Simulation in Computer Graphics Rigid Bodies

Matthias Teschner

UNI FREIBURG

Elastic Solid vs. Rigid Body

Elastic Solid

- Represented with n particles
- Relative movements
- Mass, position, velocity, force considered per particle
- No notion of orientation

Rigid Body

- Represented with n particles
- No relative movements
- Interaction implicitly modeled
- One position / one orientation
- One velocity / one angular velocity
- Mass and mass distribution

Outline

- Position and orientation
- Linear and angular velocity
- Mass and inertia tensor
- Linear and angular momentum
- Force and torque
- Simulation loop

Particle Representation

$$
\begin{aligned}
& \overline{\boldsymbol{x}}_{\mathrm{CM}}=(0,0,0)^{\top} \quad \text { Reference position } \\
& \overline{\boldsymbol{r}}_{i}=\overline{\boldsymbol{x}}_{i}-\overline{\boldsymbol{x}}_{\mathrm{CM}} \quad \text { Position of a particle relative to the reference position } \\
& \boldsymbol{x}_{i}=\boldsymbol{x}_{\mathrm{CM}}+\boldsymbol{r}_{i}=\overline{\boldsymbol{x}}_{\mathrm{CM}}+\boldsymbol{t}+\operatorname{Rot}\left(\overline{\boldsymbol{r}}_{i}\right) \text { Particle position in global coordinates. T, Rot } \\
& \text { are translation and rotation of the rigid body }
\end{aligned}
$$

Rigid body consists of n particles.

Reference Position - Center of Mass

Center of Mass - Property

$$
\begin{aligned}
\boldsymbol{f}_{i} & =m_{i} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{i} \quad \text { Force at position } x_{i} \\
\boldsymbol{F} & =\sum_{i} \boldsymbol{f}_{i}=\sum_{i} m_{i} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{i}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \sum_{i} m_{i} \boldsymbol{x}_{i} \quad \text { Overall force } \\
& =\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} M \boldsymbol{x}_{\mathrm{CM}}=M \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{\mathrm{CM}} \\
\boldsymbol{F} & =\sum_{i} \boldsymbol{f}_{i}=M \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{\mathrm{CM}}
\end{aligned}
$$

The linear acceleration of the center of mass can be computed from the mass of the rigid body and from the sum of all forces acting at arbitrary rigid body positions. The positions of the applied forces do not influence the linear acceleration.

Orientation in 3D

- Rotation matrix

- 3×3 elements to represent 3 degrees of freedom $\operatorname{Rot}(\boldsymbol{v})=\boldsymbol{A} \boldsymbol{v}=\left(\begin{array}{lll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}\end{array}\right) \cdot\left(\begin{array}{c}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)=v_{x} \boldsymbol{a}_{1}+v_{y} \boldsymbol{a}_{2}+v_{z} \boldsymbol{a}_{3}$

Orientation in 3D

- \boldsymbol{A} has to be orthonormal

$$
\boldsymbol{A} \boldsymbol{A}^{\top}=\left(\begin{array}{lll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
\boldsymbol{a}_{1}^{\top} \\
\boldsymbol{a}_{2}^{\top} \\
\boldsymbol{a}_{3}^{\top}
\end{array}\right)=\boldsymbol{I}
$$

$\operatorname{Det}(\boldsymbol{A})=1$

- Magnitude of eigenvalues is 1, so \boldsymbol{A} preserves the length of \boldsymbol{r}
- Position of a body point $\boldsymbol{x}_{i}=\boldsymbol{x}_{\mathrm{CM}}+\boldsymbol{r}_{i}=\overline{\boldsymbol{x}}_{\mathrm{CM}}+\boldsymbol{t}+\boldsymbol{A} \overline{\boldsymbol{r}}_{i}$ translation + rotation

Body in Motion

- Time-dependent position

$$
\boldsymbol{x}_{i}(t)=\overline{\boldsymbol{x}}_{\mathrm{CM}}+\boldsymbol{t}(t)+\boldsymbol{A}(t) \overline{\boldsymbol{r}}_{i}=\boldsymbol{x}_{\mathrm{CM}}(t)+\boldsymbol{A}(t) \overline{\boldsymbol{r}}_{i}
$$

- Velocity

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}_{i}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}_{\mathrm{CM}}(t)+\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{A}(t) \overline{\boldsymbol{r}}_{i}+\boldsymbol{A}(t) \frac{\mathrm{d}}{\mathrm{~d} t} \overline{\boldsymbol{r}}_{i}=\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}_{\mathrm{CM}}(t)+\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{A}(t) \overline{\boldsymbol{r}}_{i} \\
\text { linear velocity }+ \text { angular velocity }
\end{array}
$$

Angular Velocity in 3D

- Angular velocity $\boldsymbol{\omega}$ is a 3 D vector
- In direction of axis of rotation
$-|\boldsymbol{\omega}|$ is the magnitude of the angular velocity [rad/s]

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}\right|=|\boldsymbol{\omega}| \cdot r=|\boldsymbol{\omega}| \cdot|\boldsymbol{x}| \cdot \sin (\phi)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}=\boldsymbol{\omega} \times \boldsymbol{x}
$$

$$
\boldsymbol{\omega}=\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \rightarrow \tilde{\boldsymbol{\omega}}=\left(\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{x}=\tilde{\omega} \mathbf{x}
$$

Rigid Body Kinematics

- What is the relation between $\tilde{\omega}$ and $\frac{\mathrm{d} \boldsymbol{d} \boldsymbol{A} \text { ? }}{\mathrm{d} t}$
- Angular velocity rotates all axis (columns of \boldsymbol{A})

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{A}=\left(\begin{array}{ccc}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{a}_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{a}_{2} & \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{a}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\tilde{\boldsymbol{\omega}} \cdot \boldsymbol{a}_{1} & \tilde{\boldsymbol{\omega}} \cdot \boldsymbol{a}_{2} & \tilde{\boldsymbol{\omega}} \cdot \boldsymbol{a}_{3}
\end{array}\right)=\tilde{\boldsymbol{\omega}} \cdot \boldsymbol{A}
$$

- Velocity of a point $\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{x}_{i}(t)=\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{x}_{\mathrm{CM}}(t)+\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{A}(t) \cdot \overline{\boldsymbol{r}}_{i}$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}_{i}(t)=\boldsymbol{v}(t)+\tilde{\boldsymbol{\omega}}(t) \cdot \boldsymbol{A}(t) \cdot \overline{\boldsymbol{r}}_{i} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{x}_{i}(t)=\boldsymbol{v}(t)+\tilde{\boldsymbol{\omega}}(t) \cdot\left(\boldsymbol{x}_{i}(t)-\boldsymbol{x}_{\mathrm{CM}}(t)\right)
\end{aligned}
$$

State Vector

$$
\binom{\boldsymbol{x}(t)}{\boldsymbol{v}(t)} \quad\left(\begin{array}{c}
\boldsymbol{x}(t) \\
\boldsymbol{A}(t) \\
\boldsymbol{v}(t) \\
\boldsymbol{\omega}(t)
\end{array}\right)
$$

Particle
Rigid body

Rigid Body Dynamics

- Forces change
- Linear velocity
- Angular velocity
- Linear velocity change
$\boldsymbol{F}=\sum_{i} \boldsymbol{f}_{i}=\sum_{i} m_{i} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{i}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \sum_{i} m_{i} \boldsymbol{x}_{i}$
$=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} M \boldsymbol{x}_{\mathrm{CM}}=M \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{\mathrm{CM}}$
$\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{\mathrm{CM}}=\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{v}=\frac{F}{M}=\frac{\sum_{i} \boldsymbol{f}_{i}}{M}$
- Like a particle, but ...

Angular Momentum

- The angular momentum of a particle w.r.t. the center of mass is

$$
\boldsymbol{L}_{i}=\boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}=\boldsymbol{r}_{i} \times m_{i}\left(\boldsymbol{\omega} \times \boldsymbol{r}_{i}\right)
$$

- The total angular momentum of the body is

$$
\begin{aligned}
\boldsymbol{L} & =\sum_{i} \boldsymbol{L}_{i}=\sum_{i} \boldsymbol{r}_{i} \times m_{i}\left(\boldsymbol{\omega} \times \boldsymbol{r}_{i}\right) \\
& =\sum_{i}-m_{i} \tilde{\boldsymbol{r}}_{i} \tilde{\boldsymbol{r}}_{i} \boldsymbol{\omega}=\left(\sum_{i}-m_{i} \tilde{r}_{i} \tilde{\boldsymbol{r}}_{i}\right) \cdot \boldsymbol{\omega} \\
& =\boldsymbol{I} \boldsymbol{\omega}
\end{aligned}
$$

Inertia Tensor

- The total angular momentum is $\boldsymbol{L}=\boldsymbol{I} \boldsymbol{\omega}$ with \boldsymbol{I} being a 3×3 matrix (the inertia tensor of the body)
- \boldsymbol{I} depends on the rotated configuration $\boldsymbol{I}=\sum_{i}-m_{i} \tilde{\boldsymbol{r}}_{i} \tilde{r}_{i}$
- The inertia tensor for the original body can be pre-computed, e.g. $\overline{\boldsymbol{I}}=\sum_{i}-m_{i} \tilde{\tilde{r}}_{i} \tilde{\tilde{r}}_{i}$
- Similarity transform relates time-dependent \boldsymbol{I} and pre-computed $\overline{\boldsymbol{I}}: \boldsymbol{I}=\boldsymbol{A} \overline{\boldsymbol{I}} \boldsymbol{A}^{\top}$

$$
L=I \omega=A \bar{I} A^{\top} A \bar{\omega}=A \bar{I} \bar{\omega}
$$

Torque

- The torque of a particle w.r.t. the center of mass is $\boldsymbol{\tau}_{i}=\boldsymbol{r}_{i} \times \boldsymbol{f}_{i}$
- The total torque of the body is

$$
\boldsymbol{\tau}=\sum_{i} \boldsymbol{\tau}_{i}=\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{f}_{i}
$$

Newton's Second Law (Angular)

- Angular momentum $\boldsymbol{L}=\sum_{i} \boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}=\boldsymbol{I} \boldsymbol{\omega}$
- Torque $\boldsymbol{\tau}=\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{f}_{i}$
- The angular version of Newton's Second law reads $\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{L}=\boldsymbol{\tau}$
- Tells us, how the forces \boldsymbol{f}_{i} change the angular velocity $\boldsymbol{\omega}$
$\boldsymbol{\tau}=\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{f}_{i}$
$\boldsymbol{L}=\boldsymbol{L}+\Delta t \cdot \boldsymbol{\tau}$
$\boldsymbol{\omega}=\boldsymbol{I}^{-1} \boldsymbol{L}$

Linear vs. Angular Quantities

Linear momentum
$\boldsymbol{p}=M \boldsymbol{v}$
Linear velocity
$\boldsymbol{v}=M^{-1} \boldsymbol{p}$
Time-derivative of the linear momentum
$\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{p}=\boldsymbol{F}$

Angular momentum
$L=\boldsymbol{I} \omega$
Angular velocity
$\boldsymbol{\omega}=\boldsymbol{I}^{-1} \boldsymbol{L}$
Time-derivative of the angular momentum
$\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{L}=\boldsymbol{\tau}$

Governing Equations

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
\boldsymbol{x}(t) \\
\boldsymbol{A}(t) \\
\boldsymbol{p}(t) \\
\boldsymbol{L}(t)
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{v}(t) \\
\tilde{\boldsymbol{\omega}} \cdot \boldsymbol{A}(t) \\
\boldsymbol{F}(t) \\
\boldsymbol{\tau}(t)
\end{array}\right)
$$

Simulation Step

Pre-computation

$$
\begin{aligned}
M & \leftarrow \sum_{i} m_{i} \\
\overline{\boldsymbol{x}}_{\mathrm{CM}} & \leftarrow \frac{1}{M} \sum_{i} \overline{\boldsymbol{x}}_{i} m_{i} \\
\overline{\boldsymbol{r}}_{i} & \leftarrow \overline{\boldsymbol{x}}_{i}-\overline{\boldsymbol{x}}_{\mathrm{CM}} \\
\overline{\boldsymbol{I}}^{-1} & \leftarrow\left(\sum_{i}-m_{i} \tilde{\boldsymbol{r}}_{i} \tilde{\boldsymbol{r}}_{i}\right)^{-1}
\end{aligned}
$$

Initialization

$$
\begin{aligned}
& \boldsymbol{x}_{\mathrm{CM}}, \boldsymbol{v}_{\mathrm{CM}}, \boldsymbol{A}, \boldsymbol{L} \\
& \boldsymbol{I}^{-1} \leftarrow \boldsymbol{A} \overline{\boldsymbol{I}}^{-1} \boldsymbol{A}^{\mathrm{T}} \\
& \boldsymbol{\omega} \leftarrow \boldsymbol{I}^{-1} \boldsymbol{L}
\end{aligned}
$$

Simulation step

$$
\begin{aligned}
\boldsymbol{\tau} & \leftarrow \sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{f}_{i} & & \text { Per-particle } \\
\boldsymbol{F} & \leftarrow \sum_{i} \boldsymbol{f}_{i} & & \text { quantities }
\end{aligned}
$$

Reorthonormalization of the Orientation

- Orientation matrix is updated with $\boldsymbol{A} \leftarrow \boldsymbol{A}+\Delta t \cdot \tilde{\boldsymbol{\omega}} \boldsymbol{A}$
- Errors accumulate
- \boldsymbol{A} is not orthonormal anymore
- Gram-Schmidt orthonormalization $\boldsymbol{b}_{1}=\boldsymbol{a}_{1} /\left|\boldsymbol{a}_{1}\right|$
$\boldsymbol{b}_{2}=\boldsymbol{a}_{2}-\left(\boldsymbol{b}_{1} \cdot \boldsymbol{a}_{2}\right) \boldsymbol{b}_{1}$
$\boldsymbol{b}_{2}=\boldsymbol{b}_{2} /\left|\boldsymbol{b}_{2}\right|$
$\boldsymbol{b}_{3}=\boldsymbol{a}_{3}-\left(\boldsymbol{b}_{1} \cdot \boldsymbol{a}_{3}\right) \boldsymbol{b}_{1}-\left(\boldsymbol{b}_{2} \cdot \boldsymbol{a}_{3}\right) \boldsymbol{b}_{2}$
$\boldsymbol{b}_{3}=\boldsymbol{b}_{3} /\left|\boldsymbol{b}_{3}\right|$

