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Outline

 Introduction

 Uniform grid

 Octree and k-d tree

 BSP tree
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Model Partitioning

(1) Bounding volumes

(3) Collision detection test

(2) Bounding volume tree
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Model vs. Space Partitioning

Model partitioning Space partitioning
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Motivation

 Restrict pairwise object tests to objects 
that are located in the same region of space

 Only objects or object primitives 
in the same region of space can overlap

 Efficient broad-phase approach 
for larger numbers of objects



University of Freiburg – Computer Science Department – 6

Spatial Data Structures

 Space is subdivided into cells

 Cells maintain references to primitives intersecting the cell

 Data structures have different degrees-of-freedom

 Actual space subdivision is adapted to the scene

Uniform grid Quadtree / Octree k-d tree BSP tree
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Basic Idea

 Space is divided into cells

 Object primitives are
placed into cells

 Object primitives in the same 
cell are checked for collision

 Pairs of primitives that do
not share the same cell
are not tested (trivial reject)



University of Freiburg – Computer Science Department – 9

Context

 Collision detection for deformable objects

 Tetrahedral meshes

 Uniform 3D grid

 Non-uniform distribution of object 
primitives and unbounded
simulation domain (Hashing)

 Detection of collisions 
and self-collisions

 Discussion of parameters
NCCR Co-Me

Epidaure, INRIA
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Setup

Infinite uniform grid

Hash function:

H(cell)  hash table index

Hash table

...

Spatial data structure Representation / implementation
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Stage 1

 All vertices are hashed according to their cell

..
.
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Stage 2

 All tetrahedrons are hashed according to 
the cells touched by their bounding box

..
.
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Stage 3

 Vertices and tetrahedrons in the same
hash table entry are tested for intersection
..
.

A)  no collision

B)  collision

C)           self-collision
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Vertex-in-Tetrahedron Test

 Barycentric coordinates more efficient

 They also provide useful collision information

Barycentric coordinates Oriented faces
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Implementation

 Store all vertices in the hash table

 Compute hash table indices for the
bounding boxes of the tetrahedrons

 Do not store the tetrahedrons in the 
hash table, but check for intersection 
with all vertices in the respective entry

 Parameters

 Grid cell size, grid cell shape, hash table size, hash function
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Parameters

Infinite uniform grid

Hash function:

H(cell)  hash table index

Hash table

...

cell sizecell shape hash table size
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Grid Cell Size

 Cell size should be equal to the size of the bounding 
box of an object primitive [Bentley 1977]

test scenario

[Teschner, 
Heidelberger 
et al. 2003]
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Hash Table Size

 Hash collisions reduce the performance

 Larger hash table can reduce hash collisions

test scenario

[Teschner, 
Heidelberger 
et al. 2003]
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Hash Function

 Should avoid hash collisions

 Should be efficient (has to be 
computed for all primitives)

 Cell coordinates:

 Large primes:

 Hash table size: 



University of Freiburg – Computer Science Department – 20

Performance

 Linear in the number of primitives

 Independent of the number of objects

test scenarios

Objects Tetras Vertices Max time 
[ms]

100 1000 1200 6

8 4000 1936 15

20 10000 4840 34

2 20514 5898 72

100 50000 24200 174 Pentium 4, 1.8GHz
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Summary – Uniform Grid

 Space uniformly partitioned 
into axis-aligned space cells

 Primitives (or their AABBs) are scan-converted 
to identify intersected space cells

 Hashed storage of cells for non-uniform distribution

 Simple and efficient
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Summary – Uniform Grid

 Particularly interesting for deformable objects, 
n-body environments and self-collision

 Parameters significantly influence the performance

 Performance dependent on the number of primitives

 Performance independent of the number of objects

 Technique works with various types of primitives
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… Some History

 [Levinthal 1966]

 3D grid (“cubing”)

 Analysis of molecular structures

 Neighborhood search 
to compute atom interaction

 [Rabin 1976]

 3D grid + hashing, finding closest pairs

 [Turk 1989, 1990]

 3D grid + hashing, rigid collision detection

Cyrus Levinthal, MIT
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Octree

 Hierarchical structure

 Space partitioning into 
rectangular, axis-aligned cells

 Octree root node corresponds 
to AABB of an object

 Internal nodes represent 
subdivisions of the AABB

 Leaves represent cells 
which maintain primitive lists
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Octree

 Uniform or non-uniform subdivision

 Adaptive to local distribution of primitives

 Large cells in case of low density of primitives

 Small cells in case of high density

 Dynamic update

 Cells with many primitives can be subdivided

 Cells with less primitives can be merged
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k-d Tree – 2-d Example
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Collision Query (Range Query)

 Traverse all nodes affected by the intervals of an AABB
 Check all primitives     in the leaves for intersection



University of Freiburg – Computer Science Department – 29

Outline

 Introduction

 Uniform grid

 Octree and k-d tree

 BSP tree



University of Freiburg – Computer Science Department – 30

Binary Space Partitioning Tree BSP

 Hierarchical structure 

 Space is subdivided by means of
arbitrarily oriented planes

 Generalized k-d tree

 Space partitioning into convex cells

 Discrete-orientation BSP trees DOBSP
(finite set of plane orientations)

 Proposed by [Henry Fuchs et al. 1980] 
to solve the visible surface problem

BSP tree
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Collision Detection Example

 BSP trees can be used for the inside / 
outside classification of closed polygons

Scene Scene partitioning Solid-leaf

BSP tree
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Collision Query

 Query point is inside

 Query point is outside
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Rendering Example

1

2

3

4

1

2a

3

4

2b

1

3 4

2b 2a

+

+ + --

-

Scene Scene partitioning BSP tree



University of Freiburg – Computer Science Department – 34

BSP Tree for Rendering

 For a given viewpoint
 Render far branch

 Render root (node) polygon

 Render near branch

 Recursively applied to sub-trees

 Back to front rendering

 Example: viewpoint is in 1-
 Rendering of 1+, 1, 1-

 Rule recursively applied to 1+ and 1-

 Viewpoint is in 3+ → rendering of 3, 2b

 Viewpoint is in 4- → rendering of 2a, 4
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Construction

 Keep the number of nodes small

 Keep the number of levels small

 Introduce arbitrary support planes
(especially in case of convex objects, 
where all polygon faces are in the same
half-space with respect to a given face)
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Summary

 Uniform grid

 Octree and k-d tree

 BSP tree
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