Simulation in Computer Graphics
Space Subdivision

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Introduction

— Unitorm grid

— Octree and k-d tree
— BSP tree

University of Freiburg - Computer Science Department - 2

Model Partitioning

(1) Bounding volumes (2) Bounding volume tree

University of Freiburg - Computer Science Department - 3

Model vs. Space Partitioning

B i

/

\\u

Model partitioning Space partitioning

University of Freiburg - Computer Science Department - 4

Motivation

— Restrict pairwise object tests to objects
that are located in the same region of space

— Only objects or object primitives
in the same region of space can overlap

— Efficient broad-phase approach
for larger numbers of objects

University of Freiburg - Computer Science Department - 5

Spatial Data Structures

Uniform griad Quadtree / Octree k-d tree BSP tree

— Space is subdivided into cells
— Cells maintain references to primitives intersecting the cell
— Data structures have different degrees-of-freedom

— Actual space subdivision is adapted to the scene

University of Freiburg - Computer Science Department - 6

Outline

— Introduction

— Uniftorm grid

— Octree and k-d tree
— BSP tree

University of Freiburg - Computer Science Department - 7

Basic Idea

— Space is divided into cells

— Object primitives are

placed into cells

— Object primitives in the same

cell are checked for collision

— Pairs of primitives that do

not share the same cell
are not tested (trivial reject)

University of Freiburg - Computer Science Department - 8

Context

— Collision detection for deformable objects
— Tetrahedral meshes

— Unitorm 3D gria

— Non-uniform distribution of object

orimitives and unbounded
simulation domain (Hashing)

— Detection of collisions
and self-collisions

— Discussion of parameters

NCCR Co-Me =z&-=
University of Freiburg - Computer Science Department - 9

Setup

Infinite uniform grid

| Hash function:
H(cell) = hash table index

Hash table

Spatial data structure Representation / implementation

University of Freiburg - Computer Science Department - 10

Stage 1

— All vertices are hashed according to their cell

ST,

O

University of Freiburg - Computer Science Department - 11

Stage 2

— All tetrahedrons are hashed according to
the cells touched by their bounding box

University of Freiburg - Computer Science Department - 12

Stage 3

— Vertices and tetrahedrons in the same
hash table entry are tested for intersection

i NN o
A) - no collision
—10—0
S
B) 5 - collision
———e |
— - — b

O) > - self-collision
15 |

University of Freiburg - Computer Science Department - 13

Vertex-in-Tetrahedron Test

Barycentric coordinates Oriented faces

— Barycentric coordinates more efficient
— They also provide useful collision information

University of Freiburg - Computer Science Department - 14

Implementation

— Store all vertices in the hash table

— Compute hash table indices for the
pounding boxes of the tetrahedrons

— Do not store the tetrahedrons in the
nash table, but check for intersection
with all vertices in the respective entry
— Parameters
— Grid cell size, grid cell shape, hash table size, hash function

University of Freiburg - Computer Science Department - 15

Parameters

Infinite uniform grid

Hash function:

H(cell) = hash table index

Hash table

cell shape

<4+—> < >
cell size hash table size

University of Freiburg — Computer Science Department - 16

FREIBURG

Grid Cell Size

— Cell size should be equal to the size of the bounding
box of an object primitive [Bentley 197/7]

200
180

— 160
140
120
100
80
60
40
20

0 1 5 3 4 5 test scenario
Cell size / average edge length

[Teschner,
Heidelberger
et al. 2003]

Collision detection [m

University of Freiburg - Computer Science Department - 17

Hash Table Size

— Hash collisions reduce the performance
— Larger hash table can reduce hash collisions

8

7

[Teschner,
Heidelberger
et al. 2003]

Collision detection [ms]
[@a]

test scenario

29 1000 2000 3000 4000 5000
Hash table size

University of Freiburg — Computer Science Department - 18

FREIBURG

Hash Function

— Should avoid hash collisions

— Should be efficient (has to be
computed for all primitives)

H(x,y,z) = (p1-x xXor pg-y xor p3-z) mod n
— Cell coordinates:; =z,y, 2
— Large primes: p1, P2, P3
— Hash table size: n

University of Freiburg - Computer Science Department - 19

Performance

— Linear in the number of primitives
— Independent of the number of objects

Objects Tetras Vertices Maxtime

[ms]
100 1000 1200 6
8 4000 1936 15
20 10000 4840 34
2 20514 5898 72 e
test scenarios
100 50000 24200 174 Pentium 4, 1.8GHz

University of Freiburg - Computer Science Department - 20

Summary - Uniform Grid

— Space uniformly partitionec
into axis-aligned space cells

— Primitives (or their AABBS) are scan-converted
to identify intersected space cells

— Hashed storage of cells for non-uniform distribution
— Simple and efficient

University of Freiburg - Computer Science Department - 21

Summary - Uniform Grid

— Particularly interesting for deformable objects,
n-body environments and self-collision

— Parameters significantly influence the performance

— Performance dependent on the number of primitives
— Performance independent of the number of objects
— Technigque works with various types of primitives

University of Freiburg - Computer Science Department - 22

... Some History

— [Levinthal 1966]
— 3D grid (“cubing”)
— Analysis of molecular structures

— Neighborhood search
to compute atom interaction

_ [Rabin 1976] Cyrus Levinthal, MIT
— 3D grid + hashing, finding closest pairs

— [Turk 1989, 1990]
— 3D grid + hashing, rigid collision detection

University of Freiburg - Computer Science Department - 23

Outline

— Introduction

— Uniform grio

— Octree and k-d tree
— BSP tree

University of Freiburg - Computer Science Department - 24

Octree

— Hierarchical structure
— Space partitioning into

rectangular, axis-aligned cells

— Octree root node corresponds

to AABB of an object
— Internal nodes represent

subdivisions of the AABB

— Leaves represent cells
which maintain primitive lists

University of Freiburg - Computer Science Department - 25

Octree

— Uniform or non-uniform subdivision

— Adaptive to local distribution of primitives

— Large cells in case of low density of primitives
— Small cells in case of high density

— Dynamic update
— Cells with many primitives can be subdivided
— Cells with less primitives can be merged

University of Freiburg - Computer Science Department - 26

K-d Tree - 2-d Example

MR /:\
M/\ /\
st

University of Freiburg - Computer Science Department - 27

Collision Query (Range Query)

— Traverse all nodes affected by the intervals of an AABB
— Check all primitives e in the leaves for intersection

'CUZ x?) le
ny | |
< >
Ya Y1 Y2
. @) S > g >
o
Y1 /
o ..
° T4 X9 Ts X3
| 7\> Al 7 . \>
X
> 2222 & & o o e o o o
.CU4 -:Cl LU5 00000000

University of Freiburg - Computer Science Department - 28

Outline

— Introduction

— Unitorm grid

— Octree and k-d tree
— BSP tree

University of Freiburg - Computer Science Department - 29

Binary Space Partitioning Tree BSP

— Hierarchical structure

— Space is subdivided by means of
arbitrarily oriented planes

— Generalized k-d tree

— Space partitioning into convex cells =Rl

— Discrete-orientation BSP trees DOBSP
(finite set of plane orientations)

— Proposed by [Henry Fuchs et al. 1980]
to solve the visible surface problem

University of Freiburg - Computer Science Department - 30

Collision Detection Example

— BSP trees can be used for the inside /
outside classification of closed polygons

/\

1
2 7\ 7\
/ out 4 out 2
+ - + -
: 7\ 7\
out in out in
Scene Scene partitioning Solid-leaf

BSP tree

University of Freiburg - Computer Science Department - 31

Collision Query

— Query point is inside / \
/\ /\

out 4 out 2

— Query point is outside / \
7’\ /\

out 4 out 2

i out in out in

University of Freiburg - Computer Science Department - 32

Rendering Example

3/ T~ s 7 ./ 1
1 1 3 4
el 7\ 7\
N
s 2b 23

Scene Scene partitioning BSP tree

University of Freiburg - Computer Science Department - 33

BSP Tree for Rendering

— For a given viewpoint , o =
— Render far branch / |
— Render root (node) polygon s /
— Render near branch N
— Recursively applied to sub-trees L \4/‘
— Back to front rendering Viewpoint
— Example: viewpoint is in 1- :
— Rendering of 1+, 1, 1- 7\
— Rule recursively applied to 1+ and 1- 3 4
— Viewpointis in 3+ - rendering of 3, 2b / \ +/ \
— Viewpoint is in 4- - rendering of 2a, 4 2b 2a
BSP tree

University of Freiburg - Computer Science Department - 34

Construction

— Keep the number of nodes small
— Keep the number of levels small

— Introduce arbitrary support planes
(especially in case of convex objects,
where all polygon faces are in the same
halt-space with respect to a given tface)

University of Freiburg - Computer Science Department - 35

Summary

— Uniform grio
— Octree and k-d tree
— BSP tree

University of Freiburg - Computer Science Department - 36

References

— C. Levinthal, “Molecular model-building by computer,” Scientific American, pp. 42-52, June 1966.

— J. L. Bentley, D. F. Stanat, E. H. Williams, “The complexity of fixed-radius
near neighbor searching,” Inf. Process. Letters, vol. 6, 209-212, 1977.

— G. Turk, “Interactive collision detection for molecular graphics,” TR90-014,
University of North Carolina at Chapel Hill, 1990.

— S.Bandi, D. Thalmann, “An adaptive spatial subdivision of the object space for fast collision
detection of animating rigid bodies,” Proc. Of Eurographics, pp. 259-270, 1995.

— A. Gregory, M. Lin, S. Gottschalk, R. Taylor, “H-COLLIDE: A framework for fast and accurate collision
detection for haptic interaction,” TR98-032, University of North Carolina at Chapel Hill, 1998.

— S, Melax, "Dynamic plane shifting BSP traversal,” Proc. Graphics Interface, pp. 213-220, 2000.

— M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, M. Gross,
"Optimized Spatial Hashing for Collision Detection of Deformable Objects,”
Proc. Vision, Modeling, Visualization VMV'03, pp. 47-54, Nov 2003.

University of Freiburg - Computer Science Department - 37

