Simulation in Computer Graphics

Particle Fluids

Matthias Teschner
Particle Fluids in Animation

Cooperation with Pixar Animation Studios

10 million fluid + 4 million rigid particles, 50 s simulated, 50 h computation time on a 16-core PC, www.youtube.com/cgfreiburg
Particle Fluids in Commercials

Copyright NHB Studios, Berlin, Hamburg, Dusseldorf
Particle Fluids in Engineering

PreonLab
FIFTY2 Technology
FORD F-150
Water wading
Particle Fluids in Engineering

PreonLab
FIFTY2 Technology

AVL

Lubrication
Validation
Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility
Concept
Concept
Fluid Representation
Fluid Representation

- Fluid body is subdivided into small moving parcels, i.e. particles, with fluid properties
Particles / Fluid Parcels

- Represent small fluid portions
- Are represented by a sample position x_i
- Move with their velocity v_i
- Have a fixed mass m_i
- Volume and density are related by $V_i = \frac{m_i}{\rho_i}$
 - Preservation of density / volume over time is one of the challenges of a fluid simulator
- Shape is not considered
Typical Setup

- Define overall fluid volume V and fluid density ρ_0
- Define number n of particles $V_i = \frac{V}{n}$
- Particles of uniform size
- Compute particle mass as $m_i = \rho_0 \cdot V_i$
- Sample x_i represents a particle in the simulation
Particle Shape

- Typically initialized as a cube
- Typically visualized as a sphere
- Implicitly handled as Voronoi cell by the simulation

PreonLab, FIFTY2 Technology GmbH
Adrian Secord: Weighted Voronoi Stippling, NPAR 2002.
Fluid Simulation

- Computation of positions and velocities of fluid parcels over time
 - Velocity change from current time t to subsequent time $t + \Delta t$
 $$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \Delta t \cdot \mathbf{a}(t)$$
 - Position change
 $$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \cdot \mathbf{v}(t + \Delta t)$$
Example

Fluid parcels

Known current state

Unknown future state

\[\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \Delta t \cdot \mathbf{a}(t) \]

\[\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \cdot \mathbf{v}(t + \Delta t) \]
Accelerations

- Gravity \mathbf{g}
- Viscosity $\nu \nabla^2 \mathbf{v}$
 - Friction
 - Accelerate parcel towards the average velocity of adjacent fluid parcels
- Pressure acceleration $-\frac{1}{\rho} \nabla p$
 - Prevent fluid parcels from density / volume changes
Simulation Step - Example

- Gravity and viscosity would change the parcel volume
 \[\dot{x}(t) = 0, \quad \dot{v}(t) = 0 \]
 \[\text{Gravity} \quad \text{Viscosity} \]
 \[\nu \nabla^2 v(t) = 0 \]

- Pressure acceleration avoids the volume/density change
 \[-\frac{1}{\rho} \nabla p = -g \]
 \[\text{Pressure acceleration} \]
Simulation Step - Example

- Current state
 \[\begin{align*}
 x(t) &= 0 \\
 v(t) &= 0
 \end{align*} \]

- Overall acceleration
 \[a(t) = g + \nu \nabla^2 v(t) - \frac{1}{\rho} \nabla p \]
 \[= g + 0 - g = 0 \]

- Subsequent state
 \[\begin{align*}
 x(t + \Delta t) &= x(t) + \Delta t \cdot v(t) = 0 \\
 v(t + \Delta t) &= v(t) + \Delta t \cdot a(t) = 0
 \end{align*} \]
Neighboring Parcels

- Computations require neighboring parcels j
- Density or volume
 \[\rho_i = \sum_j m_j W_{ij} \quad V_i = \frac{V_i^0}{\sum_j V_j^0 W_{ij}} \]
- Pressure acceleration
 \[-\frac{V_i}{m_i} \nabla p = -\frac{V_i}{m_i} \sum_j (p_i + p_j) V_j \nabla W_{ij} \]
 \[-\frac{1}{\rho_i} \nabla p_i = - \sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij} \]
- Smoothed Particle Hydrodynamics SPH
 - Gingold and Monaghan, Lucy
Simulation Step - Implementation

- Determine adjacent particles / neighbors \(x_j(t) \) of particle \(x_i(t) \) (\(x_i(t) \) is neighbor of \(x_i(t) \))
- Compute accelerations \(a_i(t) = \sum_j \ldots \) as sums of neighbors
- Advect the particles, e.g. Euler-Cromer
- Determine neighbors of particle \(x_i(t + \Delta t) \)
- ...
Governing Equations

- Particles /sample positions \(\mathbf{x}_i \) and the respective attributes are advected with the local fluid velocity \(\mathbf{v}_i \)

\[
\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i
\]

- Time rate of change of the velocity \(\mathbf{v}_i \) of an advected sample is governed by the Lagrange form of the Navier-Stokes equation

\[
\frac{d\mathbf{v}_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 \mathbf{v}_i + \frac{\mathbf{F}_{\text{other}}}{m_i}
\]
Accelerations

\[-\frac{1}{\rho_i} \nabla p_i : \text{acceleration due to pressure differences} \]

- Preserves the fluid volume / density
- Acts in normal direction at the surface of the fluid element
- Small and preferably constant density deviations are important for high-quality simulation
Accelerations

- $\nu \nabla^2 \mathbf{v}_i$: acceleration due to friction forces between particles with different velocities
 - Friction forces act in tangential (and normal) direction at fluid elements
 - Kinematic viscosity $\nu \approx 10^{-6} \text{m}^2 \cdot \text{s}^{-1}$: larger friction is less realistic, but can improve the stability
 - Dynamic viscosity $\eta = \mu = \nu \cdot \rho_0$
- $\frac{\mathbf{F}_{\text{other}}}{m_i}$: e.g., gravity
Accelerations

\[-\frac{1}{\rho} \nabla p = -\frac{1}{\rho} \left(\begin{array}{c} \frac{\partial p}{\partial x_x} \\ \frac{\partial p}{\partial x_y} \\ \frac{\partial p}{\partial x_z} \end{array} \right) = -\frac{1}{\rho} \nabla \cdot \left(\begin{array}{ccc} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{array} \right)\]

\[\nu \nabla^2 \mathbf{v} = \nu \nabla \cdot (\nabla \mathbf{v}) = \nu \nabla \cdot \left(\begin{array}{ccc} \frac{\partial v_x}{\partial x_x} & \frac{\partial v_x}{\partial x_y} & \frac{\partial v_x}{\partial x_z} \\ \frac{\partial v_y}{\partial x_x} & \frac{\partial v_y}{\partial x_y} & \frac{\partial v_y}{\partial x_z} \\ \frac{\partial v_z}{\partial x_x} & \frac{\partial v_z}{\partial x_y} & \frac{\partial v_z}{\partial x_z} \end{array} \right)\]

\[= \nu \left(\begin{array}{ccc} \frac{\partial^2 v_x}{\partial x_x^2} + \frac{\partial^2 v_x}{\partial x_y^2} + \frac{\partial^2 v_x}{\partial x_z^2} \\ \frac{\partial^2 v_y}{\partial x_x^2} + \frac{\partial^2 v_y}{\partial x_y^2} + \frac{\partial^2 v_y}{\partial x_z^2} \\ \frac{\partial^2 v_z}{\partial x_x^2} + \frac{\partial^2 v_z}{\partial x_y^2} + \frac{\partial^2 v_z}{\partial x_z^2} \end{array} \right)\]
Forces

- Pressure force
- Viscosity force
- External force
Lagrangian Fluid Simulation

- Fluid simulators compute the velocity field over time.
- Lagrangian approaches compute the velocities for samples \mathbf{x}_i that are advected with their velocity \mathbf{v}_i.

\[
\mathbf{v}_i(x_i, y_i, z_i, t) = (u_i, v_i, w_i)
\]

\[
\mathbf{x}_i(t) = (x_i, y_i, z_i)
\]

\[
\mathbf{v}_i(x_i + \Delta t \cdot u_i, y_i + \Delta t \cdot v_i, z_i + \Delta t \cdot w_i, t + \Delta t)
\]

\[
\mathbf{x}_i(t + \Delta t) = (x_i + \Delta t \cdot u_i, y_i + \Delta t \cdot v_i, z_i + \Delta t \cdot w_i)
\]
Moving Parcels vs. Static Cells

\[
\frac{dv}{dt} = g + \nu \nabla^2 v - \frac{1}{\rho} \nabla p
\]

Lagrangian: Acceleration of a moving parcel.

\[
\frac{\partial v}{\partial t} = g + \nu \nabla^2 v - \frac{1}{\rho} \nabla p - (v \cdot \nabla)v
\]

Eulerian: Acceleration at a static cell.

\[
\frac{Dv}{Dt} = g + \nu \nabla^2 v - \frac{1}{\rho} \nabla p
\]

\[
\frac{Dv}{Dt} = \frac{\partial v}{\partial t} + (v \cdot \nabla)v \quad \text{or}
\]

\[
\frac{Dv}{Dt} = \frac{dv}{dt} \quad \frac{dx}{dt} = v
\]
Smoothed Particle Hydrodynamics

– Proposed by Gingold / Monagahan and Lucy (1977)
– SPH interpolates quantities at arbitrary positions and approximates the spatial derivatives with a finite number of samples, i.e. adjacent particles
SPH for Fluids

- SPH in a Lagrangian fluid simulation
 - Fluid is represented with particles
 - Particle positions and velocities are governed by
 \[
 \frac{dx_i}{dt} = v_i \quad \text{and} \quad \frac{dv_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 v_i + \frac{F_{\text{other}}}{m_i}
 \]
 - \(\rho_i\), \(-1/\rho_i \nabla p_i\), \(\nu \nabla^2 v_i\) and \(F_{\text{other}}/m_i\) are computed with SPH
SPH Interpolation

- Quantity A_i at an arbitrary position \mathbf{x}_i is approximately computed with a set of known quantities A_j at sample positions \mathbf{x}_j: $A_i = \sum_j V_j A_j W_{ij} = \sum_j \frac{m_j}{\rho_j} A_j W_{ij}$
 - \mathbf{x}_i is not necessarily a sample position
 - If \mathbf{x}_i is a sample position, it contributes to the sum
- W_{ij} is a kernel function that weights the contributions of sample positions \mathbf{x}_j according to their distance to \mathbf{x}_i
 - $W_{ij} = W\left(\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{h}\right) = W(q)$
 - h is typically the particle size
 - $W(q) > 0$ for, e.g. $0 \leq q < 2$
Kernel Function

- Close to a Gaussian, but with compact support
 - Support typically between $2h$ and $5h$
- E.g. cubic spline (1D: $\alpha = \frac{1}{6h}$, 2D: $\alpha = \frac{5}{14\pi h^2}$, 3D: $\alpha = \frac{1}{4\pi h^3}$)

$$W(q) = \alpha \begin{cases}
(2 - q)^3 - 4(1 - q)^3 & 0 \leq q < 1 \\
(2 - q)^3 & 1 \leq q < 2 \\
0 & q \geq 2
\end{cases} \quad q = \frac{\|x_i - x_j\|}{h}$$

- Number of considered neighbors depends on
 - Dimensionality, kernel support, particle spacing
 - E.g., 3D, cubic spline, support $2h$, particle spacing h
 results in 30-40 neighboring particles
 - Number of neighbors influences performance / accuracy
Kernel Function in 1D

\[W(x_j - x_i) = \begin{cases}
\frac{1}{6h} \left((2 - \frac{||x_i - x_j||}{h})^3 - 4(1 - \frac{||x_i - x_j||}{h})^3 \right) & 0 \leq \frac{||x_i - x_j||}{h} < 1 \\
(2 - \frac{||x_i - x_j||}{h})^3 & 1 \leq \frac{||x_i - x_j||}{h} < 2 \\
0 & \frac{||x_i - x_j||}{h} \geq 2
\end{cases} \]

\[W(x_j - x_i) = \frac{2}{3h} e^{-\frac{||x_i - x_j||^2}{2(0.59h)^2}} \]
Spatial Derivatives with SPH

– Original approximations

\[\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij} \]
\[\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij} \]

– Currently preferred approximations

\[\nabla A_i = \rho_i \sum_j m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla W_{ij} \]
\[\nabla^2 A_i = 2 \sum_j \frac{m_j}{\rho_j} A_{ij} \frac{x_{ij} \cdot \nabla W_{ij}}{x_{ij} \cdot x_{ij} + 0.01h^2} \]
\[\nabla \cdot A_i = -\frac{1}{\rho_i} \sum_j m_j A_{ij} \nabla W_{ij} \]

\[A_{ij} = A_i - A_j \quad A_{ij} = A_i - A_j \quad x_{ij} = x_i - x_j \]
Kernel Derivative in 1D

\[W(x_j - x_i) = \frac{1}{6h} \left\{ \begin{array}{ll}
(2 - \frac{||x_i-x_j||}{h})^3 & 0 \leq \frac{||x_i-x_j||}{h} < 1 \\
(2 - \frac{||x_i-x_j||}{h})^3 & 1 \leq \frac{||x_i-x_j||}{h} < 2 \\
0 & \frac{||x_i-x_j||}{h} \geq 2
\end{array} \right. \]

\[\nabla W(x_j - x_i) = \frac{-(x_i-x_j)}{6h^2||x_i-x_j||} \left\{ \begin{array}{ll}
-3(2 - \frac{||x_i-x_j||}{h})^2 + 12(1 - \frac{||x_i-x_j||}{h})^2 & 0 \leq \frac{||x_i-x_j||}{h} < 1 \\
-3(2 - \frac{||x_i-x_j||}{h})^2 & 1 \leq \frac{||x_i-x_j||}{h} < 2 \\
0 & \frac{||x_i-x_j||}{h} \geq 2
\end{array} \right. \]
Density

- Explicit form
 - $\rho_i = \sum_j \frac{m_j}{\rho_j} \rho_j W_{ij} = \sum_j m_j W_{ij}$
 - Comparatively exact
 - Erroneous for incomplete neighborhood

- Differential update
 - Using the continuity equation
 - Time rate of change of the density is related to the divergence of the velocity field $\frac{d\rho_i}{dt} = -\rho_i \nabla \cdot \mathbf{v}_i$
 $\frac{d\rho_i}{dt} = \sum_j m_j \mathbf{v}_{ij} \nabla W_{ij}$
 - Drift
Pressure

- Quantifies fluid compression
 - E.g., state equation \(p_i = \max \left(k \left(\frac{\rho_i}{\rho_0} - 1 \right), 0 \right) \)
 - Rest density of the fluid \(\rho_0 \)
 - User-defined stiffness \(k \)
- Pressure acceleration
 - \(\mathbf{a}_i^p = - \frac{1}{\rho_i} \nabla p_i = - \sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij} \)
 - Accelerates particles from high to low pressure, i.e. from high to low compression to minimize density deviation \(\frac{\rho_i}{\rho_0} - 1 \)
Simple SPH Fluid Solver

- Find neighbors of all particles
- Compute density
- Compute pressure
- Compute non-pressure accelerations, e.g. viscosity, gravity
- Compute pressure acceleration
- Update velocity and position

Contact handling, i.e. boundary handling is often realized as pressure acceleration.
SPH Discretizations

– Density computation \(\rho_i = \sum_j m_j W_{ij} \)
– Pressure acceleration \(-\frac{1}{\rho_i} \nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij} \)
– Viscosity acceleration \(\nu \nabla^2 \mathbf{v}_i = 2\nu \sum_j m_j \frac{\mathbf{v}_{ij} \cdot \mathbf{x}_{ij}}{\mathbf{x}_{ij} \cdot \mathbf{x}_{ij} + 0.01h^2} \nabla W_{ij} \)
Simple SPH Fluid Solver

- **for all particle** \(i \) **do**
 - find neighbors \(j \)

for all particle \(i \) **do**

\[
\begin{align*}
\rho_i &= \sum_j m_j W_{ij} & \text{Compute density} \\
p_i &= k \left(\frac{\rho_i}{\rho_0} - 1 \right) & \text{Compute pressure}
\end{align*}
\]

for all particle \(i \) **do**

\[
\begin{align*}
\mathbf{a}_{i}^{\text{nonp}} &= \nu \nabla^2 \mathbf{v}_i + \mathbf{g} & \text{Compute non-pressure accelerations} \\
\mathbf{a}_{i}^{p} &= -\frac{1}{\rho_i} \nabla p_i & \text{Compute pressure acceleration}
\end{align*}
\]

for all particle \(i \) **do**

\[
\begin{align*}
\mathbf{v}_i(t + \Delta t) &= \mathbf{v}_i(t) + \Delta t \mathbf{a}_i(t) \\
\mathbf{x}_i(t + \Delta t) &= \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t)
\end{align*}
\]
Boundary Handling

– Boundaries can be represented with static fluid samples
– Computations incorporate boundary samples, e.g.

\[
\rho_i = \sum_f m_f W_{if} + \sum_b m_b W_{ib}
\]

\[
-\frac{1}{\rho_i} \nabla p_i = -\sum_f m_f \left(\frac{p_i}{\rho_i^2} + \frac{p_f}{\rho_f^2} \right) \nabla W_{if} - \sum_b m_b \left(\frac{p_i}{\rho_i^2} + \frac{p_b}{\rho_b^2} \right) \nabla W_{ib}
\]

– Fluid sample at boundary
 – Density and pressure increases
 – Pressure acceleration resolves contact
Setting

– Kernel has to be defined, e.g. cubic with support of $2h$
– Particle mass m_i has to be specified
 – E.g., $m_i = h^3 \rho_0$ for a particle spacing of h
 – Spacing governs particle mass
 – Ratio of support vs. spacing governs the number of neighbors
– Numerical integration scheme
 – Semi-implicit Euler (symplectic Euler or Euler-Cromer) is commonly used
Setting

- Time step
 - Size is governed by the Courant-Friedrich-Levy (CFL) condition
 - E.g., $\Delta t \leq \lambda \frac{h}{\|v_{\text{max}}\|}$ with $\lambda = 0.1$ and particle spacing h
 - Motivation: For $\lambda \leq 1$, a particle moves less than its size / diameter per time step
Outline

– Concept of an SPH fluid simulator
– Momentum equation
– SPH basics
– Neighborhood search
– Boundary handling
– Incompressibility
Force Types

- Momentum equation
 \[
 \frac{d\mathbf{v}_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 \mathbf{v}_i + \frac{\mathbf{F}_{\text{other}}}{m_i}
 \]

- Body forces

- Surface forces
 - Normal stress related to volume deviation
 - Normal and shear stress related to friction due to velocity differences
Pressure Force in x-direction

- Pressure force acts orthogonal to the surface of the fluid element

- Resulting pressure force

\[
\left(p - \left(p + \frac{\partial p}{\partial x} \, dx \right) \right) \, dy \, dz = - \frac{\partial p}{\partial x} \, dx \, dy \, dz = - \frac{\partial p}{\partial x} \, V
\]
Overall Pressure Force

– Pressure force at particle i

$$\mathbf{F}_{i}^{p} = - \begin{pmatrix} \frac{\partial p_i}{\partial x_{i,x}} \\
\frac{\partial p_i}{\partial x_{i,y}} \\
\frac{\partial p_i}{\partial x_{i,z}} \end{pmatrix} \quad \mathbf{V}_i = -\nabla p_i \quad \mathbf{V}_i = -\frac{m_i}{\rho_i} \nabla p_i$$

– Pressure acceleration

$$\mathbf{a}_{i}^{p} = \frac{\mathbf{F}_{i}^{p}}{m_i} = -\frac{1}{\rho_i} \nabla p_i$$
Cauchy Momentum Equation

- Lagrange form \(\frac{dv_i}{dt} = \frac{1}{\rho} \nabla \cdot \mathbf{\sigma} + \frac{F_{\text{other}}}{m} \)
- \(\mathbf{\sigma} \) is the stress tensor (a 3x3 matrix in 3D) describing the pressure distribution at the surface of a fluid element \(\mathbf{\sigma} = -\rho \mathbf{I}_3 + \mathbf{\tau} \)
- \(\nabla \cdot \mathbf{\sigma} \) is the resulting force per volume
- \(\mathbf{\tau} \) is the viscous stress tensor
- \(\nabla \cdot \mathbf{\tau} = \nu \nabla^2 \mathbf{v} \) is the resulting viscosity force per volume
- \(\frac{dv_i}{dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 \mathbf{v}_i + \frac{F_{\text{other}}}{m_i} \)
Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility
Illustration

– Approximation of a function and its derivatives from discrete samples, e.g. $\rho, \nabla p, \nabla^2 v$

– Convolution of discrete samples with reconstruction filter

ρ, p, \ldots

Reconstructed function

Function samples (particle data)

Reconstruction kernel (reversed SPH kernel)

Reconstruction kernel for the first derivative (reversed derivative of the SPH kernel)
Derivation

- Quantity A at position x can be written as
 $$A(x) = \int_\Omega A(x')\delta(x - x')dx'$$
 Convolution of A and $\delta(x' - x)$

- Dirac delta $\delta(x) = \delta(x)\delta(y)\delta(z)$ and $\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$

- $\int_{-\infty}^{+\infty} \delta(x)dx = 1$

- Dirac delta is approximated with a kernel function with limited local support, e.g. $2h$
 $$A(x) \approx \int_{\Omega_h} A(x')W(x - x', 2h)dx'$$
 Convolution of A and $W(x' - x)$

 Particle size h
Kernel Function

- Integral should be normalized (unity condition) \(\int_{\Omega} W(x' - x, 2h)dx' = 1 \)
- Support should be compact \(W(x' - x, 2h) = 0 \) for \(||x - x'|| > 2h \)
- Should be symmetric \(W(x' - x, 2h) = W(x' - x, 2h) \)
- Should be non-negative \(W(x' - x, 2h) \geq 0 \)
- Should converge to the Dirac delta for \(2h \rightarrow 0 \)
- Should be differentiable
Particle Approximation

- \[A(x) \approx \int_{\Omega_h} A(x') W(x - x', 2h) \, dx' \]
 \[= \int_{\Omega_h} \frac{A(x')}{\rho(x')} W(x - x', 2h) \rho(x') \, dx' \]

- Consider a limited number of samples / particles \(x_j \) representing a mass \(m(x_j) = \rho(x_j) V(x_j) \)
 \[A(x_i) \approx \sum_j A(x_j) W(x_i - x_j, 2h) V(x_j) \]
 \[A(x_i) \approx \sum_j \frac{A(x_j)}{\rho(x_j)} W(x_i - x_j, 2h) m(x_j) \]

- Typical notation
 \[A_i = \sum_j \frac{m_j}{\rho_j} A_j W_{ij} \]
Kernel Function

- Close to a Gaussian
 - Compact support between $2h$ and $5h$
- E.g., cubic spline

\[W(q) = \alpha \begin{cases}
(2 - q)^3 - 4(1 - q)^3 & 0 \leq q < 1 \\
(2 - q)^3 & 1 \leq q < 2 \\
0 & q \geq 2
\end{cases} \quad q = \frac{||x_i - x_j||}{h} \]

with \(\alpha = \frac{1}{6h} \) (1D), \(\alpha = \frac{5}{14\pi h^2} \) (2D), \(\alpha = \frac{1}{4\pi h^3} \) (3D)

- Number of considered samples depends on
 - Dimensionality, kernel support, particle spacing
 - Number of neighbors should not be too small
Kernel Function

\[W(x_j - x_i) = \alpha \begin{cases}
(2 - \frac{\|x_i - x_j\|}{h})^3 & 0 \leq \frac{\|x_i - x_j\|}{h} < 1 \\
(2 - \frac{\|x_i - x_j\|}{h})^3 & 1 \leq \frac{\|x_i - x_j\|}{h} < 2 \\
0 & \|x_i - x_j\| \geq 2
\end{cases} \]

\[W(x_j - x_i) = W(x_i - x_j) \quad \text{depends on the distance between samples} \]
Kernel Function - Implementation

- Reversed kernel function as used in SPH sums

\[W(x_i - x_j) = \alpha \begin{cases}
(2 - \frac{\|x_i - x_j\|}{h})^3 & 0 \leq \frac{\|x_i - x_j\|}{h} < 1 \\
(2 - \frac{\|x_i - x_j\|}{h})^3 & 1 \leq \frac{\|x_i - x_j\|}{h} < 2 \\
0 & \frac{\|x_i - x_j\|}{h} \geq 2
\end{cases} \]

- Implementation

\[
\begin{align*}
d &:= \text{distance}(x_i, x_j)/h; \\
t1 &:= \max(1-d, 0); \\
t2 &:= \max(2-d, 0); \\
w &:= \alpha \ast (t2 \ast t2 \ast t2 - 4 \ast t1 \ast t1 \ast t1);
\end{align*}
\]
First Kernel Derivative

- $\nabla W_{ij} = \left(\frac{\partial W_{ij}}{\partial x_{j,x}}, \frac{\partial W_{ij}}{\partial x_{j,y}}, \frac{\partial W_{ij}}{\partial x_{j,z}} \right)^T$ \quad $\nabla W_{ij} = \frac{\partial W(q)}{\partial q} \nabla q$

- E.g., cubic spline

$$q = \frac{\|x_i - x_j\|}{h} \quad \nabla q = \frac{-(x_i - x_j)}{\|x_i - x_j\| h}$$

Derivative of q with respect to x_j

$$\frac{\partial W(q)}{\partial q} = \alpha \left\{ \begin{array}{ll}
-3(2 - q)^2 + 12(1 - q)^2 & 0 \leq q < 1 \\
-3(2 - q)^2 & 1 \leq q < 2 \\
0 & q \geq 2
\end{array} \right.$$

$$\nabla W_{ij} = \alpha \frac{-(x_i - x_j)}{\|x_i - x_j\| h} \left\{ \begin{array}{ll}
-3(2 - q)^2 + 12(1 - q)^2 & 0 \leq q < 1 \\
-3(2 - q)^2 & 1 \leq q < 2 \\
0 & q \geq 2
\end{array} \right.$$
Kernel Derivative

\[\nabla W(x_j - x_i) = \alpha \frac{(x_i - x_j)}{\|x_i - x_j\|} \begin{cases}
-3\left(2 - \frac{\|x_i - x_j\|}{h}\right)^2 + 12\left(1 - \frac{\|x_i - x_j\|}{h}\right)^2 & 0 \leq \frac{\|x_i - x_j\|}{h} < 1 \\
-3\left(2 - \frac{\|x_i - x_j\|}{h}\right)^2 & 1 \leq \frac{\|x_i - x_j\|}{h} < 2 \\
0 & \|x_i - x_j\| \geq 2
\end{cases} \]

\[\nabla W(x_j - x_i) = -\nabla W(x_i - x_j) \]

\[x_j - x_i \]
SPH computes a convolution of A and ∇W to approximate ∇A. Therefore, the reversed kernel derivative $\nabla W(x_i - x_j)$ is used:

$$\nabla A(x_i) = \sum_j A(x_j) \nabla W(x_i - x_j) \frac{m(x_i)}{\rho(x_j)}$$

SPH notation:

$$\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij}$$

$$\nabla W(x_i - x_j) = \alpha \frac{x_i - x_j}{\|x_i - x_j\|} \cdots$$

$$= -\nabla W(x_j - x_i) = \nabla W_{ij}$$

∇W is anti-symmetric.
Kernel Derivative - Implementation

- Reversed kernel derivative as used in SPH sums

\[\nabla W(x_i - x_j) = \alpha \frac{x_i - x_j}{\|x_i - x_j\|} \begin{cases}
-3(2 - \frac{\|x_i - x_j\|}{h})^2 + 12(1 - \frac{\|x_i - x_j\|}{h})^2 & 0 \leq \frac{\|x_i - x_j\|}{h} < 1 \\
-3(2 - \frac{\|x_i - x_j\|}{h})^2 & 1 < \frac{\|x_i - x_j\|}{h} < 2 \\
0 & \frac{\|x_i - x_j\|}{h} \geq 2
\end{cases} \]

- Implementation

\[
d := \text{distance}(x_i, x_j)/h;
\]
\[
t1 := \max(1-d, 0);
\]
\[
t2 := \max(2-d, 0);
\]
\[
w1 := \alpha \ast (x_i - x_j)/(d \ast h) \ast (-3 \ast t2 \ast t2 + 12 \ast t1 \ast t1);
\]
Second Kernel Derivative

\[\nabla^2 W_{ij} = \nabla \cdot (\nabla W_{ij}) = \frac{\partial^2 W_{ij}}{\partial x^2_{j,x}} + \frac{\partial^2 W_{ij}}{\partial x^2_{j,y}} + \frac{\partial W_{ij}^2}{\partial x^2_{j,z}} \]

\[\nabla^2 W_{ij} = \frac{\partial^2 W(q)}{\partial q^2} (\nabla q)^2 + \frac{\partial W(q)}{\partial q} (\nabla \cdot (\nabla q)) \]

- E.g., cubic spline

\[(\nabla q)^2 = \frac{-x_{ij}}{\|x_{ij}\| h} \cdot \frac{-x_{ij}}{\|x_{ij}\| h} = \frac{\|x_{ij}\|^2}{\|x_{ij}\|^2 h^2} = \frac{1}{h^2} \]

\[\nabla \cdot (\nabla q) = \frac{d-1}{h \|x_{ij}\|} \quad d \text{ is the dimensionality} \]

\[\frac{\partial W(q)}{\partial q} = \alpha \begin{cases}
-3(2 - q)^2 + 12(1 - q)^2 & 0 \leq q < 1 \\
-3(2 - q)^2 & 1 \leq q < 2 \\
0 & q \geq 2
\end{cases} \]

\[\frac{\partial^2 W(q)}{\partial q^2} = \alpha \begin{cases}
6(2 - q) - 24(1 - q) & 0 \leq q < 1 \\
6(2 - q) & 1 \leq q < 2 \\
0 & q \geq 2
\end{cases} \]
Design of a Kernel Function 1D

- Shape close to a Gaussian, e.g.

\[
\alpha \tilde{W}(\|x_i - x_j\|) = \alpha \tilde{W}\left(\frac{x}{h}\right) = \alpha \tilde{W}(q) = W(q) = \alpha \left\{
\begin{array}{cl}
(2 - q)^3 - 4(1 - q)^3 & 0 \leq q < 1 \\
(2 - q)^3 & 1 \leq q < 2 \\
0 & q \geq 2
\end{array}
\right.
\]

\[
2 \int_0^{2h} \alpha \tilde{W}(x) \, dx = 2 \int_0^{2} \alpha \tilde{W}(q) \, hdq = 1 \quad \text{Integration by substitution}
\]

\[
\alpha = \frac{1}{2 \int_0^{2} \tilde{W}(q) \, hdq}
\]

- 1D: integration over a line segment

\[
2 \int_0^{1} [(2 - q)^3 - 4(1 - q)^3] \, hdq + 2 \int_1^{2} (2 - q)^3 \, hdq = 2 \frac{11}{4} h + 2 \frac{1}{4} h
\]

\[
\alpha = \frac{1}{6h}
\]
Design of a Kernel Function

– 2D: Integration over the area of a circle
\[\int_0^{2\pi} \int_0^h \tilde{W}(x)x \, dx \, d\phi = \int_0^{2\pi} \int_0^2 \tilde{W}(q)h\, dq \, d\phi = 2\pi \int_0^1 \left[q(2 - q)^3 - 4q(1 - q)^3\right] h^2 \, dq + 2\pi \int_1^2 q(2 - q)^3 h^2 \, dq = 2\pi \frac{11}{10} h^2 + 2\pi \frac{3}{10} h^2 \]
\[\alpha = \frac{5}{14\pi h^2} \]

– 3D: Integration over the volume of a sphere
\[\int_0^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^h \tilde{W}(x)x^2 \sin\theta \, dx \, d\theta \, d\phi = \int_0^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^2 \tilde{W}(q)(qh)^2 h \sin\theta \, dq \, d\theta \, d\phi = 4\pi \int_0^1 \left[q^2(2 - q)^3 - 4q(1 - q)^3\right] h^3 \, dq + 4\pi \int_1^2 q^2(2 - q)^3 h^3 \, dq = 4\pi \frac{19}{30} h^3 + 4\pi \frac{11}{30} h^3 \]
\[\alpha = \frac{1}{4\pi h^3} \]
Spatial Derivatives

\[\nabla_x A(x) \approx \int_{\Omega_h} [\nabla_{x'} A(x')] W(x - x', 2h) dx' \]

\[\nabla_{x'} [A(x') W(x' - x, 2h)] = [\nabla_{x'} A(x')] W(x' - x, 2h) + A(x') \nabla_{x'} W(x' - x, 2h) \]

W is symmetric

\[\nabla_{x'} [A(x') W(x' - x, 2h)] = [\nabla_{x'} A(x')] W(x - x', 2h) + A(x') \nabla_{x'} W(x' - x, 2h) \]

\[[\nabla_{x'} A(x')] W(x - x', 2h) = \nabla_{x'} [A(x') W(x' - x, 2h)] - A(x') \nabla_{x'} W(x' - x, 2h) \]

\[\int_{\Omega_h} \nabla_{x'} [A(x') W(x' - x, 2h)] dx' = \int_S A(x') W(x' - x, 2h) dS \]

\[\int_S A(x') W(x' - x, 2h) dS = 0 \quad W = 0 \text{ on the surface } S \]

\[\nabla_x A(x) \approx -\int_{\Omega_h} A(x') \nabla_{x'} W(x' - x, 2h) dx' = \int_{\Omega_h} A(x') \nabla_{x'} W(x - x', 2h) dx' \]

\[\nabla_x A(x_i) \approx \sum_j A(x_j) \nabla W(x_i - x_j, 2h) V(x_j) \]

\[\nabla_x A(x_i) \approx \sum_j \frac{m(x_i, x_j)}{\rho(x_j)} A(x_j) \nabla W(x_i - x_j, 2h) \]

Gauss theorem

S is the surface of \(\Omega \)

W = 0 on the surface S

\[\nabla_x A(x) \approx -\int_{\Omega_h} A(x') \nabla_{x'} W(x' - x, 2h) dx' = \int_{\Omega_h} A(x') \nabla_{x'} W(x - x', 2h) dx' \]

\[\nabla_x A(x_i) \approx \sum_j A(x_j) \nabla W(x_i - x_j, 2h) V(x_j) \]

\[\nabla_x A(x_i) \approx \sum_j \frac{m(x_i, x_j)}{\rho(x_j)} A(x_j) \nabla W(x_i - x_j, 2h) \]
Spatial Derivatives

– Original forms

\[\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij} \]
\[\nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij} \]

– However, resulting forces do not preserve momentum and are not necessarily zero for constant values \(A_i = A_j \) in case of erroneous sampling
Gradient - Anti-symmetric Form

- Momentum-preserving form
\[\nabla \left(\frac{A_i}{\rho_i} \right) = \frac{\rho_i \nabla A_i - A_i \nabla \rho_i}{\rho_i^2} = \nabla A_i - \frac{A_i \nabla \rho_i}{\rho_i^2} \]
\[\nabla A_i = \rho_i \left(\nabla \left(\frac{A_i}{\rho_i} \right) + \frac{A_i \nabla \rho_i}{\rho_i^2} \right) \]

- SPH approximation
\[\nabla A_i = \rho_i \left(\sum_j \frac{m_j}{\rho_j} \frac{A_j}{\rho_j} \nabla W_{ij} + A_i \sum_j \frac{m_j}{\rho_j} \frac{\rho_j}{\rho_i^2} \nabla W_{ij} \right) \]
\[= \rho_i \sum_j m_j \left(\frac{A_j}{\rho_j^2} + \frac{A_i}{\rho_i^2} \right) \nabla W_{ij} \]

- Applied to pressure gradient, linear and angular momentum is preserved for arbitrary samplings
\[\mathbf{a}_i = m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla W_{ij} = -m_i \left(\frac{A_i}{\rho_j^2} + \frac{A_j}{\rho_i^2} \right) \nabla W_{ji} = -\mathbf{a}_j \quad \nabla W_{ij} = -\nabla W_{ji} \]
Gradient – Symmetric Form

– Term that vanishes for constant function values
\[\nabla (\rho_i A_i) = \rho_i \nabla (A_i) + A_i \nabla (\rho_i) \]
\[\nabla A_i = \frac{1}{\rho_i} (\nabla (\rho_i A_i) - A_i \nabla \rho_i) \]

– SPH approximation
\[\nabla A_i = \frac{1}{\rho_i} \left(\sum_j \frac{m_j}{\rho_j} \frac{A_j}{\rho_j} \nabla W_{ij} - A_i \sum_j \frac{m_j}{\rho_j} \rho_j \nabla W_{ij} \right) \]
\[= \frac{1}{\rho_i} \sum_j m_j (A_j - A_i) \nabla W_{ij} = \frac{1}{\rho_i} \sum_j m_j A_{ji} \nabla W_{ij} \]

– Applied to velocity divergence, zero divergence for a constant velocity field is obtained for arbitrary samplings
Laplacian

- Second derivative is error prone and sensitive to particle disorder
- Too few samples to appropriately approximate the second kernel derivative
- Therefore, the Laplacian is typically approximated with a finite difference approximation of the first derivative

\[
\nabla^2 A_i = 2 \sum_j \frac{m_j}{\rho_j} A_{ij} \frac{x_{ij} \cdot \nabla W_{ij}}{x_{ij} \cdot x_{ij} + 0.01h^2}
\]

\[
A_{ij} = A_i - A_j \quad x_{ij} = x_i - x_j
\]
Spatial Derivatives - Summary

- Original approximations

\[\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla W_{ij} \quad \nabla^2 A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla^2 W_{ij} \]

- Currently preferred approximations

 - Robustness in case of particle disorder, i.e. \(\sum_j \nabla W_{ij} \neq 0 \)

\[\nabla p_i = \rho_i \sum_j m_j \left(\frac{p_j}{\rho_i^2} + \frac{p_i}{\rho_j^2} \right) \nabla W_{ij} \]

Preserves linear and angular momentum

\[\nu \nabla^2 \mathbf{v}_i = 2 \sum_j \frac{m_j}{\rho_j} \frac{\mathbf{v}_{ij} \cdot \mathbf{x}_{ij}}{\mathbf{x}_{ij} \cdot \mathbf{x}_{ij} + 0.01 h^2} \nabla W_{ij} \]

Avoids the second kernel derivative

\[\nabla \cdot \mathbf{v}_i = -\frac{1}{\rho_i} \sum_j m_j \mathbf{v}_{ij} \nabla W_{ij} \]

Zero for uniform velocity field

\[\mathbf{v}_{ij} = \mathbf{v}_i - \mathbf{v}_j \quad \mathbf{x}_{ij} = \mathbf{x}_i - \mathbf{x}_j \]
Some Kernel Properties

- In case of ideal sampling
 \[\rho_i = \sum_j m_j W_{ij} = m_i \sum_j W_{ij} \quad m_i = m_j \]
 \[m_i \sum_j W_{ij} = \rho_i = \frac{m_i}{V_i} \quad \Rightarrow \quad \sum_j W_{ij} = \frac{1}{V_i} = \frac{\rho_i}{m_i} \]
 \[\nabla W_{ij} = -\nabla W_{ji} \quad \nabla W_{ij} = \alpha_i \left(\frac{x_{ij}}{\|x_{ij}\|} \right) \ldots \]
 \[\sum_j \nabla W_{ij} = 0 \]
 \[\sum_j (x_i - x_j) \otimes \nabla W_{ij} = -\frac{1}{V_i} \cdot \mathbf{I} \]
- Can be used for test purposes
Kernel Illustration

- 1D illustration

\[W(q) = \begin{cases}
(2 - q)^3 - 4(1 - q)^3 & 0 \leq q < 1 \\
(2 - q)^3 & 1 \leq q < 2 \\
0 & q \geq 2
\end{cases} \quad q = \frac{\|x_i - x_j\|}{h} \]

\[W(0) = \frac{1}{6h} \left((2 - 0)^3 - 4(1 - 0)^3 \right) = \frac{4}{6h} \]

\[W(1) = \frac{1}{6h} (2 - 1)^3 = \frac{1}{6h} \]

\[W(2) = 0 \]

\[\sum_j W_{ij} = W(0) + 2W(1) + 2W(2) = \frac{1}{h} \]
Kernel Illustration

- 2D illustration

\[W(q) = \frac{5}{14\pi h^2} \begin{cases}
(2 - q)^3 - 4(1 - q)^3 & 0 \leq q < 1 \\
(2 - q)^3 & 1 \leq q < 2 \\
0 & q \geq 2
\end{cases} \]

\[q = \frac{||x_i - x_j||}{h} \]

\[W(0) = \frac{5}{14\pi h^2} ((2 - 0)^3 - 4(1 - 0)^3) = \frac{20}{14\pi h^2} \]

\[W(1) = \frac{5}{14\pi h^2} (2 - 1)^3 = \frac{5}{14\pi h^2} \]

\[W(\sqrt{2}) = \frac{5}{14\pi h^2} (2 - \sqrt{2})^3 \approx \frac{1.005}{14\pi h^2} \]

\[\sum_j W_{ij} = W(0) + 4W(1) + 4W(\sqrt{2}) \approx \frac{1.001}{h^2} \]
Kernel Illustration

- Density computation is not an interpolation of the function m, but detects erroneous sampling.

$\rho^0 = \frac{m}{V_0} = \sum_j m W_{ij}$

$\rho_i = \sum_j m W_{ij} > \rho_0 = \frac{m}{V_0}$

Correct sampling

Dense sampling
(Kernel contributions do not sum up to $1/V$)
Outline

– Concept of an SPH fluid simulator
– Momentum equation
– SPH basics
– Neighborhood search
– Boundary handling
– Incompressibility
SPH Simulation Step With a State Equation (SESPH)

- Foreach particle do
 - Compute density
 - Compute pressure
- Foreach particle do
 - Compute forces
 - Update velocities and positions
- Density and force computation
 process all neighbors of a particle
Neighbor Search

- For the computation of SPH sums in 3D, each particle needs to know at least 30-40 neighbors in each step
- Example setting
 - 30 million fluid particles
 - Up to 1 billion neighbors
 - 10000 simulation steps
 - Up to 10^{13} neighbors processed per simulation
- Efficient construction and processing of dynamically changing neighbor sets is essential
Motivation

Up to 30 million fluid particles, up to 1 billion neighbors, 11 s computation time for neighbor search on a 16-core PC
Characteristics

- SPH computes sums
 - Dynamically changing sets of neighboring particles
 - Temporal coherence
- Spatial data structures accelerate the neighbor search
 - Fast query
 - Fast generation (at least once for each simulation step)
 - Sparsely, non-uniformly filled simulation domain
Characteristics

- Space subdivision
 - Each particle is placed in a convex space cell, e.g. a cube
- Similarities to collision detection and intersection tests in raytracing
 - However, cells adjacent to the cell of a particle have to be accessed
Characteristics

- Hierarchical data structures are less efficient
 - Construction in $O(n \log n)$, access in $O(\log n)$
- Uniform grid is generally preferred
 - Construction in $O(n)$, access in $O(1)$
Characteristics

– Neighbor storage is generally expensive
 – Might be avoided for, e.g., a low number of neighbor queries per step or in case of very efficient computation

– Data structures have to process
 – Fluid particles of multiple phases, e.g. air
 – Rigid particles (static or moving)
 – Deformable particles
Outline

– Concept of an SPH fluid simulator
– Momentum equation
– SPH basics
– Neighborhood search
 – Uniform grid
 – Index sort
 – Spatial hashing
 – Discussion
– ...

University of Freiburg – Computer Science Department – 82
Concept

- Particle is stored in a cell with coordinates \((k, l, m)\)
- In \(d\)-D, potential neighbors in \(3^d\) cells are queried to estimate actual neighbors
- Cell size equals the kernel support of a particle
 - Larger cells increase the number of tested particles
 - Smaller cells increase the number of tested cells

Edge length equals kernel support
Concept - Variant

- Verlet lists
 - Neighbor candidates are computed within a distance larger than the kernel support every n^{th} step
 - Actual neighbors are computed from neighbor candidates in each step
 - Neighbor candidates are valid for n steps
 - Motivated by temporal coherence: Particle does not move farther than its size in one step.
Concept - Variant

- Verlet lists
 - Proposed in 1967
 - Still popular in Lagrangian simulations
 - Acceleration data structure
 - Is only updated every n^{th} step
 - Is memory-intensive, requires storage of a comparatively large number of neighbor candidates
Outline

– Concept of an SPH fluid simulator
– Momentum equation
– SPH basics
– Neighborhood search
 – Uniform grid
 – Index sort
 – Spatial hashing
 – Discussion
– ...

University of Freiburg – Computer Science Department – 86
Construction

- Compute cell index \(c = k + l \cdot K + m \cdot K \cdot L \) for all particles
 - \(K \) and \(L \) denote the number of cells in \(x \) and \(y \) direction
- Particles are sorted with respect to their cell index
- Each grid cell \((k, l, m)\) with index \(c \) stores a reference to the first particle in the sorted list

![Diagram](image)
Construction

Compute cell indices for particles and increment counter in C

<table>
<thead>
<tr>
<th>C</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Accumulate counters in C

<table>
<thead>
<tr>
<th>C</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Associate particle i with cell j: $L[j].counter.particle = i$

<table>
<thead>
<tr>
<th>C</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

...

<table>
<thead>
<tr>
<th>C</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>L</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>particle</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>particle</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>particle</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>particle</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Construction

<table>
<thead>
<tr>
<th>C</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>particle</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

- Particles are sorted with respect to grid cell
- Counter points to first particle in a cell
- Difference of two subsequent counters indicates the particle number of a grid cell
Construction

- Two iterations over particles
- One iteration over grid cells
- Entire simulation domain has to be represented
- Parallelizable
- Memory allocations are avoided
- Constant memory consumption
Query

– For a particle
 – Indices to grid cell and to adjacent cells are computed
 (Once for all particles in the same grid cell)
 – All particles in grid cell and adjacent cells are tested
– Parallelizable
– Improved cache-hit rate
 – Particles in the same cell are close in memory
 – Particles of neighboring cells are not necessarily close in memory
Space-filling Curves

- Alternative computation for grid cell indices
- E.g., particles are sorted with respect to a z-curve index
- Improved cache-hit rate
 - Particles in adjacent cells are close in memory
- Efficient computation of z-curve indices
Sorting

- Particle attributes and z-curve indices can be processed separately
- Handles (particle identifier, z-curve index) are sorted in each time step
 - Reduced memory transfer
 - Spatial locality is only marginally influenced due to temporal coherence
- Attribute sets are sorted every n^{th} step
 - Restores spatial locality
Sorting

- Radix sort or insertion sort can be employed
 - $O(n)$ for almost sorted arrays
 - Due to temporal coherence, a small percentage of all particles change their cell, i.e. z-curve index, in each step
Z-Index Sort - Reordering

Particle color indicates memory location

Spatial compactness using a z-curve
Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
 - Uniform grid
 - Index sort
 - Spatial hashing
 - Discussion
- ...
Spatial Hashing

- Hash function maps a grid cell to a hash cell
 - Infinite 3D domain is mapped to a finite 1D list
 - Infinite domains can be handled
- Implementation
 - Compute a cell index c or a cell identifier (x, y, z) for a particle
 - Compute a hash function $i = h(c)$ or $i = h(x, y, z)$
 - Store the particle in a 1D array (hash table) at index i
Spatial Hashing

\[i = h(c) \] \quad \text{Hash function}

\[3 = h(0) \]
\[1 = h(1) \]
\[4 = h(2) \]
\[7 = h(3) \]

<table>
<thead>
<tr>
<th>particle</th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatial Hashing

- Large hash tables reduce number of hash collisions
 - Different spatial cells with the same hash value cause hash collisions which slow down the query
- Reduced memory allocations
 - Memory for m entries is allocated for each hash cell
- Reduced cache-hit rate
 - Hash table is sparsely filled
 - Alternating filled and empty cells
Compact Hashing

- Hash cells store handles to a compact list of used cells
 - k entries are pre-allocated for each element in the list of used cells
 - Elements in the used-cell list are generated, if a particle is placed in a new cell
 - Elements are deleted, if a cell gets empty
- List of used cells is queried in the neighbor search
Compact Hashing - Construction

- Larger hash table compared to spatial hashing to reduce hash collisions
- Temporal coherence can be employed
 - List of used cells is not rebuilt, but updated
 - Particles with changed cell index are estimated
 - Particle is removed from the old cell and added to the new cell
Compact Hashing - Query

– Processing of used cells
 – Bad spatial locality
 – Used cells close in memory are not close in space

– Hash-collision flag
 – If there is no hash collision in a cell, hash indices of adjacent cells have to be computed only once for all particles in this cell
Compact Hashing - Query

- Particles are sorted with respect to a z-curve every n^{th} step
- After sorting, the list of used cells is rebuilt
- If particles are serially inserted into the list of used cells, the list is consistent with the z-curve
 - Improved cache hit rate during the traversal of the list of used cells
Compact Hashing - Reordering

Z-curve

preserving the spatial locality
improves the performance
Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
 - Uniform grid
 - Index sort
 - Spatial hashing
 - Discussion
- ...
Comparison

- Measurements in ms for 130K particles
- Ongoing research
 - Focus on sorting, parallelization and vectorization
 - Octrees, k-D trees, BVHs can be realized with sorting

<table>
<thead>
<tr>
<th>Method</th>
<th>Construction</th>
<th>Query</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic grid</td>
<td>26</td>
<td>38</td>
<td>64</td>
</tr>
<tr>
<td>Index sort</td>
<td>36</td>
<td>29</td>
<td>65</td>
</tr>
<tr>
<td>Z-index sort</td>
<td>16</td>
<td>27</td>
<td>43</td>
</tr>
<tr>
<td>Spatial hashing</td>
<td>42</td>
<td>86</td>
<td>128</td>
</tr>
<tr>
<td>Compact hashing</td>
<td>8</td>
<td>32</td>
<td>40</td>
</tr>
</tbody>
</table>
Parallel Scaling

- Compact hashing
- Amdahl 0.95
- Spatial hashing

The diagram illustrates the speed up of parallel scaling for different hashing techniques as the number of threads increases. The speed up is measured on the y-axis, and the number of threads is shown on the x-axis. The graph shows a comparison between compact hashing, Amdahl 0.95, and spatial hashing, indicating the performance improvement with increased parallel processing.
Discussion

- Index sort
 - Fast construction based on sorting
 - Fast query
 - Particles are processed in the order of cell indices

- Z-index sort
 - Sorting with respect to a space filling curve improves cache-hit rate
Discussion

- Spatial hashing
 - Less efficient query due to hash collisions and due to the traversal of the sparsely filled hash table

- Compact hashing
 - Fast construction (or update due to temporal coherence)
 - Fast query due to the compact list of used cells, due to the hash-collision flag and due to the z-curve
Outline

- Concept of an SPH fluid simulator
- Momentum equation
- SPH basics
- Neighborhood search
- Boundary handling
- Incompressibility
Concept

- Boundaries are sampled with particles that contribute to density, pressure and pressure acceleration of the fluid.

\[\rho_i < \rho_0 \]
\[p_i = 0 \]
\[p_{ib} = 0 \]
\[F_{pi} = 0 \]

\[\rho_i > \rho_0 \]
\[p_i > 0 \]
\[p_{ib} > 0 \]
\[F_{pi} \neq 0 \]

- Boundary handling: How to compute \(\rho_i, p_i, p_{ib}, F_{pi} \)?
Several Layers with Uniform Boundary Samples

- Boundary particles are handled as static fluid samples

\[\rho_i = \sum_{i_f} m_{i_f} W_{ii_f} + \sum_{i_b} m_{i_b} W_{ii_b} \]

\[m_i = m_{i_f} = m_{i_b} \]

\[\rho_i = m_i \sum_{i_f} W_{ii_f} + m_i \sum_{i_b} W_{ii_b} \]

\[p_i = k \left(\frac{\rho_i}{\rho_0} - 1 \right) \]

- Pressure acceleration

\[a_i^p = -m_i \sum_{i_f} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_f}}{\rho_{i_f}^2} \right) \nabla W_{ii_f} - m_i \sum_{i_b} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_b}}{\rho_{i_b}^2} \right) \nabla W_{ii_b} \]

Boundary neighbors contribute to the density

All samples have the same size, i.e. same mass and rest density

University of Freiburg – Computer Science Department – 112
Pressure at Boundary Samples

- Pressure acceleration at boundaries requires pressure at boundary samples
- Various solutions, e.g. mirroring, extrapolation, PPE
- Mirroring
 - Formulation with unknown boundary pressure p_{ib}
 - $a_i^p = -m_i \sum_{i,j} \left(\frac{p_i}{\rho_i^2} + \frac{p_{ij}}{\rho_{ij}^2} \right) \nabla W_{ii,j} - m_i \sum_{i,b} \left(\frac{p_i}{\rho_i^2} + \frac{p_{ib}}{\rho_{ib}^2} \right) \nabla W_{ii,b}$
 - Mirroring of pressure and density from fluid to boundary $p_{ib} = p_i$
 - $a_i^p = -m_i \sum_{i,j} \left(\frac{p_i}{\rho_i^2} + \frac{p_{ij}}{\rho_{ij}^2} \right) \nabla W_{ii,j} - m_i \sum_{i,b} \left(\frac{p_i}{\rho_i^2} + \frac{p_{ib}}{\rho_{ib}^2} \right) \nabla W_{ii,b}$
Boundary Contribution to Pressure Acceleration

\[- \mathbf{a}_i^p = - \ldots - m_i \sum_{i_b} \left(\frac{p_i}{\rho_i^2} + \frac{p_i}{\rho_i^2} \right) \nabla W_{ii_b} = - \ldots - p_i \frac{2m_i}{\rho_i^2} \sum_{i_b} \nabla W_{ii_b} \]

\[- \sum_{i_b} \nabla W_{ii_b} \]

\[- \sum_{i_b} \nabla W_{ii_b} \]

\[-p_i \frac{2m_i}{\rho_i^2} \sum_{i_b} \nabla W_{ii_b} = 0 \]

\[-p_i \frac{2m_i}{\rho_i^2} \sum_{i_b} \nabla W_{ii_b} \neq 0 \]

\[\rho_i < \rho_0 \]

\[\rho_i > \rho_0 \]

\[p_i = 0 \]

\[p_i > 0 \]
One Layer of Uniform Boundary Samples

- Contributions of missing samples have to be added

\[
\rho_i = m_i \sum_{i_f} W_{ii_f} + m_i \sum_{i_b} W_{ii_b} + x
\]

\[
\rho_i = m_i \sum_{i_f} W_{ii_f} + \gamma_1 m_i \sum_{i_b} W_{ii_b}
\]

\[
\sum_{i_f} W_{ii_f} + \gamma_1 \sum_{i_b} W_{ii_b} = \frac{1}{V_i} \Rightarrow \gamma_1 = \frac{\frac{1}{V_i} - \sum_{i_f} W_{ii_f}}{\sum_{i_b} W_{ii_b}}
\]

Offset typically implemented as scaling coefficient

- Pressure acceleration

\[
a^p_i = -m_i \sum_{i_f} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_f}}{\rho_{i_f}^2} \right) \nabla W_{ii_f} - p_i \frac{2\gamma_2 m_i}{\rho_i^2} \sum_{i_b} \nabla W_{ii_b}
\]

\[
\sum_{i_f} \nabla W_{ii_f} + \gamma_2 \sum_{i_b} \nabla W_{ii_b} = 0 \Rightarrow \gamma_2 = -\frac{\sum_{i_f} \nabla W_{ii_f} \cdot \sum_{i_b} \nabla W_{ii_b}}{\sum_{i_b} \nabla W_{ii_b} \cdot \sum_{i_b} \nabla W_{ii_b}}
\]

Kernel gradient property
Correction of Missing Contributions

\[\rho_i = m_0(W_{00} + W_{01} + W_{02}) \]
\[a_i^p = -p_i \frac{2m_i}{\rho_i^2} (\nabla W_{01} + \nabla W_{02}) \]

\[\rho_i = \gamma_1 m_0 (W_{00} + W_{01}) \]
\[a_i^p = -p_i \frac{2\gamma_2 m_i}{\rho_i^2} \nabla W_{01} \]

- The motivation of \(\gamma_1 \) and \(\gamma_2 \) is to compensate contributions of missing samples to \(\rho, p, a^p \).
One Layer of Non-Uniform Boundary Samples

– Non-uniform contributions from boundary samples

\[\rho_i = m_i \sum_{i_f} W_{iif} + \sum_{i_b} m_{ib} W_{iiib} \]

Fluid

Solid

Missing samples

– Pressure acceleration

\[a_i^p = -m_i \sum_{i_f} \left(\frac{p_i}{\rho_i^2} + \frac{p_{if}}{\rho_i^2 \rho_{if}^2} \right) \nabla W_{iif} - p_i \frac{2 \gamma_2 m_i}{\rho_i^2} \sum_{i_b} \nabla W_{iiib} \]

Non-uniform sizes, i.e. masses of boundary samples

Contribution, i.e. mass of a boundary sample is approximated from its boundary neighbors
One Layer of Non-Uniform Boundary Samples

For perfect sampling

\[V_{ib}^0 = h^3 = \frac{1}{\sum_{ib} W_{ibibb}} \]

For arbitrary sampling

\[m_{ib} = \rho_0 \frac{\gamma_1}{\sum_{ib} \gamma_{ibibb}} \]

In 3D, \(\gamma_1 = 0.7 \)
Typical Boundary Representation

Boundary samples

Color-coded volume of boundary samples
Rigid-Fluid Coupling

Dam break

20M fluid particles
Rigid-Fluid Coupling
Summary

- Boundary is sampled with static fluid particles
- One layer of non-uniform samples
 - Arbitrary triangulated meshes can be used as boundary
 - Missing contributions to fluid density and pressure acceleration have to be corrected
 - Non-uniform boundary samples can be handled
 - Pressure is mirrored from fluid to boundary