
Matthias Teschner

Simulation in Computer Graphics
Space Subdivision

University of Freiburg – Computer Science Department – 2

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 3

Model vs. Space Partitioning

Model partitioning Space partitioning

University of Freiburg – Computer Science Department – 4

Motivation

 Restrict pairwise object tests to objects
that are located in the same region of space

 Only objects or object primitives
in the same region of space can overlap

 Efficient broad-phase approach
for larger numbers of objects

University of Freiburg – Computer Science Department – 5

Spatial Data Structures

 Space is subdivided into cells

 Cells maintain references to primitives intersecting the cell

 Data structures have different degrees-of-freedom

 Actual space subdivision is adapted to the scene

Uniform grid Quadtree / Octree k-d tree BSP tree

University of Freiburg – Computer Science Department – 6

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 7

Basic Idea

 Space is divided into cells

 Object primitives are
placed into cells

 Object primitives in the same
cell are checked for collision

 Pairs of primitives that do
not share the same cell
are not tested (trivial reject)

University of Freiburg – Computer Science Department – 8

Implementation - Setup

Infinite uniform grid

Hash function:

H(cell) hash table index

Hash table

...

Spatial data structure Representation / implementation

University of Freiburg – Computer Science Department – 9

Implementation - Stage 1

 All vertices are hashed according to their cell

..
.

University of Freiburg – Computer Science Department – 10

Implementation - Stage 2

 All tetrahedrons are hashed according to
the cells touched by their bounding box

..
.

University of Freiburg – Computer Science Department – 11

Implementation - Stage 3

 Vertices and tetrahedrons in the same
hash table entry are tested for intersection
..
.

A) no collision

B) collision

C) self-collision

University of Freiburg – Computer Science Department – 12

Vertex-in-Tetrahedron Test

 Barycentric coordinates more efficient

 They also provide useful collision information

Barycentric coordinates Oriented faces

University of Freiburg – Computer Science Department – 13

Implementation - Summary

 Store all vertices in the hash table

 Compute hash table indices for the
bounding boxes of the tetrahedrons

 Do not store the tetrahedrons in the
hash table, but check for intersection
with all vertices in the respective entry

 Parameters

 Grid cell size, hash table size, hash function

University of Freiburg – Computer Science Department – 14

Parameters

Infinite uniform grid

Hash function:

H(cell) hash table index

Hash table

...

cell size hash table size

University of Freiburg – Computer Science Department – 15

Grid Cell Size

 Cell size should be equal to the size of the bounding
box of an object primitive [Bentley 1977]

test scenario

[Teschner,
Heidelberger
et al. 2003]

University of Freiburg – Computer Science Department – 16

Hash Table Size

 Hash collisions reduce the performance

 Larger hash table can reduce hash collisions

test scenario

[Teschner,
Heidelberger
et al. 2003]

University of Freiburg – Computer Science Department – 17

Hash Function

 Should avoid hash collisions

 Should be efficient (has to be
computed for all primitives)

 Cell identifier:

 Large primes:

 Hash table size:

University of Freiburg – Computer Science Department – 18

Performance

 Linear in the number of primitives

 Independent of the number of objects

test scenarios

Objects Tetras Vertices Max time
[ms]

100 1000 1200 6

8 4000 1936 15

20 10000 4840 34

2 20514 5898 72

100 50000 24200 174 Pentium 4, 1.8GHz

University of Freiburg – Computer Science Department – 19

Summary – Uniform Grid

 Space uniformly partitioned
into axis-aligned space cells

 Primitives (or their AABBs) are scan-converted
to identify intersected space cells

 Hashed storage of cells for non-uniform distribution

 Simple and memory-efficient

University of Freiburg – Computer Science Department – 20

Summary – Uniform Grid

 Particularly interesting for deformable objects,
n-body environments and self-collision

 Parameters significantly influence the performance

 Performance dependent on the number of primitives

 Performance independent of the number of objects

 Technique works with various types of primitives

University of Freiburg – Computer Science Department – 21

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 22

k-d Tree – 2-d Example

University of Freiburg – Computer Science Department – 23

Collision Query (Range Query)

 Traverse all nodes affected by the intervals of an AABB
 Check all primitives in the leaves for intersection

University of Freiburg – Computer Science Department – 24

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 25

Binary Space Partitioning Tree BSP

 Generalized k-d tree

 Space is recursively subdivided by
means of arbitrarily oriented planes

 Space partitioning into convex cells

 Proposed by [Henry Fuchs et al. 1980]
to solve the visible surface problem

BSP tree

University of Freiburg – Computer Science Department – 26

Collision Detection Example

 BSP trees can be used for the inside /
outside classification of closed polygons

Scene Scene partitioning Solid-leaf

BSP tree

1
2

3

4

1

2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

University of Freiburg – Computer Science Department – 27

Collision Query

 Query point is inside

 Query point is outside

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

University of Freiburg – Computer Science Department – 28

Construction

 Keep the number of nodes small

 Keep the number of levels small

