
Matthias Teschner

Simulation in Computer Graphics
Space Subdivision

University of Freiburg – Computer Science Department – 2

Outline

 Introduction

 Uniform grid

 Octree and k-d tree

 BSP tree

University of Freiburg – Computer Science Department – 3

Model Partitioning

(1) Bounding volumes

(3) Collision detection test

(2) Bounding volume tree

University of Freiburg – Computer Science Department – 4

Model vs. Space Partitioning

Model partitioning Space partitioning

University of Freiburg – Computer Science Department – 5

Motivation

 Restrict pairwise object tests to objects
that are located in the same region of space

 Only objects or object primitives
in the same region of space can overlap

 Efficient broad-phase approach
for larger numbers of objects

University of Freiburg – Computer Science Department – 6

Spatial Data Structures

 Space is subdivided into cells

 Cells maintain references to primitives intersecting the cell

 Data structures have different degrees-of-freedom

 Actual space subdivision is adapted to the scene

Uniform grid Quadtree / Octree k-d tree BSP tree

University of Freiburg – Computer Science Department – 7

Outline

 Introduction

 Uniform grid

 Octree and k-d tree

 BSP tree

University of Freiburg – Computer Science Department – 8

Basic Idea

 Space is divided into cells

 Object primitives are
placed into cells

 Object primitives in the same
cell are checked for collision

 Pairs of primitives that do
not share the same cell
are not tested (trivial reject)

University of Freiburg – Computer Science Department – 9

Context

 Collision detection for deformable objects

 Tetrahedral meshes

 Uniform 3D grid

 Non-uniform distribution of object
primitives and unbounded
simulation domain (Hashing)

 Detection of collisions
and self-collisions

 Discussion of parameters
NCCR Co-Me

Epidaure, INRIA

University of Freiburg – Computer Science Department – 10

Setup

Infinite uniform grid

Hash function:

H(cell)  hash table index

Hash table

...

Spatial data structure Representation / implementation

University of Freiburg – Computer Science Department – 11

Stage 1

 All vertices are hashed according to their cell

..
.

University of Freiburg – Computer Science Department – 12

Stage 2

 All tetrahedrons are hashed according to
the cells touched by their bounding box

..
.

University of Freiburg – Computer Science Department – 13

Stage 3

 Vertices and tetrahedrons in the same
hash table entry are tested for intersection
..
.

A)  no collision

B)  collision

C)  self-collision

University of Freiburg – Computer Science Department – 14

Vertex-in-Tetrahedron Test

 Barycentric coordinates more efficient

 They also provide useful collision information

Barycentric coordinates Oriented faces

University of Freiburg – Computer Science Department – 15

Implementation

 Store all vertices in the hash table

 Compute hash table indices for the
bounding boxes of the tetrahedrons

 Do not store the tetrahedrons in the
hash table, but check for intersection
with all vertices in the respective entry

 Parameters

 Grid cell size, grid cell shape, hash table size, hash function

University of Freiburg – Computer Science Department – 16

Parameters

Infinite uniform grid

Hash function:

H(cell)  hash table index

Hash table

...

cell sizecell shape hash table size

University of Freiburg – Computer Science Department – 17

Grid Cell Size

 Cell size should be equal to the size of the bounding
box of an object primitive [Bentley 1977]

test scenario

[Teschner,
Heidelberger
et al. 2003]

University of Freiburg – Computer Science Department – 18

Hash Table Size

 Hash collisions reduce the performance

 Larger hash table can reduce hash collisions

test scenario

[Teschner,
Heidelberger
et al. 2003]

University of Freiburg – Computer Science Department – 19

Hash Function

 Should avoid hash collisions

 Should be efficient (has to be
computed for all primitives)

 Cell coordinates:

 Large primes:

 Hash table size:

University of Freiburg – Computer Science Department – 20

Performance

 Linear in the number of primitives

 Independent of the number of objects

test scenarios

Objects Tetras Vertices Max time
[ms]

100 1000 1200 6

8 4000 1936 15

20 10000 4840 34

2 20514 5898 72

100 50000 24200 174 Pentium 4, 1.8GHz

University of Freiburg – Computer Science Department – 21

Summary – Uniform Grid

 Space uniformly partitioned
into axis-aligned space cells

 Primitives (or their AABBs) are scan-converted
to identify intersected space cells

 Hashed storage of cells for non-uniform distribution

 Simple and efficient

University of Freiburg – Computer Science Department – 22

Summary – Uniform Grid

 Particularly interesting for deformable objects,
n-body environments and self-collision

 Parameters significantly influence the performance

 Performance dependent on the number of primitives

 Performance independent of the number of objects

 Technique works with various types of primitives

University of Freiburg – Computer Science Department – 23

… Some History

 [Levinthal 1966]

 3D grid (“cubing”)

 Analysis of molecular structures

 Neighborhood search
to compute atom interaction

 [Rabin 1976]

 3D grid + hashing, finding closest pairs

 [Turk 1989, 1990]

 3D grid + hashing, rigid collision detection

Cyrus Levinthal, MIT

University of Freiburg – Computer Science Department – 24

Outline

 Introduction

 Uniform grid

 Octree and k-d tree

 BSP tree

University of Freiburg – Computer Science Department – 25

Octree

 Hierarchical structure

 Space partitioning into
rectangular, axis-aligned cells

 Octree root node corresponds
to AABB of an object

 Internal nodes represent
subdivisions of the AABB

 Leaves represent cells
which maintain primitive lists

University of Freiburg – Computer Science Department – 26

Octree

 Uniform or non-uniform subdivision

 Adaptive to local distribution of primitives

 Large cells in case of low density of primitives

 Small cells in case of high density

 Dynamic update

 Cells with many primitives can be subdivided

 Cells with less primitives can be merged

University of Freiburg – Computer Science Department – 27

k-d Tree – 2-d Example

University of Freiburg – Computer Science Department – 28

Collision Query (Range Query)

 Traverse all nodes affected by the intervals of an AABB
 Check all primitives in the leaves for intersection

University of Freiburg – Computer Science Department – 29

Outline

 Introduction

 Uniform grid

 Octree and k-d tree

 BSP tree

University of Freiburg – Computer Science Department – 30

Binary Space Partitioning Tree BSP

 Hierarchical structure

 Space is subdivided by means of
arbitrarily oriented planes

 Generalized k-d tree

 Space partitioning into convex cells

 Discrete-orientation BSP trees DOBSP
(finite set of plane orientations)

 Proposed by [Henry Fuchs et al. 1980]
to solve the visible surface problem

BSP tree

University of Freiburg – Computer Science Department – 31

Collision Detection Example

 BSP trees can be used for the inside /
outside classification of closed polygons

Scene Scene partitioning Solid-leaf

BSP tree

1
2

3

4

1

2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

University of Freiburg – Computer Science Department – 32

Collision Query

 Query point is inside

 Query point is outside

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

University of Freiburg – Computer Science Department – 33

Rendering Example

1

2

3

4

1

2a

3

4

2b

1

3 4

2b 2a

+

+ + --

-

Scene Scene partitioning BSP tree

University of Freiburg – Computer Science Department – 34

BSP Tree for Rendering

 For a given viewpoint
 Render far branch

 Render root (node) polygon

 Render near branch

 Recursively applied to sub-trees

 Back to front rendering

 Example: viewpoint is in 1-
 Rendering of 1+, 1, 1-

 Rule recursively applied to 1+ and 1-

 Viewpoint is in 3+ → rendering of 3, 2b

 Viewpoint is in 4- → rendering of 2a, 4

1

2a

3

4

2b

1

3 4

2b 2a

+

+ + --

-

Viewpoint

BSP tree

University of Freiburg – Computer Science Department – 35

Construction

 Keep the number of nodes small

 Keep the number of levels small

 Introduce arbitrary support planes
(especially in case of convex objects,
where all polygon faces are in the same
half-space with respect to a given face)

University of Freiburg – Computer Science Department – 36

Summary

 Uniform grid

 Octree and k-d tree

 BSP tree

University of Freiburg – Computer Science Department – 37

References

 C. Levinthal, “Molecular model-building by computer,” Scientific American, pp. 42-52, June 1966.

 J. L. Bentley, D. F. Stanat, E. H. Williams, “The complexity of fixed-radius
near neighbor searching,” Inf. Process. Letters, vol. 6, 209-212, 1977.

 G. Turk, “Interactive collision detection for molecular graphics,” TR90-014,
University of North Carolina at Chapel Hill, 1990.

 S. Bandi, D. Thalmann, “An adaptive spatial subdivision of the object space for fast collision
detection of animating rigid bodies,” Proc. Of Eurographics, pp. 259-270, 1995.

 A. Gregory, M. Lin, S. Gottschalk, R. Taylor, “H-COLLIDE: A framework for fast and accurate collision
detection for haptic interaction,” TR98-032, University of North Carolina at Chapel Hill, 1998.

 S. Melax, “Dynamic plane shifting BSP traversal,” Proc. Graphics Interface, pp. 213-220, 2000.

 M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, M. Gross,
“Optimized Spatial Hashing for Collision Detection of Deformable Objects,”
Proc. Vision, Modeling, Visualization VMV’03, pp. 47-54, Nov 2003.

