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Graphics Hardware for 
2D Collision Detection

 rendering corresponds to placing all object 
primitives into the according cell (pixel) of a 
uniform rectangular 2D grid (frame buffer)

 rendering determines all pixels in a frame buffer 
affected by the object

 at each pixel position, information can be 
processed (color, depth, stencil) 
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Graphics Hardware for 
2D Collision Detection

 [Kenneth Hoff, UNC]

 stencil-buffer for collision detection

 clear stencil buffer

 increment stencil buffer for each rendered object

 intersection for stencil buffer value larger 1

stencil value 1

stencil value 2
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Closed Objects

inside region

entry point

exit point

outside region

 number of entry points equals the number of exit points
 in case of convex objects, one entry point and one exit point
 inside and outside are separated by entry or exit point
 entry point is at a front face
 exit point is at a back face
 front and back faces alternate 
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Collision Detection
with Graphics Hardware
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(xy)

z

z

z

z

z
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Depth
Buffer

(z)

z

 exploit rasterization of object 
primitives for intersection test

 benefit from graphics hardware acceleration
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Collision Detection
with Graphics Hardware

 Idea
 computation of entry and exit points can be 

accelerated with graphics hardware
 computation corresponds to rasterization 

of surface primitives
 all object representations that 

can be rendered are handled
 parallel processing on CPU and GPU

 Challenges
 restricted data structures and functionality

 Drawbacks
 approximate computation of entry and exit points
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Early approaches 

[Shinya, Forgue 1991]
image-space collision detection for
convex objects

[Myszkowski, Okunev, Kunii 1995]
collision detection for concave objects
with limited depth complexity

[Baciu, Wong 1997]
hardware-assisted collision detection for
convex objects
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More approaches 

[Vassilev, Spanlang, Chrysanthou 2001]
image-space collision detection applied to 
cloth simulation and convex avatars

[Hoff, Zaferakis, Lin, Manocha 2001]
proximity tests and penetration
depth computation, 2D

[Lombardo, Cani, Neyret 1999]
intersection of tool with deformable tissue
by rendering the interior of the tool
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Recent approaches 

[Knott, Pai 2003]  
intersection of edges with surfaces 

[Govindaraju, Redon, Lin, Manocha 2003]
object and sub-object pruning based on
occlusion queries 

[Heidelberger, Teschner 2004]
explicit intersection volume and
self-collision detection based on LDIs
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z

= front face
= back face
= query point

2 occluding front faces
1 occluding back face
 collision

1 occluding front faces
1 occluding back face
 no collision

Image-Space Collision Detection
[Knott, Pai 2003]

 render all query objects (e. g. edges) to depth buffer
 count the number f of front faces that occlude the query object
 count the number b of back faces that occlude the query object
 iff f - b == 0 then there is no collision 
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Image-Space Collision Detection

 clear depth buffer, clear stencil buffer
 render query objects to depth buffer
 disable depth update
 render front faces with stencil increment
 if front face is closer than query object, then increment stencil
 depth buffer is not updated
 result: stencil represents number of occluding front faces
 render back faces with stencil decrement
 if back face is closer than query object, then decrement stencil
 depth buffer is not updated
 result: stencil represents diff. of occluding front and back faces
 stencil buffer not equal to zero → collision 
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Image-Space Collision Detection

 works for objects with closed surface

 works for n-body environments

 works for query objects that do not 
overlap in image space

 numerical problems if query object 
is part of an object

 offset in z-direction required

 [Video]
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z
Ab BbBfAf

z
AbBbBfAf

z
Ab BbBfAf

 RECODE – REndered COllision DEtection

 works with pairs of closed convex objects A and B

 one or two rendering passes for A and B

 algorithm estimates overlapping z intervals per pixel

collision collision no collision

Image-Space Collision Detection 
[Baciu 2000]
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First Rendering Pass

 clear depth buffer
 clear stencil buffer
 enable depth update
 render back faces of A with stencil increment
 if nothing has been rendered → stencil=0
 if something has been rendered → stencil=1
 depth buffer contains depth of back faces of A
 disable depth update
 render B with stencil increment 
 if stencil==1 and B occludes back face of A → stencil+=1
 depth buffer is not updated
 stencil-1 = number of faces of B that occlude A
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z

 first pass collision query

 stencil 0  no collision

 stencil 1  no collision
 no fragment of B occludes

back face of A (2 cases)

 stencil 2  collision
 front face of B occludes

back face of A (2 cases)

 stencil 3  second pass
 front and back face of B

occlude back face of A
(3 cases)

z
Ab

z
Ab Bf Bb

z
Ab

z
Ab

Bb

Bb

Bf

Bf

Af

Af

Af

Af

z
AbBbBf

z
AbBbBf

z
AbBbBf

Af

First Rendering Pass
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Af

Af

 render back faces of object B, count occluding faces of A
 corresponds to first pass with A and B permuted
 only 3 cases based on the result of the first rendering pass

 stencil 1  no collision
 no fragment of A occludes

back face of B (1 case)

 stencil 2  collision
 front face of A occludes

back face of B (2 cases)

 done

z
AbBbBf

z
AbBbBf

z
AbBbBf

Af

Second Rendering Pass
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Af

 render front faces of object A, count occluding faces of B
 corresponds to first pass, front faces are rendered instead of back faces
 only 3 cases based on the result of the first rendering pass

 stencil 3  no collision
 front and back face of B

occlude front face of A

 stencil 2  collision
 front face of B occludes

front face of A

 stencil 1  collision
 no fragment of B occludes

front face of A

 done

z
AbBbBf

Af

z
AbBbBf

z
AbBbBf

Af

Second Rendering Pass 
[Myszkowski 1995]
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Image-Space Collision Detection for
Concave Objects [Myszkowski 1995]

 collision detection for pairs of concave objects
A and B with limited depth complexity 
(number of entry / exit points)

 faces have to be sorted with respect to the 
direction of the orthogonal projection (e. g. BSP tree)

 objects are rendered in front-to-back or back-to-front order

 alpha blending is employed: 
colorframebuffer = colorobject +   colorframebuffer

 color of A is zero, color of B is 2k-1, 
k is the number of bits in the frame buffer,  = 0.5
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Image-Space Collision Detection 
for Concave Objects

 example: k = 8 
 color A = 0, color B = 27

 sequence of faces B1 A1 A2 B2 B3 B4 rendered back to front:
 cfb = 000000002

 render B4: cfb = 27+cfb=100000002+0.5000000002=100000002

 render B3: cfb = 100000002 + 0.5  100000002 = 110000002

 render B2: cfb = 100000002 + 0.5  110000002 = 111000002

 render A2: cfb = 000000002 + 0.5  111000002 = 011100002

 render A1: cfb = 000000002 + 0.5  011100002 = 001110002

 render B1: cfb = 100000002 + 0.5  001110002 = 100111002

 resulting bit sequence represents order of faces of A (0) and B (1)
 odd number of adjacent zeros or ones indicates collision
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Image
Plane
(xy)

00000000

01100000

01100000

10100000

10100000

10100000

11000000

frame
buffer
(color)

11110000

Image-Space Collision Detection 
for Concave Objects

 example
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Image-Space Collision Detection 
[Heidelberger 2003]

 works with pairs of closed arbitrarily-shaped objects
 three implementations

 n+1 hardware-accelerated rendering passes 
where n is the depth complexity of an object

 n hardware-accelerated rendering passes
 1 software rendering pass

 three collision queries
 intersection volume (based on intersecting z intervals)
 vertex-in-volume test
 self-collision test

 basic idea and implementation for convex objects 
has been proposed by Shinya / Forgue in 1991
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Collision Detection
with Graphics Hardware
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 exploit rasterization of object 
primitives for intersection test

 benefit from graphics hardware acceleration
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Layered Depth Image
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Layered Depth
Image

= entry point
= exit point

z

z

 compact, volumetric object representation [Shade et al. 1998]

 represents object as layers of depth values

 stores entry and exit points
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Algorithm consists of 3 stages:

a) Very fast detection of 
trivial “no collision” cases

b) Overlapping area defines 
volume of interest (VoI)
for step 2 & 3

Stage 1: Check for bounding box intersection

Algorithm Overview
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Stage 2: Generate the layered depth images (LDI)

d2 d1d3

d2 d1d3

d2 d1

d2 d1

d2 d1

LDI1

d1

d1

d1

d1

d1

LDI2

Step 3: Perform the collision tests
a) test object primitives of one object against LDI of the other

b) combine both LDI to get overlapping volume

c) self-intersection test

Algorithm Overview
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Algorithm Overview

Stage 1

Volume-of-interest

Stage 2 Stage 3

Collision queryLDI generation

viewing direction a) LDI intersection b) Vertex-in-volume

c) Self-collision
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Algorithm Overview

volume of interest VoI layer 1 layer 2 volume

collision

queries
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Algorithm Overview
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Volume of Interest

1. evaluation of trivial rejection test: VoI == Ø  no collision!

2. choice of opposite render directions for LDI generation

possible enlargement of VoI to guarantee valid directions

outside faces are outside the object 

-> guarantees that first intersection point is an entry point

outside
faces
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 object is rendered once for each layer in the LDI

 two separate depth tests per fragment are necessary:

 fragment must be farther than the one in the previous layer (d2)

 fragment must be the nearest of all remaining fragments (d3 & d4)

example:   pass #3

 second depth test is realized using shadow mapping
extended depth-peeling approach [Everitt 2001]

d1 d2 d3 d4
1

2 3
4

LDI Generation on the GPU
Depth Peeling



University of Freiburg – Computer Science Department – Computer Graphics - 33

Idea:
 for each fragment to be rendered:

check if it is visible from the light source

Algorithm:
 render scene from the light source:

store all distances to the visible (=lit)
fragments in a “shadow map”

 render scene from the camera:
compare the distance z of each
fragment to the light with the
value z* in the shadow map:

Shadow Map (z*)

Frame
Buffer

A

B

Camera

Light

zb>zb*

z

z = z*  fragment is lit

z > z*  fragment is shadowed

Shadow Mapping

za=za*
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Shadow Mapping as Depth Test

 Differences to regular depth test:
 shadow mapping depth test is not tied to camera position

 shadow map (depth buffer) is not writeable during depth test

 shadow mapping does not discard fragments

 Depth test setup for LDI generation:
 fragment must be farther away than fragment 

in previous depth layer → shadow map test

 fragment must be the nearest of all 
remaining fragments → regular depth test
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GPU CPU

LDI #1

read back

z-buffer

clear objectPass #1

z-buffer shadow maptest

copy

clear object

Pass #2

z-buffer shadow maptest

copy

clear object

#pixels 
== 0 !

Pass #n+1

LDI #2

read back
#pixels 

> 0

#pixels 
> 0

… LDI #i - #ncopy …Pass #i - #n

read back

Multipass LDI Generation
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1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

VoI ordered LDI

 multipass LDI generation results in an
ordered LDI representation of the VoI

 requires one rendering pass per depth layer

 requires shadow mapping functionality 

Result of LDI Generation
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 test object primitives of one object against 
LDI of the other object (and vice versa)

 vertex-in-volume test

example:

No collision 

Collision 

d1d2x

d1d2d3 x

d1d2xNo collision 

Collision Detection Test
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 intersect both LDI to get the overlapping volume
 provides an explicit intersection volume
 other boolean operations (union, difference) are also possible 

→ constructive solid geometry (CSG)

LDI Combination

d2 d1d3

d2 d1d3

d2 d1

d2 d1

d2 d1

LDI1

d1

d1

d1

d1

d1

LDI2

d1

d1

d1

d1

d1

d2

d2

d2

d2

d2

LDI12

LDI12 = LDI1  LDI2
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Explicit intersection volume

+

Vertex-in-volume test

+

Collision queries



University of Freiburg – Computer Science Department – Computer Graphics - 40

Self-collision query

1 2 3 4

1 2 3 4

1 2 3 4

1 2

1 2 3 4

1 2 3 4

1 2

1 2 3 4

VoI LDI

 check for incorrect ordering of front and back faces

 if front and back faces do not alternate → self collision
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Algorithm Summary

(1) Volume of interest (3) Collision detection test

(2) LDI generation

or self-collision

d2 d1d3

d2 d1d3

d2 d1

d2 d1

d2 d1

LDI1

d1

d1

d1

d1

d1

LDI2

d1

d1

d1

d1

d1

d2

d2

d2

d2

d2

LDI12
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 alternative method for LDI generation
 GPU generates unsorted LDI

 fragments are rendered in the same order in each rendering pass
 stencil buffer is used to get n-th value in the n-th pass 

 CPU generates ordered LDI
 depth complexity is known for each fragment 

(how many values are rendered per pixel)

5 3 2 1 4 6

4 1 3 2 2 2

1 2 3 4 5 6

1 2 3 4 2 2

1 2 3 4 5 6

1 2 3 4

VoI unsorted LDI (GPU)

sorted LDI (CPU)

Unordered LDI Generation
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frame buffer

GPU CPU

ldi layer 1

clear

Pass 1

read back

stencil buffer
Test: GREATER  Ref: 1
Fail: INCR   Pass: INCR

depth buffer
Test: DISABLED

render

depth 
complexities

read back

nmax

identify

frame buffer

ldi layer n

clear

read back

stencil buffer
Test: GREATER   Ref: n
Fail: KEEP   Pass: INCR

depth buffer
Test: DISABLED

render

Pass n
(2 ≤ n ≤ nmax)

Unordered LDI Generation
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Limitations

 performance is dependent on:
 depth complexity of objects in volume of interest

 read back delay for simple objects

 rendering speed for complex objects

 requires graphics hardware
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 Motivation
 buffer read-back from GPU 

can be performance bottleneck

 GPU requires multiple passes

 CPU can store fragments directly into LDI

 Simplified software-renderer
 rasterization of triangle meshes

 frustum culling

 face clipping

 orthogonal projection

Ordered LDI Generation on CPU
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Ordered LDI (GPU) Unordered LDI (GPU)

 n+1 passes
 complex setup
 two depth tests
 shadow map
 OpenGL extensions

 n passes
 simple setup
 no depth test
 stencil buffer
 plain OpenGL 1.4

Ordered LDI (CPU)

 1 pass
 simple setup
 no depth test

rasterize

LDI Generation - Summary
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 hand with 4800 faces

 phone with 900 faces

 two LDIs

 intersection volume
for collision detection

 analysis of front / 
back face ordering 
for self-collision

Performance - Intersection Volume
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method collision

min / max

self collision

min / max

overall

min / max

ordered (GPU) 28 / 37 40 / 54 68 / 91

unordered (GPU, CPU) 9 / 12 12 / 18 21 / 30

software (CPU) 3 / 4 5 / 7 8 / 11

3 GHz Pentium 4, GeForce FX Ultra 5800
hand with 4800 faces
phone with 900 faces
measurements in ms

Performance – Intersection Volume
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 santa with 10000 faces

 20000 particles

 one LDI

 test vertices against 
inside regions 
of the LDI

Performance – Vertex-in-Volume
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method 520k faces

100k particles

150k faces

30k particles

50k faces

10k particles

ordered (GPU) 450 160 50

unordered (GPU, CPU) 225 75 25

software (CPU) 400 105 35

3 GHz Pentium 4, GeForce FX Ultra 5800
LDI resolution 64 x 64
measurements in ms

Performance – Vertex-in-Volume
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 mouse with 
15000 faces

 hat with 
1500 faces

 two LDIs

 intersection 
volume for 
collision 
detection

Performance – LDI resolution
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method 32 x32 64 x 64 128 x128

ordered (GPU) 24 26 51

unordered (GPU, CPU) 8 9 17

software (CPU) 2 3 6

3 GHz Pentium 4, GeForce FX Ultra 5800
mouse with 15000 faces
hat with 1500 faces
measurements in ms

Performance – LDI resolution
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3 orthogonal

dilated LDIs

LDI

Applications – Cloth Modeling
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stable collision handling

Real-Time Cloth Simulation
with Collision Handling
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concave transforming object concave deforming object

Real-Time Cloth Simulation
with Collision Handling
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 image-space technique
 detection of collisions and self-collisions
 handling of rigid and deformable closed meshes
 no pre-processing
 CPU: 5000 / 1000 faces at 100 Hz
 GPU: 520000 faces / 100000 particles at 4 Hz
 application to cloth simulation
 limitations

 closed meshes
 accuracy
 collision information for collision response

Summary
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