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Outline

— Introduction

— Unitorm grid

— Octree and k-d tree
— BSP tree
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Model Partitioning

(1) Bounding volumes (2) Bounding volume tree
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Model vs. Space Partitioning
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Motivation

— Restrict pairwise object tests to objects
that are located in the same region of space

— Only objects or object primitives
in the same region of space can overlap

— Efficient broad-phase approach
for larger numbers of objects
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Spatial Data Structures

Uniform griad Quadtree / Octree k-d tree BSP tree

— Space is subdivided into cells
— Cells maintain references to primitives intersecting the cell
— Data structures have different degrees-of-freedom

— Actual space subdivision is adapted to the scene
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Basic Idea

— Space is divided into cells

— Object primitives are

placed into cells

— Object primitives in the same

cell are checked for collision

— Pairs of primitives that do

not share the same cell
are not tested (trivial reject)
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Context

— Collision detection for deformable objects
— Tetrahedral meshes

— Unitorm 3D gria

— Non-uniform distribution of object

orimitives and unbounded
simulation domain (Hashing)

— Detection of collisions
and self-collisions

— Discussion of parameters
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Setup

Infinite uniform grid

| Hash function:
H(cell) = hash table index

Hash table

Spatial data structure Representation / implementation
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Stage 1

— All vertices are hashed according to their cell
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Stage 2

— All tetrahedrons are hashed according to
the cells touched by their bounding box
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Stage 3

— Vertices and tetrahedrons in the same
hash table entry are tested for intersection
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Vertex-in-Tetrahedron Test

Barycentric coordinates Oriented faces

— Barycentric coordinates more efficient
— They also provide useful collision information
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Implementation

— Store all vertices in the hash table

— Compute hash table indices for the
pounding boxes of the tetrahedrons

— Do not store the tetrahedrons in the
nash table, but check for intersection
with all vertices in the respective entry
— Parameters
— Grid cell size, grid cell shape, hash table size, hash function
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Parameters

Infinite uniform grid

Hash function:

H(cell) = hash table index

Hash table

cell shape

<4+—> < >
cell size hash table size
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Grid Cell Size

— Cell size should be equal to the size of the bounding
box of an object primitive [Bentley 197/7]
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Hash Table Size

— Hash collisions reduce the performance
— Larger hash table can reduce hash collisions

8

7

[Teschner,
Heidelberger
et al. 2003]
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Hash Function

— Should avoid hash collisions

— Should be efficient (has to be
computed for all primitives)

H(x,y,z) = (p1-x xXor pg-y xor p3-z) mod n
— Cell coordinates:; =z,y, 2
— Large primes: p1, P2, P3
— Hash table size: n
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Performance

— Linear in the number of primitives
— Independent of the number of objects

Objects Tetras Vertices Maxtime

[ms]
100 1000 1200 6
8 4000 1936 15
20 10000 4840 34
2 20514 5898 72 e
test scenarios
100 50000 24200 174 Pentium 4, 1.8GHz
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Summary - Uniform Grid

— Space uniformly partitionec
into axis-aligned space cells

— Primitives (or their AABBS) are scan-converted
to identify intersected space cells

— Hashed storage of cells for non-uniform distribution
— Simple and efficient
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Summary - Uniform Grid

— Particularly interesting for deformable objects,
n-body environments and self-collision

— Parameters significantly influence the performance

— Performance dependent on the number of primitives
— Performance independent of the number of objects
— Technigque works with various types of primitives
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... Some History

— [Levinthal 1966]
— 3D grid (“cubing”)
— Analysis of molecular structures

— Neighborhood search
to compute atom interaction

_ [Rabin 1976] Cyrus Levinthal, MIT
— 3D grid + hashing, finding closest pairs

— [Turk 1989, 1990]
— 3D grid + hashing, rigid collision detection
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Outline

— Introduction

— Uniform grio

— Octree and k-d tree
— BSP tree
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Octree

— Hierarchical structure
— Space partitioning into

rectangular, axis-aligned cells

— Octree root node corresponds

to AABB of an object
— Internal nodes represent

subdivisions of the AABB

— Leaves represent cells
which maintain primitive lists
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Octree

— Uniform or non-uniform subdivision

— Adaptive to local distribution of primitives

— Large cells in case of low density of primitives
— Small cells in case of high density

— Dynamic update
— Cells with many primitives can be subdivided
— Cells with less primitives can be merged
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K-d Tree - 2-d Example
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Collision Query (Range Query)

— Traverse all nodes affected by the intervals of an AABB
— Check all primitives e in the leaves for intersection
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Binary Space Partitioning Tree BSP

— Hierarchical structure

— Space is subdivided by means of
arbitrarily oriented planes

— Generalized k-d tree

— Space partitioning into convex cells =Rl

— Discrete-orientation BSP trees DOBSP
(finite set of plane orientations)

— Proposed by [Henry Fuchs et al. 1980]
to solve the visible surface problem
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Collision Detection Example

— BSP trees can be used for the inside /
outside classification of closed polygons
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BSP tree
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Collision Query

— Query point is inside / \
/\ /\
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— Query point is outside / \
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Rendering Example
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BSP Tree for Rendering

— For a given viewpoint , o =
— Render far branch / |
— Render root (node) polygon s /
— Render near branch N
— Recursively applied to sub-trees L \4/‘
— Back to front rendering Viewpoint
— Example: viewpoint is in 1- :
— Rendering of 1+, 1, 1- 7\
— Rule recursively applied to 1+ and 1- 3 4
— Viewpointis in 3+ - rendering of 3, 2b / \ +/ \
— Viewpoint is in 4- - rendering of 2a, 4 2b 2a
BSP tree
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Construction

— Keep the number of nodes small
— Keep the number of levels small

— Introduce arbitrary support planes
(especially in case of convex objects,
where all polygon faces are in the same
halt-space with respect to a given tface)
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Summary

— Uniform grio
— Octree and k-d tree
— BSP tree
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