)}{\rho(x_j)}A(x_j)W(x_i - x_j, 2h)$
- Typical notation

 $A_i = \sum_j \frac{m_j}{\rho_j} A_j W_{ij}$

UNI FREIBURG

Particle Approximation of Derivatives

- First derivative
 - $\nabla A(\boldsymbol{x}_i) = \sum_j \frac{m(\boldsymbol{x}_j)}{\rho(\boldsymbol{x}_j)} A(\boldsymbol{x}_j) \nabla W(\boldsymbol{x}_i \boldsymbol{x}_j, 2h)$ $\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij}$
- Second derivative

$$\nabla^2 A(\boldsymbol{x}_i) = \sum_j \frac{m(\boldsymbol{x}_j)}{\rho(\boldsymbol{x}_j)} A(\boldsymbol{x}_j) \nabla^2 W(\boldsymbol{x}_i - \boldsymbol{x}_j, 2h)$$
$$\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij}$$

UNI FREIBURG

Kernel Function - Example

- Cubic spline $W(q) = \alpha \begin{cases} (2-q)^3 - 4(1-q)^3 & 0 \le q < 1\\ (2-q)^3 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases} \qquad q = \frac{\|\boldsymbol{x}_j - \boldsymbol{x}_i\|}{h}$ with $\alpha = \frac{1}{6h}$ (1D), $\alpha = \frac{5}{14\pi h^2}$ (2D), $\alpha = \frac{1}{4\pi h^3}$ (3D)
- Close to a Gaussian
 - Compact support between 2h and 5h
- Number of considered samples depends on
 - Dimensionality, kernel support, particle spacing
 - Number of neighbors should not be too small

Kernel Function - Illustration

FREIBURG

Kernel Function - Implementation

 Reversed kernel function as used in SPH sums for the convolution

$$W(\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) = \alpha \begin{cases} (2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{3} - 4(1 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{3} & 0 \le \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 1 \\ (2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{3} & 1 \le \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 2 \\ 0 & \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} \ge 2 \end{cases}$$

- Implementation
 - d := distance(xi,xj)/h;
 - t1 := max(1-d,0);
 - t2 := max(2-d, 0);
 - w := alpha * (t2*t2*t2 4*t1*t1*t1);

UNI FREIBURG

First Kernel Derivative

$$-\nabla W(\boldsymbol{x}_{j} - \boldsymbol{x}_{i}) = \left(\frac{\partial W}{\partial x_{j,x}}, \frac{\partial W}{\partial x_{j,y}}, \frac{\partial W}{\partial x_{j,z}}\right)^{\mathsf{T}} = \frac{\partial W(q)}{\partial q} \nabla q$$

– Cubic spline

$$q = \frac{\|\boldsymbol{x}_j - \boldsymbol{x}_i\|}{h}$$
 $\nabla q = \frac{\boldsymbol{x}_j - \boldsymbol{x}_i}{\|\boldsymbol{x}_j - \boldsymbol{x}_i\|h}$ Derivative of q with respect to \mathbf{x}_j

$$\begin{split} \frac{\partial W(q)}{\partial q} &= \alpha \begin{cases} -3(2-q)^2 + 12(1-q)^2 & 0 \le q < 1\\ -3(2-q)^2 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases} \\ \nabla W(\boldsymbol{x}_j - \boldsymbol{x}_i) &= \alpha \frac{\boldsymbol{x}_j - \boldsymbol{x}_i}{\|\boldsymbol{x}_j - \boldsymbol{x}_i\|h} \begin{cases} -3(2-q)^2 + 12(1-q)^2 & 0 \le q < 1\\ -3(2-q)^2 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases} \end{split}$$

University of Freiburg – Computer Science Department – 61

UNI FREIBURG

Kernel Derivative - Illustration

University of Freiburg – Computer Science Department – 62

FREIBURG

Convolution with First Kernel Derivative

SPH computes a convolution of A and ∇W to approximate ∇A . Therefore, the reversed kernel derivative $\nabla W(\boldsymbol{x}_i - \boldsymbol{x}_j)$ is used: $\nabla A(\boldsymbol{x}_i) =$ $\sum_{j} A(\boldsymbol{x}_{j}) \nabla W(\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) \frac{m(\boldsymbol{x}_{j})}{\rho(\boldsymbol{x}_{i})}$ SPH notation: $\nabla A_i = \sum_j \frac{m_j}{\rho_i} A_j \nabla W_{ij}$ Convolution: $(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$

$$\nabla W(\boldsymbol{x}_i - \boldsymbol{x}_j) = \alpha \frac{\boldsymbol{x}_i - \boldsymbol{x}_j}{\|\boldsymbol{x}_{ij}\|_h} \dots$$
$$= -\nabla W(\boldsymbol{x}_j - \boldsymbol{x}_i) = \nabla W_{ij}$$

 ∇W is anti-symmetric.

Kernel Derivative - Implementation

 Reversed kernel derivative as used in SPH sums for the convolution

$$\nabla W(\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) = \alpha \frac{\boldsymbol{x}_{i} - \boldsymbol{x}_{j}}{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|_{h}} \begin{cases} -3(2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} + 12(1 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} & 0 \le \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 1 \\ -3(2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} & 1 \le \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 2 \\ 0 & \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} \ge 2 \end{cases}$$

- Implementation
 - d := distance(xi,xj)/h;
 - t1 := max(1-d,0);
 - t2 := max(2-d, 0);

```
w1 := alpha * (xi-xj)/(d*h*h) * (-3*t2*t2 + 12*t1*t1);
```

Second Kernel Derivative

$$-\nabla^2 W_{ji} = \nabla \cdot (\nabla W_{ji}) = \frac{\partial^2 W}{\partial x_{j,x}^2} + \frac{\partial^2 W}{\partial x_{j,y}^2} + \frac{\partial W^2}{\partial x_{j,z}^2}$$
$$= \frac{\partial^2 W(q)}{\partial q^2} (\nabla q)^2 + \frac{\partial W(q)}{\partial q} (\nabla \cdot (\nabla q))$$

– Cubic spline

$$q = \frac{\|\boldsymbol{x}_{ji}\|}{h} \quad (\nabla q)^2 = \frac{\boldsymbol{x}_{ji}}{\|\boldsymbol{x}_{ji}\|h} \cdot \frac{\boldsymbol{x}_{ji}}{\|\boldsymbol{x}_{ji}\|h} = \frac{\|\boldsymbol{x}_{ji}\|^2}{\|\boldsymbol{x}_{ji}\|^2 h^2} = \frac{1}{h^2}$$

$$\nabla \cdot (\nabla q) = \frac{d-1}{h\|\boldsymbol{x}_{ji}\|} \quad d \text{ is the dimensionality}$$

$$\frac{\partial W(q)}{\partial q} = \alpha \begin{cases} -3(2-q)^2 + 12(1-q)^2 & 0 \le q < 1\\ -3(2-q)^2 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases} \quad \frac{\partial^2 W(q)}{\partial q^2} = \alpha \begin{cases} 6(2-q) - 24(1-q) & 0 \le q < 1\\ 6(2-q) & 1 \le q < 2\\ 0 & q \ge 2 \end{cases}$$

- Symmetric $\nabla^2 W_{ji} = \nabla^2 W_{ij}$ Used in SPH convolutions

University of Freiburg – Computer Science Department – 65

UNI FREIBURG

Design of a Kernel Function - 1D

- Definition of a shape, followed by normalization

$$\alpha \tilde{W}(\frac{\|\mathbf{x}_j - \mathbf{x}_i\|}{h}) = \alpha \tilde{W}(\frac{x}{h}) = \alpha \tilde{W}(q) = W(q) = \alpha \begin{cases} (2-q)^3 - 4(1-q)^3 & 0 \le q < 1\\ (2-q)^3 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases}$$

$$2\int_0^{2h} \alpha \tilde{W}(x) dx = 2\int_0^2 \alpha \tilde{W}(q) h dq = 1$$
 Integration by substitution

$$\alpha = \frac{1}{2\int_0^2 \tilde{W}(q)h\mathrm{d}q}$$

- 1D: integration over a line segment $2\int_{0}^{2} \tilde{W}(q)hdq = 2\int_{0}^{1} \left[(2-q)^{3} - 4(1-q)^{3} \right] hdq + 2\int_{1}^{2} (2-q)^{3}hdq = 2\frac{11}{4}h + 2\frac{1}{4}h$ $\alpha = \frac{1}{6h}$

Design of a Kernel Function – 2D, 3D

– 2D: Integration over the area of a circle

$$\int_{0}^{2\pi} \int_{0}^{2h} \tilde{W}(x) x \, dx d\phi = \int_{0}^{2\pi} \int_{0}^{2} \tilde{W}(q) hqh \, dq d\phi =$$

$$2\pi \int_{0}^{1} \left[q(2-q)^{3} - 4q(1-q)^{3} \right] h^{2} dq + 2\pi \int_{1}^{2} q(2-q)^{3} h^{2} dq = 2\pi \frac{11}{10} h^{2} + 2\pi \frac{3}{10} h^{2}$$

$$\alpha = \frac{5}{14\pi h^{2}}$$

- 3D: Integration over the volume of a sphere $\int_{0}^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2h} \tilde{W}(x) x^{2} \sin\theta \, dx d\theta d\phi = \int_{0}^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2} \tilde{W}(q) (qh)^{2} h \sin\theta \, dq d\theta d\phi =$ $4\pi \int_{0}^{1} \left[q^{2} (2-q)^{3} - 4q(1-q)^{3} \right] h^{3} dq + 4\pi \int_{1}^{2} q^{2} (2-q)^{3} h^{3} dq = 4\pi \frac{19}{30} h^{3} + 4\pi \frac{11}{30} h^{3}$ $\alpha = \frac{1}{4\pi h^{3}}$

University of Freiburg – Computer Science Department – 67

REIBURG

Derivatives – Original SPH Forms

– Original forms

 $\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij}$ $\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij}$

- However, resulting forces do not preserve momentum and are not necessarily zero for constant values $A_i = A_j$ in case of erroneous sampling

First Derivative - Anti-symmetric Form

- Momentum-preserving form $-\frac{1}{\rho_i}\nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla W_{ij}$ $\nabla \left(\frac{A_i}{\rho_i}\right) = \frac{\rho_i \nabla A_i A_i \nabla \rho_i}{\rho_i^2} = \frac{\nabla A_i}{\rho_i} \frac{A_i \nabla \rho_i}{\rho_i^2}$ $\nabla A_i = \rho_i \left(\nabla \left(\frac{A_i}{\rho_i} \right) + \frac{A_i \nabla \rho_i}{\rho_i^2} \right)$ SPH approximation $\nabla A_i = \rho_i \left(\sum_j \frac{m_j}{\rho_j} \frac{A_j}{\rho_j} \nabla W_{ij} + A_i \sum_j \frac{m_j}{\rho_j} \frac{\rho_j}{\rho_i^2} \nabla W_{ij} \right)$ $= \rho_i \sum_j m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_i^2} \right) \nabla W_{ij}$
- Applied to pressure gradient, linear and angular momentum is preserved for arbitrary samplings

$$\boldsymbol{F}_{i}^{\mathrm{p}} = -m_{i}m_{j}\left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}}\right)\nabla W_{ij} = m_{j}m_{i}\left(\frac{p_{j}}{\rho_{j}^{2}} + \frac{p_{i}}{\rho_{i}^{2}}\right)\nabla W_{ji} = -\boldsymbol{F}_{j}^{\mathrm{p}} \quad \nabla W_{ij} = -\nabla W_{ji}$$

First Derivative – Symmetric Form

- Term that vanishes for constant function values $\nabla(\rho_i A_i) = \rho_i \nabla(A_i) + A_i \nabla(\rho_i)$

$$\nabla A_i = \frac{1}{\rho_i} \left(\nabla \left(\rho_i A_i \right) - A_i \nabla \rho_i \right)$$

- SPH approximation $\nabla A_{i} = \frac{1}{\rho_{i}} \left(\sum_{j} \frac{m_{j}}{\rho_{j}} \rho_{j} A_{j} \nabla W_{ij} - A_{i} \sum_{j} \frac{m_{j}}{\rho_{j}} \rho_{j} \nabla W_{ij} \right)$ $= \frac{1}{\rho_{i}} \sum_{j} m_{j} (A_{j} - A_{i}) \nabla W_{ij} = \frac{1}{\rho_{i}} \sum_{j} m_{j} A_{ji} \nabla W_{ij}$ - Applied to velocity divergence, zero divergence for a constant velocity field is obtained for arbitrary samplings

Second Derivative with First Kernel Derivative

- Second derivative is error prone and sensitive to particle disorder
- Too few samples to appropriately approximate the second kernel derivative
- Therefore, the Laplacian is typically approximated with a finite difference approximation of the first derivative

$$abla^2 A_i = d \sum_j \frac{m_j}{
ho_j} \frac{A_{ij} \cdot \boldsymbol{x}_{ij}}{\boldsymbol{x}_{ij} \cdot \boldsymbol{x}_{ij} + 0.01h^2} \nabla W_{ij}$$
 d is the dimensionality
 $A_{ij} = A_i - A_j$ $\boldsymbol{x}_{ij} = \boldsymbol{x}_i - \boldsymbol{x}_j$

Derivatives - Summary

Original approximations

$$\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij} \quad \nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij}$$

- Currently preferred approximations
 - Robustness in case of particle disorder, i.e. $\sum_{j} \nabla W_{ij} \neq \mathbf{0}$

$$\nabla p_{i} = \rho_{i} \sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) \nabla W_{ij}$$
Preserves linear and
angular momentum
$$\nu \nabla^{2} \boldsymbol{v}_{i} = d \sum_{j} \frac{m_{j}}{\rho_{j}} \frac{\boldsymbol{v}_{ij} \cdot \boldsymbol{x}_{ij}}{\boldsymbol{x}_{ij} \cdot \boldsymbol{x}_{ij} + 0.01h^{2}} \nabla W_{ij}$$
Avoids the second kernel derivative
$$\nabla \cdot \boldsymbol{v}_{i} = -\frac{1}{\rho_{i}} \sum_{j} m_{j} \boldsymbol{v}_{ij} \nabla W_{ij}$$
Zero for uniform velocity field
$$\boldsymbol{v}_{ij} = \boldsymbol{v}_{i} - \boldsymbol{v}_{j}$$
Some Kernel Properties

- In case of ideal sampling
- $\rho_{i} = \sum_{j} m_{j} W_{ij} = m_{i} \sum_{j} W_{ij} \quad m_{i} = m_{j}$ $m_{i} \sum_{j} W_{ij} = \rho_{i} = \frac{m_{i}}{V_{i}} \quad \Rightarrow \quad \sum_{j} W_{ij} = \frac{1}{V_{i}} = \frac{\rho_{i}}{m_{i}}$ $\nabla W_{ij} = -\nabla W_{ji} \quad \nabla W_{ij} = \alpha \frac{\boldsymbol{x}_{ij}}{\|\boldsymbol{x}_{ij}\|_{h}} \dots \quad (\nabla W_{ii} = \mathbf{0})$ $\sum_{j} \nabla W_{ij} = \mathbf{0}$ $\sum_{j} (\boldsymbol{x}_{i} \boldsymbol{x}_{j}) \otimes \nabla W_{ij} = -\frac{1}{V_{i}} \cdot \boldsymbol{I}$ Can be used for test purposes

Kernel Illustration – 1D

$$W(q) = \frac{1}{6h} \begin{cases} (2-q)^3 - 4(1-q)^3 & 0 \le q < 1\\ (2-q)^3 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases} \qquad q = \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{h}$$
$$W(0) = \frac{1}{6h} \left((2-0)^3 - 4(1-0)^3 \right) = \frac{4}{6h}$$
$$W(1) = \frac{1}{6h} (2-1)^3 = \frac{1}{6h}$$
$$W(2) = 0$$
$$\sum_j W_{ij} = W(0) + 2W(1) + 2W(2) = \frac{1}{h}$$
$$\frac{1}{6h} \qquad \frac{1}{6h}$$

 $q = 1 \quad q = 0 \quad q = 1$

UNI FREIBURG

University of Freiburg – Computer Science Department – 74

Kernel Illustration – 2D

$$W(q) = \frac{5}{14\pi h^2} \begin{cases} (2-q)^3 - 4(1-q)^3 & 0 \le q < 1\\ (2-q)^3 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases} \quad q = \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{h}$$

$$W(0) = \frac{5}{14\pi h^2} \left((2-0)^3 - 4(1-0)^3 \right) = \frac{20}{14\pi h^2}$$
$$W(1) = \frac{5}{14\pi h^2} (2-1)^3 = \frac{5}{14\pi h^2}$$
$$W(\sqrt{2}) = \frac{5}{14\pi h^2} (2-\sqrt{2})^3 \approx \frac{1.005}{14\pi h^2}$$

$$\sum_{j} W_{ij} = W(0) + 4W(1) + 4W(\sqrt{2}) \approx \frac{1.001}{h^2}$$

Kernel Illustration – Density Computation

– Is not a reconstruction of the function ρ , but detects erroneous sampling

Kernel Derivative Illustration – 1D

$$\nabla W_{ij} = \nabla W(x_i - x_j) = \frac{1}{6h} \frac{x_i - x_j}{\|x_i - x_j\| h} \begin{cases} -3(2 - \frac{\|x_i - x_j\|}{h})^2 + 12(1 - \frac{\|x_i - x_j\|}{h})^2 & 0 \le \frac{\|x_i - x_j\|}{h} < 1 \\ -3(2 - \frac{\|x_i - x_j\|}{h})^2 & 1 \le \frac{\|x_i - x_j\|}{h} < 2 \\ 0 & \frac{\|x_i - x_j\|}{h} \ge 2 \end{cases}$$

$$\nabla W(x_i - x_i) = 0$$

$$\nabla W(x_i - (x_i - 2h)) = \nabla W(x_i - (x_i + 2h)) = 0$$

$$\nabla W(x_i - (x_i - h)) = -\nabla W(x_i - (x_i + h)) = \frac{1}{6h} \cdot \frac{1}{h} \cdot (-3)$$

$$\nabla p_i = \sum_j p_j \nabla W(x_i - x_j)h = -\frac{h}{2h^2}(p_0 + h) + \frac{h}{2h^2}(p_0 + 3h)$$

$$= \frac{(p_0 + 3h) - (p_0 + h)}{2h} = 1$$
 central difference

UN FRE

Kernel Derivative Illustration – 2D Test

$$\nabla W(\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) = \alpha \frac{\boldsymbol{x}_{i} - \boldsymbol{x}_{j}}{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|_{h}} \begin{cases} -3(2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} + 12(1 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} & 0 \leq \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 1 \\ -3(2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} & 1 \leq \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 2 & \alpha = \frac{5}{14\pi h^{2}} \\ 0 & \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} \geq 2 \end{cases}$$

Kernel Derivative Illustration – 2D Test

$$\nabla W((0,0) - (0,0)) = (0,0) \qquad \alpha = \frac{5}{14\pi\hbar^2}$$

$$\nabla W((0,0) - (h,0)) = -\nabla W((0,0) - (-h,0)) = \alpha \frac{(0,0) - (h,0)}{h^2} (-3) = (\frac{3\alpha}{h},0) \qquad \beta = (-3)(2-\sqrt{2})^2$$

$$\nabla W((0,0) - (0,h)) = -\nabla W((0,0) - (0,-h)) = \alpha \frac{(0,0) - (0,h)}{h^2\sqrt{2}} (-3) = (0,\frac{3\alpha}{h})$$

$$\nabla W((0,0) - (h,h)) = -\nabla W((0,0) - (-h,-h)) = \alpha \frac{(0,0) - (h,h)}{h^2\sqrt{2}} \beta = (-\frac{1}{h\sqrt{2}}\alpha\beta, -\frac{1}{h\sqrt{2}}\alpha\beta)$$

$$\nabla W((0,0) - (h,-h)) = -\nabla W((0,0) - (-h,h)) = \alpha \frac{(0,0) - (h,-h)}{h^2\sqrt{2}} \beta = (-\frac{1}{h\sqrt{2}}\alpha\beta, -\frac{1}{h\sqrt{2}}\alpha\beta)$$

$$(x_i - x_j)_x \cdot (\nabla W_{ij})_y = (x_i - x_j)_y \cdot (\nabla W_{ij})_x = 0 + 0 + 0 + 0 + 0 + \frac{1}{\sqrt{2}}\alpha\beta + \frac{1}{\sqrt{2}}\alpha\beta - \frac{1}{\sqrt{2}}\alpha\beta = 0$$

$$(x_i - x_j)_x \cdot (\nabla W_{ij})_x = (x_i - x_j)_y \cdot (\nabla W_{ij})_y = 0 - 3\alpha - 3\alpha + 0 + 0 + \frac{1}{\sqrt{2}}\alpha\beta + \frac{1}{\sqrt{2}}\alpha\beta + \frac{1}{\sqrt{2}}\alpha\beta + \frac{1}{\sqrt{2}}\alpha\beta = -6\alpha + 4\frac{1}{\sqrt{2}}\alpha\beta$$

$$= -0.682\frac{1}{h^2} - 0.331\frac{1}{h^2} = -\frac{1.013}{h^2}$$

Kernel Derivative Illustration – 3D Sampling

 Kernel derivative detects irregular samplings (vector from low to high sample concentration)

$$\nabla W(\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) = \alpha \frac{\boldsymbol{x}_{i} - \boldsymbol{x}_{j}}{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|_{h}} \begin{cases} -3(2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} + 12(1 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} & 0 \leq \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 1 \\ -3(2 - \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h})^{2} & 1 \leq \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} < 2 & \alpha = \frac{1}{4\pi h^{3}} \\ 0 & \frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|}{h} \geq 2 \end{cases}$$

$$\nabla W((0,0,0) - (h,0,0)) = -3\alpha \frac{(0,0,0) - (h,0,0)}{h^2} = \frac{3\alpha}{h}(1,0,0)$$

$$\nabla W((h,0,0) - (0,0,0)) = -3\alpha \frac{(h,0,0) - (0,0,0)}{h^2} = -\frac{3\alpha}{h}(1,0,0)$$

$$(0,0,0) \quad (h,0,0)$$

$$x_i \uparrow -\sum_j \nabla W_{ij}$$

Simulation in Computer Graphics Particle Fluids 3

Matthias Teschner

UNI FREIBURG

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

Simple SPH Fluid Solver

for all $particle \ i \ do$	
find neighbors j	
for all $particle \ i \ do$	
$ \rho_i = \sum_j m_j W_{ij} $	Compute de
$p_i = k(\frac{p_i}{\rho_0} - 1)$	Compute pre
for all $particle \ i \ do$	
$oldsymbol{a}_i^{ ext{nonp}} = u abla^2 oldsymbol{v}_i + oldsymbol{g}$	Compute no
$oldsymbol{a}_i^{\mathrm{p}} = -rac{1}{ ho_i} abla p_i$	Compute pre
$\boldsymbol{a}_i(t) = \boldsymbol{a}_i^{\mathrm{nonp}} + \boldsymbol{a}_i^{\mathrm{p}}$	
for all $particle i do$	
$\boldsymbol{v}_i(t + \Delta t) = \boldsymbol{v}_i(t) + \Delta t$	$t \boldsymbol{a}_i(t)$
$\boldsymbol{x}_i(t + \Delta t) = \boldsymbol{x}_i(t) + \Delta$	$t\boldsymbol{v}_i(t+\Delta t)$

ompute density ompute pressure

ompute non-pressure accelerations ompute pressure acceleration

SPH Simulation Step With a State Equation (SESPH)

- For each particle do
 - Compute density
 - Compute pressure
- For each particle do
 - Compute accelerations
 - Update velocities and positions
- Density and acceleration computations process all neighbors of a particle

Neighbor Search

- For the computation of SPH sums in 3D, each particle needs to know at least 30-40 neighbors in each step
- Example setting
 - 30 million fluid particles
 - Up to 1 billion neighbors
 - 10000 simulation steps
 - Up to 10¹³ neighbors processed per simulation
- Efficient construction and processing of dynamically changing neighbor sets is essential

Performance – [lhmsen et al. 2011]

Up to 30 million fluid particles, 11 s computation time for neighbor search on a 16-core PC

> UNI FREIBURG

Performance – [Band et al. 2019]

Million samples	Neighbor search [s]	Simulation step [s]	Memory [GB]	Cores
0.2	0.005	0.04	0.1	12
200	5	15	28	12
1300	33	355	172	24
7400	67	530	873	112

University of Freiburg – Computer Science Department – 87

UNI FREIBURG

- SPH computes sums
 - Dynamically changing sets of neighboring particles
 - Temporal coherence
- Spatial data structures accelerate the neighbor search
 - Fast query
 - Fast generation (at least once for each simulation step)
 - Sparsely, non-uniformly filled simulation domain

Space subdivision

- Each particle is placed in a convex space cell, e.g. a cube
- Similarities to collision detection and intersection tests in raytracing
 - However, cells adjacent to the cell of a particle have to be accessed

- Hierarchical data structures are less efficient
 - Construction in O (n log n), access in O (log n)
- Uniform grid is generally preferred
 - Construction in O (n),
 access in O (1)

- Neighbor storage is generally expensive
 - Might be avoided for, e.g., a low number of neighbor queries per step or in case of very efficient computation
- Data structures have to process
 - Fluid particles of multiple phases, e.g. air
 - Rigid particles (static or moving)
 - Deformable particles

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
 - Uniform grid
 - Index sort
 - Spatial hashing
 - Discussion

Concept

- Particle is stored in a cell
- In *d*-D, potential neighbors in 3^d cells are queried to estimate actual neighbors
- Cell size equals the kernel support of a particle
 - Smaller cells increase the number of tested cells
 - Larger cells increase the number of tested particles

Concept - Variant

- Verlet lists
 - Neighbor candidates are computed within a distance larger than the kernel support every nth step
 - Actual neighbors are computed from neighbor candidates in each step
 - Neighbor candidates
 are valid for *n* steps
 - Motivated by temporal coherence: Particle does not move farther than its size in one step.

Concept - Variant

- Verlet lists
 - Proposed in 1967
 - Still popular in Lagrangian simulations
 - Acceleration data structure
 - Is only updated every *n*th step
 - Is memory-intensive, requires storage of a comparatively large number of neighbor candidates

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
 - Uniform grid
 - Index sort
 - Spatial hashing
 - Discussion

- Compute cell index $c = k + l \cdot K + m \cdot K \cdot L$ for all particles with, e.g. $(k, l, m) = \lfloor \frac{x x_{min}}{2h}, \frac{y y_{min}}{2h}, \frac{z z_{min}}{2h} \rfloor$
 - K and L denote the number of cells in x and y direction
- Particles are sorted with respect to their cell index
- Each grid cell (k, l, m)
 with index c stores
 a reference to the
 first particle in the
 sorted list

Cell indices of a linearized uniform grid

Cell indices of particles

BURG

Compute cell indices for particles and increment counter in C

	0	1	2	3	4
counter	3	1	2	2	

Accumulate counters in C

С	0	1	2	3	4
accum	3	4	6	8	8

Associate particle i with cell j: L [-- C [j].counter].particle = i

С	0	1	2	3	4	L 01234567
index	3	4	6	7	8	particle (
С	0	1	2	3	4	L 01234567
index	3	3	6	7	8	particle 1 (
С	0	1	2	3	4	L 01234567
index	3	3	5	7	8	particle 1 2 (
С	0	1	2	3	4	L 01234567
index	0	3	4	6	8	particle 6 5 3 1 7 2 4 0

UNI FREIBURG

- Particles are sorted with respect to grid cell
- Index points to first particle in a cell
- Difference of two subsequent indices indicates the particle number of a grid cell

- Two iterations over particles
- One iteration over grid cells
- Entire simulation domain has to be represented
- Parallelizable
- Memory allocations are avoided
- Constant memory consumption

- For a particle
 - Indices to grid cell and to adjacent cells are computed (Once for all particles in the same grid cell)
 - All particles in grid cell and adjacent cells are tested
- Parallelizable
- Improved cache-hit rate
 - Particles in the same cell are close in memory
 - Particles of neighboring cells are not necessarily close in memory

Space-filling Curves

- Alternative computation for grid cell indices
- E.g., particles are sorted with respect to a z-curve index
- Improved cache-hit rate
 - Particles in adjacent cells are close in memory
- Efficient computation of z-curve indices

z-curve

Sorting

- Particle attributes and z-curve indices can be processed separately
- Handles (particle identifier, z-curve index) are sorted in each time step
 - Reduced memory transfer
 - Spatial locality is only marginally influenced due to temporal coherence
- Attribute sets are sorted every *n*th step
 - Restores spatial locality

Sorting

- Radix sort or insertion sort can be employed
 - O (n) for almost sorted arrays
 - Due to temporal coherence, a small percentage of all particles change their cell, i.e. z-curve index, in each step

Z-Index Sort - Reordering

Particle color indicates memory location Spatial compactness using a z-curve

UNI FREIBURG

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
 - Uniform grid
 - Index sort
 - Spatial hashing
 - Discussion

Spatial Hashing

- Hash function maps a grid cell to a hash cell
 - 3D domain is mapped to a finite 1D list
 - Infinite domains can be handled
- Implementation
 - Compute a cell index c or a cell identifier (k, l, m) for a particle
 - Compute a hash function i = h(c) or i = h(k, l, m)
 - Store the particle in a 1D array (hash table) at index *i*

Spatial Hashing

$$i = h(c)$$
 Hash function
 $3 = h(0)$
 $1 = h(1)$
 $4 = h(2)$
 $7 = h(3)$

	0	1	2	3	4	5	6	7	8	n
particle		1		3	7			0		
				5	2			4		
				6						

1D Hash map
Spatial Hashing

- Large hash tables reduce number of hash collisions
 - Different spatial cells with the same hash value cause hash collisions which slow down the query
- Reduced memory allocations
 - Memory for *m* entries is allocated for each hash cell
- Reduced cache-hit rate
 - Hash table is sparsely filled
 - Alternating filled and empty entries

Compact Hashing

– Hash cells store handles to a compact list of used cells

- Elements in the used-cell list are generated, if a particle is placed in a new cell
- Elements are deleted,
 if a cell gets empty
- k entries are pre-allocated for each element in the list of used cells
- List of used cells is queried in the neighbor search

University of Freiburg – Computer Science Department – 110

BURG

Compact Hashing - Construction

- Larger hash table compared to spatial hashing to reduce hash collisions
- Temporal coherence can be employed
 - List of used cells is not rebuilt, but updated
 - Particles with changed cell index are estimated
 - Particle is removed from the old cell and added to the new cell

Compact Hashing - Query

- Processing of used cells
 - Bad spatial locality
 - Used cells close in memory are not close in space
- Hash-collision flag
 - If there is no hash collision in a cell, hash indices of adjacent cells have to be computed only once for all particles in this cell

Compact Hashing - Query

- Particles are sorted with respect to a z-curve every nth step
- After sorting, the list of used cells is rebuilt
- If particles are serially inserted into the list of used cells, the list is consistent with the z-curve
- Improved cache hit rate during the traversal of the list of used cells

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
 - Uniform grid
 - Index sort
 - Spatial hashing
 - Discussion

Comparison

Method	Construction	Query	Total	
Basic grid	26	38	64	
Index sort	36	29	65	
Z-index sort	16	27	43	
Spatial hashing	42	86	128	
Compact hashing	8	32	40	

- Measurements in ms for 130 k particles
- Ongoing research
 - Focus on sorting, parallelization and vectorization
 - Octrees, k-D trees, BVHs can also be realized with sorting

FREIBURG

- Index sort
 - Fast construction based on sorting
 - Fast query
 - Particles are processed in the order of cell indices
- Z-index sort
 - Sorting with respect to a space filling curve improves cache-hit rate

Summary

- Spatial hashing
 - Less efficient query due to hash collisions and due to the traversal of the sparsely filled hash table
- Compact hashing
 - Fast construction (or update due to temporal coherence)
 - Fast query due to the compact list of used cells, due to the hash-collision flag and due to the z-curve

Simulation in Computer Graphics Particle Fluids 4

Matthias Teschner

UNI FREIBURG

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

Simple SPH Fluid Solver

for all $particle i do$	
find neighbors j	
for all $particle i do$	
$ \rho_i = \sum_j m_j W_{ij} $	Сс
$p_i = k(\frac{\rho_i}{\rho_0} - 1)$	Сс
for all $particle i do$	
$oldsymbol{a}_i^{ ext{nonp}} = u abla^2 oldsymbol{v}_i + oldsymbol{g}$	Сс
$oldsymbol{a}_i^{\mathrm{p}} = -rac{1}{ ho_i} abla p_i$	Сс
$\boldsymbol{a}_i(t) = \boldsymbol{a}_i^{\text{nonp}} + \boldsymbol{a}_i^{\text{p}}$	
for all $particle i do$	
$oldsymbol{v}_i(t+\Delta t) = oldsymbol{v}_i(t) + oldsymbol{\Delta}$	$\Delta t oldsymbol{a}_i$
$\boldsymbol{x}_i(t + \Delta t) = \boldsymbol{x}_i(t) + \lambda$	$\Delta t \boldsymbol{v}_{i}$

ompute density ompute pressure

ompute non-pressure accelerations ompute pressure acceleration

(t) $\boldsymbol{v}_i(t+\Delta t)$ $\Delta t) = \boldsymbol{x}_i(t) + \boldsymbol{x}_i(t)$

 Boundaries are sampled with particles that contribute to density, pressure and pressure acceleration of the fluid

- Boundary handling: How to compute $\rho_i, p_i, p_{i_b}, F_i^{\rm p}$?

University of Freiburg – Computer Science Department – 121

UNI FREIBURG

Several Layers with Uniform Boundary Samples

- Boundary particles are handled as static fluid samples

Fluid Solid

$$\rho_i = \sum_{i_f} m_{i_f} W_{ii_f} + \sum_{i_b} m_{i_b} W_{ii_b}$$

$$m_i = m_{i_f} = m_{i_b}$$

$$\rho_i = m_i \sum_{i_f} W_{ii_f} + m_i \sum_{i_b} W_{ii_f}$$
$$p_i = k(\frac{\rho_i}{\rho_0} - 1)$$

Boundary neighbors contribute to the density

All samples have the same size, i.e. same mass and rest density

– Pressure acceleration

$$\boldsymbol{a}_{i}^{\mathrm{p}} = -m_{i} \sum_{i_{f}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{f}}}{\rho_{i_{f}}^{2}} \right) \nabla W_{ii_{f}} - m_{i} \sum_{i_{b}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{b}}}{\rho_{i_{b}}^{2}} \right) \nabla W_{ii_{b}}$$

All samples have the same size, i.e. same mass and rest density

Contributions from fluid neighbors Contributions from boundary neighbors

Pressure at Boundary Samples

- Pressure acceleration at boundaries requires pressure at boundary samples
- Various solutions, e.g. mirroring, extrapolation, PPE
- Mirroring
 - Formulation with unknown boundary pressure p_{i_b}
 - $a_i^{p} = -m_i \sum_{i_f} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_f}}{\rho_{i_f}^2} \right) \nabla W_{ii_f} m_i \sum_{i_b} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_b}}{\rho_{i_b}^2} \right) \nabla W_{ii_b}$ Mirroring of pressure and density from fluid to boundary $p_{i_b} = p_i$

$$- a_i^{\mathrm{p}} = -m_i \sum_{i_f} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_f}}{\rho_{i_f}^2} \right) \nabla W_{ii_f} - m_i \sum_{i_b} \left(\frac{p_i}{\rho_i^2} + \frac{p_i}{\rho_i^2} \right) \nabla W_{ii_b}$$

Boundary Contribution to Pressure Acceleration

$$\mathbf{a}_{i}^{\mathrm{p}} = -\dots - m_{i} \sum_{i_{b}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i}}{\rho_{i}^{2}} \right) \nabla W_{ii_{b}} = -\dots - p_{i} \frac{2m_{i}}{\rho_{i}^{2}} \sum_{i_{b}} \nabla W_{ii_{b}}$$

$$-p_{i} \frac{2m_{i}}{\rho_{i}^{2}} \sum_{i_{b}} \nabla W_{ii_{b}}$$

$$\mathbf{x}_{i}$$

$$\mathbf{x}_{$$

University of Freiburg – Computer Science Department – 124

FREIBURG

One Layer of Uniform Boundary Samples

Contributions of missing samples have to be added

	$\rho_i = m_i \sum_{i_f} W_{ii_f} + m_i \sum_{i_b} W_{ii_b} + x$	<i>x</i> is an approximation of the contribution from missing samples
Fluid	$\rho_i = m_i \sum_{i_f} W_{ii_f} + \gamma_1 m_i \sum_{i_b} W_{ii_b}$	Offset typically implement- ted as scaling coefficient
Missing samples	$\sum_{i_f} W_{ii_f} + \gamma_1 \sum_{i_b} W_{ii_b} = \frac{1}{V_i} \implies \gamma_1 = \frac{\frac{1}{V_i} - \sum_{i_f} V_i}{\sum_{i_b} W_i}$	$rac{V_{ii_f}}{i_b}$ Kernel property

REIBURG

- Pressure acceleration

$$\boldsymbol{a}_{i}^{\mathrm{p}} = -m_{i} \sum_{i_{f}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{f}}}{\rho_{i_{f}}^{2}} \right) \nabla W_{ii_{f}} - p_{i} \frac{2\gamma_{2}m_{i}}{\rho_{i}^{2}} \sum_{i_{b}} \nabla W_{ii_{b}}$$

$$\sum_{i_{f}} \nabla W_{ii_{f}} + \gamma_{2} \sum_{i_{b}} \nabla W_{ii_{b}} = \boldsymbol{0} \Rightarrow \gamma_{2} = -\frac{\sum_{i_{f}} \nabla W_{ii_{f}} \cdot \sum_{i_{b}} \nabla W_{ii_{b}}}{\sum_{i_{b}} \nabla W_{ii_{b}}} \quad \text{Kernel gradient property}$$

$$\text{University of Freiburg - Computer Science Department - 125}$$

Correction of Missing Contributions

$$\rho_{i} = m_{0}(W_{00} + W_{01} + W_{02}) \qquad \rho_{i} = \gamma_{1}m_{0}(W_{00} + W_{01})$$
$$\boldsymbol{a}_{i}^{\mathrm{p}} = -p_{i}\frac{2m_{i}}{\rho_{i}^{2}}(\nabla W_{01} + \nabla W_{02}) \qquad \boldsymbol{a}_{i}^{\mathrm{p}} = -p_{i}\frac{2\gamma_{2}m_{i}}{\rho_{i}^{2}}\nabla W_{01}$$

– The motivation of γ_1 and γ_2 is to compensate contributions of missing samples to $\rho,p,\pmb{a}^{\rm p}$

One Layer of Non-Uniform Boundary Samples

Non-uniform contributions from boundary samples

$$p_i = m_i \sum_{i_f} W_{ii_f} + \sum_{i_b} m_{i_b} W_{ii_b}$$

$$V_{i_b}^0 = \frac{m_{i_b}}{\rho_0} = \frac{\gamma_1}{\sum_{i_{b\,b}} W_{i_b i_{b\,b}}}$$

Non-uniform sizes, i.e. masses of boundary samples

Contribution, i.e. mass of a boundary sample is approximated from its boundary neighbors

Pressure acceleration

$$\boldsymbol{a}_{i}^{\mathrm{p}} = -m_{i} \sum_{i_{f}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{f}}}{\rho_{i_{f}}^{2}} \right) \nabla W_{ii_{f}} - p_{i} \frac{2\gamma_{2}}{\rho_{i}^{2}} \sum_{i_{b}} m_{i_{b}} \nabla W_{ii_{b}}$$

One Layer of Non-Uniform Boundary Samples

For perfect sampling

For perfect sampling

 $-\ln 3D$, $\gamma_1 = 0.7$

University of Freiburg – Computer Science Department – 128

 $oldsymbol{x}_{i_b} oldsymbol{x}_{i_{bb}}$

 $m_{i_b} = \rho_0 \frac{\gamma_1}{\sum_{i_{bb}} W_{i_b i_{bb}}}$

For arbitrary sampling

Typical Boundary Representation

Boundary samples

Color-coded volume of boundary samples

Rigid-Fluid Coupling

University of Freiburg – Computer Science Department – 130

UNI FREIBURG

Rigid-Fluid Coupling

University of Freiburg – Computer Science Department – 131

UNI FREIBURG

Summary

- Boundary is sampled with static fluid particles
- One layer of non-uniform samples
 - Arbitrary triangulated meshes can be used as boundary
 - Non-uniform boundary samples can be handled
 - Missing contributions to fluid density and pressure acceleration have to be corrected
 - Pressure is mirrored from fluid to boundary

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

Incompressibility

- Is essential for a realistic fluid behavior
 - Less than 0.1% volume / density deviation in typical scenarios
- Inappropriate compression leads, e.g., to volume oscillations or volume loss
- Significant influence on the performance
 - Simple approaches require small time steps
 - Complex approaches work with large time steps

Approaches

- Minimization of density / volume errors
 - Measure difference of actual and desired density
 - Compute pressure and pressure accelerations that reduce density / volume deviations
- Minimization of velocity divergence
 - Measure the divergence of the velocity field
 - Compute pressure and pressure accelerations that reduce the divergence of the velocity field

Approaches

- Velocity change per time step due to pressure acceleration and non-pressure acceleration $\frac{\mathrm{d}\boldsymbol{v}(t)}{\mathrm{d}t} = -\frac{1}{\rho}\nabla p(t) + \boldsymbol{a}^{\mathrm{nonp}}(t)$
- Predicted velocity after non-pressure acceleration $v^* = v(t) + \Delta t a^{nonp}(t)$
- Computation of pressure such that pressure acceleration either minimizes the divergence of v^{*} or the density error after advecting the samples with v^{*}
 Final velocity v(t + Δt) = v^{*} Δt¹_o∇p(t) with minimized diver
 - gence or minimized density error at advected samples -University of Freiburg – Computer Science Department – 136

Density Invariance vs. Velocity Divergence

- Continuity equation: Time rate of change of the density is related to the divergence of the velocity $\frac{D\rho_i}{Dt} = -\rho_i \nabla \cdot \boldsymbol{v}_i$

 $oldsymbol{v}_i$ $oldsymbol{x}_i$

University of Freiburg – Computer Science Department – 137

 $oldsymbol{v}_i \ oldsymbol{x}_i$

 $egin{array}{c} x_i \end{array}$

UNI FREIBURG

Density Invariance vs. Velocity Divergence

- Density invariance
 - Measure and minimize density deviations
- Velocity divergence
 - Measure and minimize the divergence of the velocity field
 - Zero velocity divergence corresponds to zero density change over time $-\rho_i \nabla \cdot v_i = \frac{D\rho_i}{Dt} = 0$, i.e. the initial density does not change over time
 - Notion of density is not required

- Minimizing density deviations can result in volume oscillations
 - Density error is going up and down
 - Erroneous fluid dynamics
 - Only very small density deviations are tolerable, e.g. 0.1%

https://www.youtube.com/watch?v=hAPO0xBp5WU

Challenges

- Minimizing the velocity divergence can result in volume loss
 - Divergence errors result in density drift
 - No notion of actual density

Zhu, Lee, Quigley, Fedkiw, SIGGRAPH 2015

State Equations (EOS, SESPH)

- Pressure based on density deviations
- Pressure accelerations resolve compression induced by non-pressure accelerations
 - Density fluctuations / errors result in pressure
 - Pressure gradients result in pressure accelerations from high to low pressure to resolve density errors
- Simple computation
- Small time steps

State Equations (EOS, SESPH)

Pressure is computed from density error

- E.g.
$$p_i = k(\frac{\rho_i}{\rho_0} - 1)$$
 or $p_i = k(\rho_i - \rho_0)$

Referred to as compressible SPH

$$- p_i = k\left(\left(\frac{\rho_i}{\rho_0}\right)^7 - 1\right)$$

- Referred to as weakly compressible SPH

- Stiffness constant k does not govern the pressure, but the compressibility of the fluid
- Larger stiffness \rightarrow less compressibility \rightarrow smaller time step

Pressure values in SPH implementations should always be non-negative.

Simple SPH Fluid Solver

- for all particle *i* do find neighbors *j* for all particle *i* do $\rho_i = \sum_j m_j W_{ij}$ $p_i = k(\frac{\rho_i}{\rho_0} - 1)$

Compute pressure with a state equation

for all particle i do

$$\boldsymbol{a}_i^{\mathrm{nonp}} = \nu \nabla^2 \boldsymbol{v}_i + \boldsymbol{g}$$

 $\boldsymbol{a}_i^{\mathrm{p}} = -\frac{1}{\rho_i} \nabla p_i$
 $\boldsymbol{a}_i(t) = \boldsymbol{a}_i^{\mathrm{nonp}} + \boldsymbol{a}_i^{\mathrm{p}}$

for all particle *i* do $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$ $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$

UNI FREIBURG

Pressure - Illustration

- A fluid under gravity at rest
 - Gravity cancels pressure acceleration $g = -a_i^{p} = \frac{1}{\rho_i} \nabla p_i = \sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij}$ $= \sum_j m_j \left(\frac{k(\rho_i - \rho_0)}{\rho_i^2} + \frac{k(\rho_j - \rho_0)}{\rho_j^2} \right) \nabla W_{ij}$
 - Differences between p_i and p_j are independent from k
 - Smaller k results in larger density error $\rho_i \rho_0$ to get the correct pressure

UNI FREIBURG
SESPH with Splitting

Split pressure and non-pressure accelerations

- Non-pressure acceleration a_i^{nonp}
- Predicted velocity
- Predicted position

$$\boldsymbol{v}_i^* = \boldsymbol{v}_i(t) + \Delta t \boldsymbol{a}_i^{\mathrm{nonp}}$$

$$oldsymbol{x}_i^* = oldsymbol{x}_i(t) + \Delta t oldsymbol{v}_i^*$$

- Predicted density
- Pressure *p* from predicted density ρ_i^*
- Pressure acceleration $oldsymbol{a}_i^{
 m p}$
- Final velocity and position $v_i(t + \Delta t) = v_i^* + \Delta t a_i^p = v_i^* \Delta t \frac{1}{\rho_i^*} \nabla p_i$

 $ho_i^*(\boldsymbol{x}_i^*)$

$$\boldsymbol{x}_i(t + \Delta t) = \boldsymbol{x}_i(t) + \Delta t \boldsymbol{v}_i(t + \Delta t)$$

SESPH with Splitting

- Motivation
 - Consider competing accelerations
 - Take effects of non-pressure accelerations into account when computing the pressure acceleration

Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility

Simple SPH Fluid Solver

- for all particle *i* do find neighbors *j* for all particle *i* do $\rho_i = \sum_j m_j W_{ij}$ $p_i = k(\frac{\rho_i}{\rho_0} - 1)$

Compute pressure with a state equation

for all particle i do

$$\boldsymbol{a}_i^{\mathrm{nonp}} = \nu \nabla^2 \boldsymbol{v}_i + \boldsymbol{g}$$

 $\boldsymbol{a}_i^{\mathrm{p}} = -\frac{1}{\rho_i} \nabla p_i$
 $\boldsymbol{a}_i(t) = \boldsymbol{a}_i^{\mathrm{nonp}} + \boldsymbol{a}_i^{\mathrm{p}}$

for all particle *i* do $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$ $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$

UNI FREIBURG

SESPH with Splitting

- for all particle i do find neighbors j
 - $\begin{array}{l} \mathbf{for \ all \ } particle \ i \ \mathbf{do} \\ \mathbf{a}_i^{\mathrm{nonp}} = \nu \nabla^2 \mathbf{v}_i + \mathbf{g} \\ \mathbf{v}_i^* = \mathbf{v}_i(t) + \Delta t \mathbf{a}_i^{\mathrm{nonp}} \end{array}$

for all particle *i* do $\rho_i^* = \sum_j m_j W_{ij} + \Delta t \sum_j m_j (\boldsymbol{v}_i^* - \boldsymbol{v}_j^*) \nabla W_{ij}$ $p_i = k(\frac{\rho_i^*}{\rho_0} - 1)$

Density at predicted positions Pressure at predicted positions

for all particle *i* do $a_i^{p} = -\frac{1}{\rho_i} \nabla p_i$

for all particle i do

$$\begin{aligned} \boldsymbol{v}_i(t + \Delta t) &= \boldsymbol{v}_i^* + \Delta t \boldsymbol{a}_i^{\mathrm{p}} \\ \boldsymbol{x}_i(t + \Delta t) &= \boldsymbol{x}_i(t) + \Delta t \boldsymbol{v}_i(t + \Delta t) \\ & \text{University of Freiburg - Computer Science Department - 149} \end{aligned}$$

UNI FREIBURG

Differential Density Update

- Density at advected positions is approximated without advecting the samples
- Continuity equation and time discretization

$$\frac{\mathrm{D}\rho_i}{\mathrm{D}t} = -\rho_i \nabla \cdot \boldsymbol{v}_i \quad \frac{\rho_i^* - \rho_i(t)}{\Delta t} = -\rho_i \nabla \cdot \boldsymbol{v}_i^*$$

– Space discretization with SPH

$$\frac{\rho_i^* - \sum_j m_i W_{ij}}{\Delta t} = -\rho_i \left(-\frac{1}{\rho_i} \sum_j m_j (\boldsymbol{v}_i^* - \boldsymbol{v}_j^*) \nabla W_{ij} \right)$$

- Predicted density due to the divergence of \boldsymbol{v}_i^*

$$\rho_i^* = \sum_j m_i W_{ij} + \Delta t \sum_j m_j (\boldsymbol{v}_i^* - \boldsymbol{v}_j^*) \nabla W_{ij} \qquad \begin{array}{l} \text{Approximate density at predicted} \\ \text{positions: } \boldsymbol{x}_i^* = \boldsymbol{x}_i(t) + \Delta t \boldsymbol{v}_i^* \end{array}$$

UNI FREIBURG

Iterative SESPH with Splitting

- Pressure accelerations are iteratively refined
 - Non-pressure acceleration
 - Predicted velocity
 - Iterate until convergence
 - Density from predicted position
 - Pressure from predicted density
 - Pressure acceleration
 - Refine predicted velocity
 - Final velocity and position

 $oldsymbol{a}_i^{ ext{nonp}}$ $oldsymbol{v}_i^* = oldsymbol{v}_i(t) + \Delta t oldsymbol{a}_i^{ ext{nonp}}$

$$egin{aligned} &
ho_i^*(oldsymbol{x}_i,oldsymbol{v}_i^*) \ & p_i \ & oldsymbol{a}_i^{ ext{p}} \ & oldsymbol{v}_i^* = oldsymbol{v}_i^* + \Delta t oldsymbol{a}_i^{ ext{p}} \end{aligned}$$

$$oldsymbol{v}_i(t+\Delta t) = oldsymbol{v}_i^*$$

 $oldsymbol{x}_i(t+\Delta t) = oldsymbol{x}_i(t) + \Delta t oldsymbol{v}_i(t+\Delta t)$

Iterative SESPH with Splitting

- Motivation
 - Iterative update is parameterized by a desired density error
 - Provides a fluid state with a guaranteed density error

Iterative SESPH with Splitting

- for all particle i do find neighbors j

for all particle *i* do $\boldsymbol{a}_{i}^{\mathrm{nonp}} = \nu \nabla^{2} \boldsymbol{v}_{i} + \boldsymbol{g} \quad ; \quad \boldsymbol{v}_{i}^{*} = \boldsymbol{v}_{i}(t) + \Delta t \boldsymbol{a}_{i}^{\mathrm{nonp}}$

repeat

for all particle *i* do $\rho_i^* = \sum_j m_j W_{ij} + \Delta t \sum_j m_j (\boldsymbol{v}_i^* - \boldsymbol{v}_j^*) \nabla W_{ij}$ $p_i = k(\frac{\rho_i^*}{\rho_0} - 1)$

for all particle *i* do $\boldsymbol{v}_i^* = \boldsymbol{v}_i^* - \Delta t \frac{1}{\rho_i^*} \nabla p_i$

until $\rho_i^* - \rho_0 < \eta$ user-defined density error

for all particle i do

 $\boldsymbol{v}_i(t+\Delta t) = \boldsymbol{v}_i^*$; $\boldsymbol{x}_i(t+\Delta t) = \boldsymbol{x}_i(t) + \Delta t \boldsymbol{v}_i(t+\Delta t)$

University of Freiburg – Computer Science Department – 153

UNI FREIBURG

Iterative SESPH - Variants

- Different quantities are accumulated

- Velocity changes (local Poisson SPH)
- Pressure (predictive-corrective SPH PCISPH)
 - Advantageous, if pressure is required for other computations
- Distances (position-based fluids PBF)

$$-\Delta \boldsymbol{x}_i = -\frac{1}{\rho_0} \sum_j (\frac{p_i}{\beta_i} + \frac{p_j}{\beta_j}) \nabla W_{ij}$$

Different EOS and stiffness constants are used

$$- p_{i} = k(\rho_{i} - \rho_{0}) \text{ with } k = \frac{\rho_{i}^{*} r_{i}^{2}}{2\rho_{0} \Delta t^{2}} \text{ in local Poisson SPH} - p_{i} = k(\rho_{i} - \rho_{0}) \text{ with } k = \frac{\rho_{0}^{2}}{2m_{i}^{2} \cdot \Delta t^{2}(\sum_{j} \nabla W_{ij}^{0} \cdot \sum_{j} \nabla W_{ij}^{0} + \sum_{j} (\nabla W_{ij}^{0} \cdot \nabla W_{ij}^{0}))} \text{ in PCISPH} - p_{i} = k(\frac{\rho_{i}}{\rho_{0}} - 1) \text{ with } k = 1 \text{ in PBF}$$

BURG

Predictive-Corrective Incompressible SPH - PCISPH

- Goal: Computation of pressure accelerations $a_i^{\rm p}$ that result in rest density ho_0 at all particles
- Formulation: Density at the next step should equal the rest density

PCISPH - Assumptions

- Simplifications to get one equation with one unknown:
 - Equal pressure at all neighboring samples

$$a_{i}^{p} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{ij} \approx -m_{i} \frac{2p_{i}}{\rho_{0}^{2}} \sum_{j} \nabla W_{ij}$$

$$\rho_{0} - \rho_{i}^{*} = \Delta t^{2} \sum_{j} m_{j} \left(-m_{i} \frac{2p_{i}}{\rho_{0}^{2}} \sum_{j} \nabla W_{ij} + m_{j} \frac{2p_{j}}{\rho_{0}^{2}} \sum_{k} \nabla W_{jk}\right) \nabla W_{ij} \qquad \text{Unknown pressures } p_{i} \text{ and } p_{j}$$

- For sample j, only consider the contribution from i $\rho_{0} - \rho_{i}^{*} = \Delta t^{2} \sum_{j} m_{j} \left(-m_{i} \frac{2p_{i}}{\rho_{0}^{2}} \sum_{j} \nabla W_{ij} + m_{i} \frac{2p_{i}}{\rho_{0}^{2}} \nabla W_{ji} \right) \nabla W_{ij} \qquad \text{Unknown pressure } \rho_{i}$ $\rho_{0} - \rho_{i}^{*} = \Delta t^{2} m_{i}^{2} \frac{2p_{i}}{\rho_{0}^{2}} \sum_{j} \left(-\sum_{j} \nabla W_{ij} - \nabla W_{ij} \right) \nabla W_{ij} = -\Delta t^{2} m_{i}^{2} \frac{2p_{i}}{\rho_{0}^{2}} \left(\sum_{j} \nabla W_{ij} \cdot \sum_{j} \nabla W_{ij} + \sum_{j} (\nabla W_{ij} \cdot \nabla W_{ij}) \right)$

PCISPH - Solution

– Solve for unknown pressure:

$$\rho_0 - \rho_i^* = -\Delta t^2 m_i^2 \frac{2p_i}{\rho_0^2} \left(\sum_j \nabla W_{ij} \cdot \sum_j \nabla W_{ij} + \sum_j (\nabla W_{ij} \cdot \nabla W_{ij}) \right)$$
$$p_i = \frac{\rho_0^2}{2\Delta t^2 m_i^2 (\sum_j \nabla W_{ij} \cdot \sum_j \nabla W_{ij} + \sum_j (\nabla W_{ij} \cdot \nabla W_{ij}))} (\rho_i^* - \rho_0) \qquad (p_i = k(\rho_i^* - \rho_0))$$

Intuition: This pressure causes pressure accelerations that cause velocity changes that correspond to a divergence that results in rest density at the sample.

$$\rho(t + \Delta t) = \rho_0 = \rho_i^* + \Delta t \sum_j m_j (\Delta t \boldsymbol{a}_i^{\mathrm{p}} - \Delta t \boldsymbol{a}_j^{\mathrm{p}}) \nabla W_{ij}$$

University of Freiburg – Computer Science Department – 157

FREIBURG

PCISPH - Discussion

- Pressure is computed with a state equation $p_i = k(\rho_i^* \rho_0)$
- k is not user-defined
- Instead, an optimized value k is derived and used
- Pressure is iteratively refined

PCISPH - Performance

- Typically three to five iterations for density errors between 0.1% and 1%
- Speed-up factor over non-iterative SESPH up to 50
 - More computations per time step compared to SESPH
 - Significantly larger time step than in SESPH
 - Speed-up dependent on scenario
- Non-linear relation between time step and iterations
 - Largest possible time step does not necessarily lead to an optimal overall performance

Comparison

- PCISPH [Solenthaler 2009]
 - Iterative pressure computation
 - Large time step
- WCSPH [Becker and Teschner 2007]
 - Efficient to compute
 - Small time step
- Computation time for the PCISPH scenario is 20 times shorter than WCSPH

Projection Schemes - Introduction

- Pressure causes pressure accelerations that cause velocity changes that cause displacements such that particles have rest density
- Projection schemes solve a linear system to compute the respective pressure field
 - PCISPH uses simplifications to compute pressure per particle from one equation.
 Solving a linear system is avoided.

Projection Schemes - Derivation

$$\begin{aligned} \frac{d\boldsymbol{v}(t)}{dt} &= -\frac{1}{\rho}\nabla p(t) + \boldsymbol{a}^{\text{nonp}}(t) & \text{Velocity change per time step due to pressure} \\ \text{acceleration and non-pressure acceleration} \end{aligned}$$

$$\begin{aligned} \boldsymbol{v}^* &= \boldsymbol{v}(t) + \Delta t \boldsymbol{a}^{\text{nonp}}(t) & \text{Predicted velocity after non-pressure acceleration} \\ \boldsymbol{v}(t + \Delta t) &= \boldsymbol{v}^* - \Delta t \frac{1}{\rho} \nabla p(t) & \text{Velocity after all accelerations} \\ \boldsymbol{v}(t + \Delta t) - \boldsymbol{v}^* &= -\Delta t \frac{1}{\rho} \nabla p(t) & \text{Velocity change due to pressure acceleration} \\ \nabla \cdot (\boldsymbol{v}^* - \boldsymbol{v}(t + \Delta t)) &= \nabla \cdot \left(\Delta t \frac{1}{\rho} \nabla p(t)\right) & \text{Divergence of the velocity change} \\ \text{due to pressure acceleration} \end{aligned}$$

UNI FREIBURG

Projection Schemes - Derivation

$$\nabla \cdot (\boldsymbol{v}^* - \boldsymbol{v}(t + \Delta t)) = \nabla \cdot \left(\Delta t \frac{1}{\rho} \nabla p(t)\right)$$
$$\nabla \cdot \boldsymbol{v}^* - \nabla \cdot \boldsymbol{v}(t + \Delta t) = \nabla \cdot \left(\Delta t \frac{1}{\rho} \nabla p(t)\right)$$

Constraint: $\nabla \cdot \boldsymbol{v}(t + \Delta t) = 0$

Divergence of the final velocity field should be zero, i.e. no density change per time

$$\nabla \cdot \boldsymbol{v}^* = -\nabla \cdot (\Delta t \boldsymbol{a}^{\mathrm{p}})$$

 $\rho \nabla \cdot \boldsymbol{v}^* = \Delta t \nabla^2 p(t)$

Divergence of the velocity change due to pressure acceleration should cancel the divergence of the predicted velocity

Pressure Poisson equation with unknown pressure

UNI FREIBURG

Density Invariance vs. Velocity Divergence

- Pressure Poisson equation PPE that minimizes the velocity divergence: $\Delta t \nabla^2 p(t) = \rho \nabla \cdot \boldsymbol{v}^*$
- PPE that minimizes the density error: $\Delta t \nabla^2 p(t) = \frac{\rho_0 \rho^*}{\Delta t}$
 - Derivation: $\frac{D\rho(t+\Delta t)}{Dt} + \rho(t+\Delta t)\nabla \cdot \boldsymbol{v}(t+\Delta t) = 0$ Continuity equation at time $t + \Delta t$ Constraint: $\rho(t + \Delta t) = \rho_0$ $\frac{\rho_0 - \rho(t)}{\Delta t} + \rho_0 \nabla \cdot \left(\boldsymbol{v}^* - \Delta t \frac{1}{\rho_0} \nabla p(t) \right) = 0$ $\frac{\rho_0 - (\rho(t) - \Delta t \rho_0 \nabla \cdot \boldsymbol{v}^*)}{\Delta t} - \Delta t \nabla^2 p(t) = 0$ FREIBURG Predicted density after $\rho^* = \rho(t) - \Delta t \rho_0 \nabla \cdot \boldsymbol{v}^*$ sample advection with $oldsymbol{v}^*$

PPE Forms - Interpretation

- Velocity divergence: $-\Delta t \frac{1}{\rho} \nabla^2 p = -\nabla \cdot v^*$
 - Pressure *p* causes a pressure acceleration $-\frac{1}{\rho}\nabla p$ that causes a velocity change $-\Delta t \frac{1}{\rho}\nabla p$ whose divergence $\nabla \cdot (-\Delta t \frac{1}{\rho}\nabla p)$ cancels the divergence $\nabla \cdot v^*$ of the predicted velocity, i.e. $\nabla \cdot v^* + \nabla \cdot (-\Delta t \frac{1}{\rho}\nabla p) = 0$
- Density invariance: $-\Delta t \nabla^2 p = -\frac{\rho_0 \rho^*}{\Delta t}$
 - The divergence $\nabla \cdot (-\Delta t \frac{1}{\rho} \nabla p)$ multiplied with density ρ is a density change per time that cancels the predicted density error per time $\frac{\rho_0 \rho^*}{\Delta t}$, i.e. $\frac{\rho_0 \rho^*}{\Delta t} + \rho \nabla \cdot (-\Delta t \frac{1}{\rho} \nabla^2 p) = 0$

PPE Solver

- Linear system with unknown pressure values Ap = s
 - One equation per particle $(Ap)_i = s_i$ $(\Delta t < \nabla^2 p_i > = \frac{\rho_0 <\rho_i^* >}{\Delta t})$
- Iterative solvers
 - Conjugate Gradient
 - Relaxed Jacobi
- Fast computation per iteration
 - Few non-zero entries in each equation
 - Matrix-free implementations
 - Very few information per particle

University of Freiburg – Computer Science Department – 167

<A> is a discretized form of A

PPE Solver

- Very large time steps
- Convergence dependent on the formulation
 - SPH discretization of $\nabla^2 p$
 - Source term (velocity divergence or density invariance)
- Accuracy issues
 - Volume drift for velocity divergence
 - Oscillations for density invariance

PPE Discretization

– Implicit incompressible SPH (IISPH) [Ihmsen et al. 2014]

- PPE with density invariance as source term: $\Delta t^2 \nabla^2 p = \rho_0 \rho^*$
- Computation of ρ_i^* : $\rho_i^* = \rho_i + \Delta t \sum_j m_j \boldsymbol{v}_{ij}^* \nabla W_{ij}$ with $\boldsymbol{v}_i^* = \boldsymbol{v}_i + \Delta t \boldsymbol{a}_i^{\text{nonp}}$

- Computation of
$$\Delta t^2 \nabla^2 p_i$$
:
 $\Delta t^2 \nabla^2 p_i = -\Delta t \rho_i \nabla \cdot (\Delta t \boldsymbol{a}_i^{\mathrm{p}}) = \Delta t^2 \sum_j m_j \left(\boldsymbol{a}_i^{\mathrm{p}} - \boldsymbol{a}_j^{\mathrm{p}} \right) \cdot \nabla W_{ij}$
with
 $\boldsymbol{a}_i^{\mathrm{p}} = -\frac{1}{\rho_i} \nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_i^2} \right) \nabla W_{ij}$

UNI FREIBURG

PPE System

– PPE

$$\Delta t^2 \nabla^2 p_i = \rho_0 - \rho_i^*$$

density change due to pressure accelerations

negative of the predicted density error

Discretized PPE

– System:
$$Ap = s$$

- Per particle:
$$\Delta t^{2} \sum_{j} m_{j} \left(\boldsymbol{a}_{i}^{\mathrm{p}} - \boldsymbol{a}_{j}^{\mathrm{p}} \right) \nabla W_{ij} = \underbrace{\rho_{0} - \rho_{i}^{*}}_{s_{i}} \quad \boldsymbol{a}_{i}^{\mathrm{p}} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) \nabla W_{ij}$$

– Interpretation:

 $\Delta t \sum_{j} m_{j} \left(\Delta t \boldsymbol{a}_{i}^{\mathrm{p}} - \Delta t \boldsymbol{a}_{j}^{\mathrm{p}} \right) \nabla W_{ij} = \rho_{0} - \rho_{i}^{*}$ $\Delta t \sum_{j} m_{j} \left(\boldsymbol{v}_{i}^{\mathrm{p}} - \boldsymbol{v}_{j}^{\mathrm{p}} \right) \nabla W_{ij} = \rho_{0} - \rho_{i}^{*}$ $\Delta t \cdot \rho_{i} \cdot \nabla \cdot \boldsymbol{v}_{i}^{\mathrm{p}} = \rho_{0} - \rho_{i}^{*}$

Pressure accelerations causes a velocity change **v**^p whose divergence causes a density change.

University of Freiburg – Computer Science Department – 170

FREIBURG

PPE Solver

- Relaxed Jacobi: $p_i^{l+1} = \max\left(p_i^l + \omega \frac{s_i (\boldsymbol{A}\boldsymbol{p}^l)_i}{a_{ii}}, 0\right)$
 - For IISPH, typically $\omega=0.5$
 - Diagonal element a_{ii}
 - Accumulate all coefficients of p_i in $\Delta t^2 \sum_j m_j (\boldsymbol{a}_i^p \boldsymbol{a}_j^p) \nabla W_{ij}$

$$-a_{ii} = \Delta t^2 \sum_j m_j \left(-\sum_j \frac{m_j}{\rho_j^2} \nabla W_{ij} \right) \cdot \nabla W_{ij} + \Delta t^2 \sum_j m_j \left(\frac{m_i}{\rho_i^2} \nabla W_{ji} \right) \cdot \nabla W_{ij}$$

PPE Solver - Implementation

- Initialization: $\rho_{i} = \sum_{j} m_{j} W_{ij} \quad a_{ii} = \dots$ $\boldsymbol{v}_{i}^{*} = \boldsymbol{v}_{i} + \Delta t \boldsymbol{a}_{i}^{\text{nonp}}$ $s_{i} = \rho_{0} - \rho_{i} - \Delta t \sum_{j} m_{j} \boldsymbol{v}_{ij}^{*} \nabla W_{ij}$ $p_{i}^{0} = \max\left(\omega \frac{s_{i}}{a_{ii}}, 0\right)$

- Solver update in iteration *I*:

- First loop: $(\boldsymbol{a}_i^{\mathrm{p}})^l = -\sum_j m_j \left(\frac{p_i^l}{\rho_i^2} + \frac{p_j^l}{\rho_j^2}\right) \nabla W_{ij}$
- Second loop: $(\boldsymbol{A}\boldsymbol{p}^l)_i = \Delta t^2 \sum_j m_j \left((\boldsymbol{a}_i^{\mathrm{p}})^l (\boldsymbol{a}_j^{\mathrm{p}})^l \right) \nabla W_{ij}$

$$p_i^{l+1} = \max\left(p_i^l + \omega \frac{s_i - (\boldsymbol{A}\boldsymbol{p}^l)_i}{a_{ii}}, 0\right) \qquad \text{If } a_{ii} \text{ not equal to zero}$$
$$(\rho_i^{\text{error}})^l = (\boldsymbol{A}\boldsymbol{p}^l)_i - s_i \qquad \text{Continue until error is small}$$

UNI FREIBURG

IISPH with Boundary Handling

- PPE:
$$\Delta t^2 \nabla^2 p_f = \rho_0 - \rho_f^* = \rho_0 - \rho_f + \Delta t \rho_0 \nabla \cdot \boldsymbol{v}_f^*$$

- Discretized PPE: Ap = s

Index f indicates a fluid sample. Index b indicates a boundary sample. f_f indicates a fluid neighbor of f. f_b indicates a boundary neighbor of f.

$$(\boldsymbol{A}\boldsymbol{p})_{f} = \Delta t^{2} \sum_{f_{f}} m_{f_{f}} \left(\boldsymbol{a}_{f}^{\mathrm{p}} - \boldsymbol{a}_{f_{f}}^{\mathrm{p}}\right) \nabla W_{ff_{f}} + \Delta t^{2} \sum_{f_{b}} m_{f_{b}} \boldsymbol{a}_{f}^{\mathrm{p}} \nabla W_{ff_{b}}$$
$$\boldsymbol{a}_{f}^{\mathrm{p}} = -\sum_{f_{f}} m_{f_{f}} \left(\frac{p_{f}}{\rho_{f}^{2}} + \frac{p_{f_{f}}}{\rho_{f_{f}}^{2}}\right) \nabla W_{ff_{f}} - \gamma \sum_{f_{b}} m_{f_{b}} 2\frac{p_{f}}{\rho_{f}^{2}} \nabla W_{ff_{b}}$$
$$s_{f} = \rho_{0} - \rho_{f} - \Delta t \sum_{f_{f}} m_{f_{f}} \left(\boldsymbol{v}_{f}^{*} - \boldsymbol{v}_{f_{f}}^{*}\right) \nabla W_{ff_{f}} - \Delta t \sum_{f_{b}} m_{f_{b}} \left(\boldsymbol{v}_{f}^{*} - \boldsymbol{v}_{f_{b}}(t + \Delta t)\right) \nabla W_{ff_{b}}$$

UNI FREIBURG

IISPH with Boundary Handling

- Diagonal element

$$a_{ff} = \Delta t^{2} \sum_{f_{f}} m_{f_{f}} \left(-\sum_{f_{f}} \frac{m_{f_{f}}}{\rho_{f_{f}}^{2}} \nabla W_{ff_{f}} - 2\gamma \sum_{f_{b}} \frac{m_{f_{b}}}{\rho_{0}^{2}} \nabla W_{ff_{b}} \right) \nabla W_{ff_{f}}$$

$$+ \Delta t^{2} \sum_{f_{f}} m_{f_{f}} \left(\frac{m_{f}}{\rho_{f}^{2}} \nabla W_{ff_{f}} \right) \nabla W_{ff_{f}}$$

$$+ \Delta t^{2} \sum_{f_{b}} m_{f_{b}} \left(-\sum_{f_{f}} \frac{m_{f_{f}}}{\rho_{f_{f}}^{2}} \nabla W_{ff_{f}} - 2\gamma \sum_{f_{b}} \frac{m_{f_{b}}}{\rho_{0}^{2}} \nabla W_{ff_{b}} \right) \nabla W_{ff_{f}}$$

IISPH with Boundary - Implementation

– Initialization: $\rho_f = \sum_{f_f} m_{f_f} W_{ff_f} + \sum_{f_b} m_{f_b} W_{ff_b} \qquad a_{ff} = \dots$ $\boldsymbol{v}_f^* = \boldsymbol{v}_f + \Delta t \boldsymbol{a}_f^{\mathrm{nonp}}$ $s_f = \rho_0 - \rho_f - \Delta t \sum_{f_f} m_{f_f} \boldsymbol{v}_{ff_f}^* \nabla W_{ff_f} - \Delta t \sum_{f_b} m_{f_b} \boldsymbol{v}_{ff_b}^* \nabla W_{ff_b}$ $p_f^0 = \max\left(\omega \frac{s_f}{a_{ff}}, 0\right)$

- Solver update in iteration *I*:

- First loop: $(a_{f}^{p})^{l} = -\sum_{f_{f}} m_{f_{f}} \left(\frac{p_{f}^{l}}{\rho_{f}^{2}} + \frac{p_{f_{f}}^{l}}{\rho_{f_{f}}^{2}} \right) \nabla W_{ff_{f}} \gamma \sum_{f_{b}} m_{f_{b}} 2 \frac{p_{f}^{l}}{\rho_{f}^{2}} \nabla W_{ff_{b}}$
- Second loop: $(\boldsymbol{A}\boldsymbol{p}^{l})_{f} = \Delta t^{2} \sum_{f_{f}} m_{f_{f}} \left((\boldsymbol{a}_{f}^{\mathrm{p}})^{l} (\boldsymbol{a}_{f_{f}}^{\mathrm{p}})^{l} \right) \nabla W_{ff_{f}} + \Delta t^{2} \sum_{f_{b}} m_{f_{b}} (\boldsymbol{a}_{f}^{\mathrm{p}})^{l} \nabla W_{ff_{b}}$

$$p_f^{l+1} = \max\left(p_f^l + \omega \frac{s_f - (\boldsymbol{A}\boldsymbol{p}^l)_f}{a_{ff}}, 0\right) \qquad \text{If } a_{ff} \text{ not equal to zero}$$
$$(\rho_f^{\text{error}})^l = (\boldsymbol{A}\boldsymbol{p}^l)_f - s_f \qquad \text{Continue until error is set}$$

Continue until error is small

PPE Solver - Comparison with PCISPH

– Breaking dam

- 100k particles with diameter 0.05m
- 0.01% average density error

	PCISPH			IISPH			PCISPH / IISPH			
	total comp. time [s]				total comp. time [s]			ratio		
$\Delta t \ [s]$	avg. iter.	pressure	overall	avg. iter.	pressure	overall	iterations	pressure	overall	
0.0005	4.3	540	1195	2.2	148	978	2.0	3.6	1.2	
0.00067	7.2	647	1145	2.9	149	753	2.5	4.3	1.5	
0.001	14.9	856	1187	4.9	164	576	3.0	5.2	2.1	
0.0025	66.5	1495	1540	18.4	242	410	3.6	6.2	3.8	
0.004	-	-	-	33.5	273	379	-	-	-	
0.005	-	-	-	45.8	297	383	-	-	-	

Largest possible time step does not necessarily result in the best performance

Simulation in Computer Graphics Particle Fluids - Misc

Matthias Teschner

UNI FREIBURG

Parallel Scaling

University of Freiburg – Computer Science Department – 178

UNI FREIBURG