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Graphics Hardware for 
2D Collision Detection

 rendering corresponds to placing all object 
primitives into the according cell (pixel) of a 
uniform rectangular 2D grid (frame buffer)

 rendering determines all pixels in a frame buffer 
affected by the object

 at each pixel position, information can be 
processed (color, depth, stencil) 
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Graphics Hardware for 
2D Collision Detection

 [Kenneth Hoff, UNC]

 stencil-buffer for collision detection

 clear stencil buffer

 increment stencil buffer for each rendered object

 intersection for stencil buffer value larger 1

stencil value 1

stencil value 2
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Closed Objects

inside region

entry point

exit point

outside region

 number of entry points equals the number of exit points
 in case of convex objects, one entry point and one exit point
 inside and outside are separated by entry or exit point
 entry point is at a front face
 exit point is at a back face
 front and back faces alternate 
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Collision Detection
with Graphics Hardware

Image
Plane
(xy)

z

z

z

z

z

z

z

Depth
Buffer

(z)

z

 exploit rasterization of object 
primitives for intersection test

 benefit from graphics hardware acceleration
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Collision Detection
with Graphics Hardware

 Idea
 computation of entry and exit points can be 

accelerated with graphics hardware
 computation corresponds to rasterization 

of surface primitives
 all object representations that 

can be rendered are handled
 parallel processing on CPU and GPU

 Challenges
 restricted data structures and functionality

 Drawbacks
 approximate computation of entry and exit points
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Early approaches 

[Shinya, Forgue 1991]
image-space collision detection for
convex objects

[Myszkowski, Okunev, Kunii 1995]
collision detection for concave objects
with limited depth complexity

[Baciu, Wong 1997]
hardware-assisted collision detection for
convex objects
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More approaches 

[Vassilev, Spanlang, Chrysanthou 2001]
image-space collision detection applied to 
cloth simulation and convex avatars

[Hoff, Zaferakis, Lin, Manocha 2001]
proximity tests and penetration
depth computation, 2D

[Lombardo, Cani, Neyret 1999]
intersection of tool with deformable tissue
by rendering the interior of the tool
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Recent approaches 

[Knott, Pai 2003]  
intersection of edges with surfaces 

[Govindaraju, Redon, Lin, Manocha 2003]
object and sub-object pruning based on
occlusion queries 

[Heidelberger, Teschner 2004]
explicit intersection volume and
self-collision detection based on LDIs
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z

= front face
= back face
= query point

2 occluding front faces
1 occluding back face
 collision

1 occluding front faces
1 occluding back face
 no collision

Image-Space Collision Detection
[Knott, Pai 2003]

 render all query objects (e. g. edges) to depth buffer
 count the number f of front faces that occlude the query object
 count the number b of back faces that occlude the query object
 iff f - b == 0 then there is no collision 
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Image-Space Collision Detection

 clear depth buffer, clear stencil buffer
 render query objects to depth buffer
 disable depth update
 render front faces with stencil increment
 if front face is closer than query object, then increment stencil
 depth buffer is not updated
 result: stencil represents number of occluding front faces
 render back faces with stencil decrement
 if back face is closer than query object, then decrement stencil
 depth buffer is not updated
 result: stencil represents diff. of occluding front and back faces
 stencil buffer not equal to zero → collision 
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Image-Space Collision Detection

 works for objects with closed surface

 works for n-body environments

 works for query objects that do not 
overlap in image space

 numerical problems if query object 
is part of an object

 offset in z-direction required

 [Video]
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z
Ab BbBfAf

z
AbBbBfAf

z
Ab BbBfAf

 RECODE – REndered COllision DEtection

 works with pairs of closed convex objects A and B

 one or two rendering passes for A and B

 algorithm estimates overlapping z intervals per pixel

collision collision no collision

Image-Space Collision Detection 
[Baciu 2000]
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First Rendering Pass

 clear depth buffer
 clear stencil buffer
 enable depth update
 render back faces of A with stencil increment
 if nothing has been rendered → stencil=0
 if something has been rendered → stencil=1
 depth buffer contains depth of back faces of A
 disable depth update
 render B with stencil increment 
 if stencil==1 and B occludes back face of A → stencil+=1
 depth buffer is not updated
 stencil-1 = number of faces of B that occlude A
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z

 first pass collision query

 stencil 0  no collision

 stencil 1  no collision
 no fragment of B occludes

back face of A (2 cases)

 stencil 2  collision
 front face of B occludes

back face of A (2 cases)

 stencil 3  second pass
 front and back face of B

occlude back face of A
(3 cases)

z
Ab

z
Ab Bf Bb

z
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z
Ab

Bb

Bb

Bf

Bf

Af

Af

Af

Af

z
AbBbBf

z
AbBbBf

z
AbBbBf

Af

First Rendering Pass
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Af

Af

 render back faces of object B, count occluding faces of A
 corresponds to first pass with A and B permuted
 only 3 cases based on the result of the first rendering pass

 stencil 1  no collision
 no fragment of A occludes

back face of B (1 case)

 stencil 2  collision
 front face of A occludes

back face of B (2 cases)

 done

z
AbBbBf

z
AbBbBf

z
AbBbBf

Af

Second Rendering Pass
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Af

 render front faces of object A, count occluding faces of B
 corresponds to first pass, front faces are rendered instead of back faces
 only 3 cases based on the result of the first rendering pass

 stencil 3  no collision
 front and back face of B

occlude front face of A

 stencil 2  collision
 front face of B occludes

front face of A

 stencil 1  collision
 no fragment of B occludes

front face of A

 done

z
AbBbBf

Af

z
AbBbBf

z
AbBbBf

Af

Second Rendering Pass 
[Myszkowski 1995]
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Image-Space Collision Detection for
Concave Objects [Myszkowski 1995]

 collision detection for pairs of concave objects
A and B with limited depth complexity 
(number of entry / exit points)

 faces have to be sorted with respect to the 
direction of the orthogonal projection (e. g. BSP tree)

 objects are rendered in front-to-back or back-to-front order

 alpha blending is employed: 
colorframebuffer = colorobject +   colorframebuffer

 color of A is zero, color of B is 2k-1, 
k is the number of bits in the frame buffer,  = 0.5
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Image-Space Collision Detection 
for Concave Objects

 example: k = 8 
 color A = 0, color B = 27

 sequence of faces B1 A1 A2 B2 B3 B4 rendered back to front:
 cfb = 000000002

 render B4: cfb = 27+cfb=100000002+0.5000000002=100000002

 render B3: cfb = 100000002 + 0.5  100000002 = 110000002

 render B2: cfb = 100000002 + 0.5  110000002 = 111000002

 render A2: cfb = 000000002 + 0.5  111000002 = 011100002

 render A1: cfb = 000000002 + 0.5  011100002 = 001110002

 render B1: cfb = 100000002 + 0.5  001110002 = 100111002

 resulting bit sequence represents order of faces of A (0) and B (1)
 odd number of adjacent zeros or ones indicates collision
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Image
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01100000
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frame
buffer
(color)

11110000

Image-Space Collision Detection 
for Concave Objects

 example
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Image-Space Collision Detection 
[Heidelberger 2003]

 works with pairs of closed arbitrarily-shaped objects
 three implementations

 n+1 hardware-accelerated rendering passes 
where n is the depth complexity of an object

 n hardware-accelerated rendering passes
 1 software rendering pass

 three collision queries
 intersection volume (based on intersecting z intervals)
 vertex-in-volume test
 self-collision test

 basic idea and implementation for convex objects 
has been proposed by Shinya / Forgue in 1991
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Collision Detection
with Graphics Hardware

Image
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Buffer
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z

 exploit rasterization of object 
primitives for intersection test

 benefit from graphics hardware acceleration
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Layered Depth Image
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Layered Depth
Image

= entry point
= exit point

z

z

 compact, volumetric object representation [Shade et al. 1998]

 represents object as layers of depth values

 stores entry and exit points
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Algorithm consists of 3 stages:

a) Very fast detection of 
trivial “no collision” cases

b) Overlapping area defines 
volume of interest (VoI)
for step 2 & 3

Stage 1: Check for bounding box intersection

Algorithm Overview
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Stage 2: Generate the layered depth images (LDI)

d2 d1d3

d2 d1d3

d2 d1

d2 d1

d2 d1

LDI1

d1

d1

d1

d1

d1

LDI2

Step 3: Perform the collision tests
a) test object primitives of one object against LDI of the other

b) combine both LDI to get overlapping volume

c) self-intersection test

Algorithm Overview
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Algorithm Overview

Stage 1

Volume-of-interest

Stage 2 Stage 3

Collision queryLDI generation

viewing direction a) LDI intersection b) Vertex-in-volume

c) Self-collision
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Algorithm Overview

volume of interest VoI layer 1 layer 2 volume

collision

queries
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Algorithm Overview



University of Freiburg – Computer Science Department – Computer Graphics - 31

Volume of Interest

1. evaluation of trivial rejection test: VoI == Ø  no collision!

2. choice of opposite render directions for LDI generation

possible enlargement of VoI to guarantee valid directions

outside faces are outside the object 

-> guarantees that first intersection point is an entry point

outside
faces
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 object is rendered once for each layer in the LDI

 two separate depth tests per fragment are necessary:

 fragment must be farther than the one in the previous layer (d2)

 fragment must be the nearest of all remaining fragments (d3 & d4)

example:   pass #3

 second depth test is realized using shadow mapping
extended depth-peeling approach [Everitt 2001]

d1 d2 d3 d4
1

2 3
4

LDI Generation on the GPU
Depth Peeling
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Idea:
 for each fragment to be rendered:

check if it is visible from the light source

Algorithm:
 render scene from the light source:

store all distances to the visible (=lit)
fragments in a “shadow map”

 render scene from the camera:
compare the distance z of each
fragment to the light with the
value z* in the shadow map:

Shadow Map (z*)

Frame
Buffer

A

B

Camera

Light

zb>zb*

z

z = z*  fragment is lit

z > z*  fragment is shadowed

Shadow Mapping

za=za*
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Shadow Mapping as Depth Test

 Differences to regular depth test:
 shadow mapping depth test is not tied to camera position

 shadow map (depth buffer) is not writeable during depth test

 shadow mapping does not discard fragments

 Depth test setup for LDI generation:
 fragment must be farther away than fragment 

in previous depth layer → shadow map test

 fragment must be the nearest of all 
remaining fragments → regular depth test
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GPU CPU

LDI #1

read back

z-buffer

clear objectPass #1

z-buffer shadow maptest

copy

clear object

Pass #2

z-buffer shadow maptest

copy

clear object

#pixels 
== 0 !

Pass #n+1

LDI #2

read back
#pixels 

> 0

#pixels 
> 0

… LDI #i - #ncopy …Pass #i - #n

read back

Multipass LDI Generation
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1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

VoI ordered LDI

 multipass LDI generation results in an
ordered LDI representation of the VoI

 requires one rendering pass per depth layer

 requires shadow mapping functionality 

Result of LDI Generation
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 test object primitives of one object against 
LDI of the other object (and vice versa)

 vertex-in-volume test

example:

No collision 

Collision 

d1d2x

d1d2d3 x

d1d2xNo collision 

Collision Detection Test
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 intersect both LDI to get the overlapping volume
 provides an explicit intersection volume
 other boolean operations (union, difference) are also possible 

→ constructive solid geometry (CSG)

LDI Combination

d2 d1d3

d2 d1d3

d2 d1

d2 d1

d2 d1

LDI1

d1

d1

d1

d1

d1

LDI2

d1

d1

d1

d1

d1

d2

d2

d2

d2

d2

LDI12

LDI12 = LDI1  LDI2
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Explicit intersection volume

+

Vertex-in-volume test

+

Collision queries
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Self-collision query

1 2 3 4

1 2 3 4

1 2 3 4

1 2

1 2 3 4

1 2 3 4

1 2

1 2 3 4

VoI LDI

 check for incorrect ordering of front and back faces

 if front and back faces do not alternate → self collision
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Algorithm Summary

(1) Volume of interest (3) Collision detection test

(2) LDI generation

or self-collision

d2 d1d3

d2 d1d3

d2 d1

d2 d1

d2 d1

LDI1

d1

d1

d1

d1

d1

LDI2

d1

d1

d1

d1

d1

d2

d2

d2

d2

d2

LDI12
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 alternative method for LDI generation
 GPU generates unsorted LDI

 fragments are rendered in the same order in each rendering pass
 stencil buffer is used to get n-th value in the n-th pass 

 CPU generates ordered LDI
 depth complexity is known for each fragment 

(how many values are rendered per pixel)

5 3 2 1 4 6

4 1 3 2 2 2

1 2 3 4 5 6

1 2 3 4 2 2

1 2 3 4 5 6

1 2 3 4

VoI unsorted LDI (GPU)

sorted LDI (CPU)

Unordered LDI Generation
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frame buffer

GPU CPU

ldi layer 1

clear

Pass 1

read back

stencil buffer
Test: GREATER  Ref: 1
Fail: INCR   Pass: INCR

depth buffer
Test: DISABLED

render

depth 
complexities

read back

nmax

identify

frame buffer

ldi layer n

clear

read back

stencil buffer
Test: GREATER   Ref: n
Fail: KEEP   Pass: INCR

depth buffer
Test: DISABLED

render

Pass n
(2 ≤ n ≤ nmax)

Unordered LDI Generation
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Limitations

 performance is dependent on:
 depth complexity of objects in volume of interest

 read back delay for simple objects

 rendering speed for complex objects

 requires graphics hardware
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 Motivation
 buffer read-back from GPU 

can be performance bottleneck

 GPU requires multiple passes

 CPU can store fragments directly into LDI

 Simplified software-renderer
 rasterization of triangle meshes

 frustum culling

 face clipping

 orthogonal projection

Ordered LDI Generation on CPU
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Ordered LDI (GPU) Unordered LDI (GPU)

 n+1 passes
 complex setup
 two depth tests
 shadow map
 OpenGL extensions

 n passes
 simple setup
 no depth test
 stencil buffer
 plain OpenGL 1.4

Ordered LDI (CPU)

 1 pass
 simple setup
 no depth test

rasterize

LDI Generation - Summary
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 hand with 4800 faces

 phone with 900 faces

 two LDIs

 intersection volume
for collision detection

 analysis of front / 
back face ordering 
for self-collision

Performance - Intersection Volume
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method collision

min / max

self collision

min / max

overall

min / max

ordered (GPU) 28 / 37 40 / 54 68 / 91

unordered (GPU, CPU) 9 / 12 12 / 18 21 / 30

software (CPU) 3 / 4 5 / 7 8 / 11

3 GHz Pentium 4, GeForce FX Ultra 5800
hand with 4800 faces
phone with 900 faces
measurements in ms

Performance – Intersection Volume
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 santa with 10000 faces

 20000 particles

 one LDI

 test vertices against 
inside regions 
of the LDI

Performance – Vertex-in-Volume
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method 520k faces

100k particles

150k faces

30k particles

50k faces

10k particles

ordered (GPU) 450 160 50

unordered (GPU, CPU) 225 75 25

software (CPU) 400 105 35

3 GHz Pentium 4, GeForce FX Ultra 5800
LDI resolution 64 x 64
measurements in ms

Performance – Vertex-in-Volume
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 mouse with 
15000 faces

 hat with 
1500 faces

 two LDIs

 intersection 
volume for 
collision 
detection

Performance – LDI resolution
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method 32 x32 64 x 64 128 x128

ordered (GPU) 24 26 51

unordered (GPU, CPU) 8 9 17

software (CPU) 2 3 6

3 GHz Pentium 4, GeForce FX Ultra 5800
mouse with 15000 faces
hat with 1500 faces
measurements in ms

Performance – LDI resolution
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3 orthogonal

dilated LDIs

LDI

Applications – Cloth Modeling
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stable collision handling

Real-Time Cloth Simulation
with Collision Handling
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concave transforming object concave deforming object

Real-Time Cloth Simulation
with Collision Handling
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 image-space technique
 detection of collisions and self-collisions
 handling of rigid and deformable closed meshes
 no pre-processing
 CPU: 5000 / 1000 faces at 100 Hz
 GPU: 520000 faces / 100000 particles at 4 Hz
 application to cloth simulation
 limitations

 closed meshes
 accuracy
 collision information for collision response

Summary
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