Simulation in Computer Graphics

1. Positions and velocities of particles over time can be computed from the two governing equations $\boldsymbol{F}=\frac{\mathrm{d} v}{\mathrm{~d} t}$ and $\boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t}$.truefalse
2. $\boldsymbol{F}=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}$ is a second-order ordinary differential equation.true \square false
3. Linear second-order ODEs can be rewritten as a system of two coupled linear ODEs of first order.truefalse
4. Newton's Second Law can be written as $\boldsymbol{F}=\frac{\mathrm{d}}{\mathrm{d} t}(m \boldsymbol{v})$.
\bigcirc truefalse
5. Particle simulations are concerned with the computation of unknown future particle quantities \boldsymbol{x}^{t+h} and \boldsymbol{v}^{t+h} from known current information $\boldsymbol{x}^{t}, \boldsymbol{v}^{t}$ and \boldsymbol{a}^{t}.truefalse
6. The explicit Euler scheme updates positions with $\boldsymbol{x}^{t+h}=\boldsymbol{x}^{t}+h \boldsymbol{v}^{t}$ and velocities with $\boldsymbol{v}^{t+h}=\boldsymbol{v}^{t}+\frac{m}{h} \boldsymbol{a}^{t}$.truefalse
7. If a particle i at time t has position $\boldsymbol{x}_{i}^{t}=\binom{0}{0}$, velocity $\boldsymbol{v}_{i}^{t}=\binom{1}{2}$, acceleration $\boldsymbol{a}_{i}^{t}=\binom{2}{3}$, then the Euler-Cromer scheme computes the position $\boldsymbol{x}_{i}^{t+h}=\binom{10}{16}$, velocity $\boldsymbol{v}_{i}^{t+h}=\binom{5}{8}$ for a timestep of $h=2$.true false
8. The position update $\boldsymbol{x}^{t+h}=\boldsymbol{x}^{t}+h \boldsymbol{v}^{t}$ would be perfectly accurate, if the velocity is constant between t and $t+h$ and equal to \boldsymbol{v}^{t}.
\bigcirc truefalse
9. A numerical integration scheme is stable, if previously introduced discretization errors do not grow within a simulation step.
\bigcirc truefalse
10. In particle simulations, the computation time of an explicit numerical integration scheme is dominated by the computation of particle accelerations.
\bigcirc truefalse
11. Implicit integration schemes often require to solve a linear system.truefalse
12. Implicit Euler is typically more stable and more accurate than explicit Euler.truefalse
13. The error order of the implicit Euler scheme is larger than the error order of the explicit Euler scheme.
○ truefalse
14. The Euler-Cromer scheme combines an explicit Euler update for the velocity with an implicit Euler update for the position.
\bigcirc truefalse
15. $\boldsymbol{x}^{t+h}=\boldsymbol{x}^{t}+h \boldsymbol{v}^{t}+\frac{h^{2}}{2} \boldsymbol{a}^{t}+\frac{h^{3}}{4} \frac{\mathrm{~d}^{3} \boldsymbol{x}^{t}}{\mathrm{~d} t^{3}}+O\left(h^{4}\right)$ is a Taylor approximation of \boldsymbol{x}^{t+h}.true false
16. The Verlet integration scheme updates a particle position with $\boldsymbol{x}^{t+h}=2 \boldsymbol{x}^{t}-\boldsymbol{x}^{t-h}+$ $h^{2} \boldsymbol{a}^{t}$.
O truefalse
17. When I add the two equations $\boldsymbol{x}^{t+h}=\boldsymbol{x}^{t}+h \boldsymbol{v}^{t}+\frac{h^{2}}{2} \boldsymbol{a}^{t}+\frac{h^{3}}{6} \frac{\mathrm{~d}^{3} \boldsymbol{x}^{t}}{\mathrm{~d} t^{3}}$ and $\boldsymbol{x}^{t-h}=\boldsymbol{x}^{t}-h \boldsymbol{v}^{t}+$ $\frac{h^{2}}{2} \boldsymbol{a}^{t}-\frac{h^{3}}{6} \frac{\mathrm{~d}^{3} \boldsymbol{x}^{t}}{\mathrm{~d} t^{3}}$ and solve the resulting equation for \boldsymbol{x}^{t+h}, then I get the Verlet update for the position.
\bigcirc true
false
18. The Verlet integration scheme does not necessarily require the particle velocity to update the particle position.
O truefalse
19. The error order of the Verlet integration scheme is larger than the error order of the explicit Euler scheme.
\bigcirc true
\bigcirc false
20. If the strain of an element i with size L_{i} is defined as $C_{i}\left(\boldsymbol{x}_{i, 1}, \boldsymbol{x}_{i, 2}\right)=\frac{1}{L_{i}}\left(\left|\boldsymbol{x}_{i, 1}-\boldsymbol{x}_{i, 2}\right|-L_{i}\right)$ and if the respective stress is defined as $S_{i}\left(\boldsymbol{x}_{i, 1}, \boldsymbol{x}_{i, 2}\right)=k_{i} C_{i}\left(\boldsymbol{x}_{i, 1}, \boldsymbol{x}_{i, 2}\right)$, then the elastic energy of the element is: $E_{i}\left(\boldsymbol{x}_{i, 1}, \boldsymbol{x}_{i, 2}\right)=\frac{1}{2} k_{i}\left(\frac{1}{L_{i}}\left(\left|\boldsymbol{x}_{i, 1}-\boldsymbol{x}_{i, 2}\right|-L_{i}\right)\right)^{2} L_{i}$.truefalse
21. If the strain of an element i with size V_{i} is $C_{i}\left(\boldsymbol{x}_{i, 1}, \ldots, \boldsymbol{x}_{i, n}\right)$ and the stress is $S_{i}\left(\boldsymbol{x}_{i, 1}, \ldots, \boldsymbol{x}_{i, n}\right)=$ $k_{i} C_{i}\left(\boldsymbol{x}_{i, 1}, \ldots, \boldsymbol{x}_{i, n}\right)$, then the respective elastic forces are computed with
$\boldsymbol{F}_{i, j}\left(\boldsymbol{x}_{i, 1}, \ldots, \boldsymbol{x}_{i, n}\right)=k_{i} V_{i} C_{i}\left(\boldsymbol{x}_{i, 1}, \ldots, \boldsymbol{x}_{i, n}\right) \frac{\partial}{\partial \boldsymbol{x}_{i, j}} C_{i}\left(\boldsymbol{x}_{i, 1}, \ldots, \boldsymbol{x}_{i, n}\right)$.truefalse
22. Elastic forces do not change the linear and the angular momentum of an element.
\bigcirc true
\bigcirc false
23. In a particle fluid, the viscosity acceleration accelerates particles towards the average velocity of adjacent fluid particles.truefalse
24. In a particle fluid, the pressure acceleration $\frac{1}{\rho} \nabla p$ accelerates particles from regions with higher pressure towards regions with lower pressure.truefalse
25. The density at a fluid particle can be computed with SPH as $\rho_{i}=\sum_{j} \rho_{j} W_{i j}$. \bigcirc true \square false
26. The Lagrange form of the Navier-Stokes equation governs the time rate of change of the velocity of a particle: $\frac{\mathrm{d} \boldsymbol{v}_{i}}{\mathrm{~d} t}=-\frac{1}{\rho_{i}} \nabla p_{i}+\nu \nabla^{2} \boldsymbol{v}_{i}+\frac{\boldsymbol{F}_{i}^{\text {other }}}{m_{i}}$.truefalse
27. The gradient of a quantity A_{i} at a particle i can be approximated SPH using $\nabla A_{i}=$ $\sum_{j} \frac{m_{j}}{\rho_{j}} A_{j} \nabla W_{i j}$.
\bigcirc true \bigcirc false
28. A popular way to approximate the pressure acceleration with SPH is $-\frac{1}{\rho_{i}} \nabla p_{i}=$ $-\sum_{j} m_{j}\left(\frac{p_{i}}{\rho_{i}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{i j}$, as this formulation results in forces that preserve the linear and the angular momentum of the particle fluid.
\bigcirc truefalse
29. The equation $p_{i}=\max \left(k\left(\frac{\rho_{i}}{\rho_{0}}-1\right), 0\right)$ is a state equation that allows to compute pressure from a density deviation.
\bigcirc truefalse
30. If the density of a particle is smaller than its rest density, then the pressure of that particle is typically set to zero.true \square false
31. An SPH fluid solver performs the following steps in each simulation step: 1. Neighbor search. 2. Density computation. 3. Pressure computation 4. Computation of all accelerations. 5. Position and velocity update.truefalse
32. In case of a perfect particle sampling, the sum of the SPH kernel values is equal to the size of a particle: $\sum_{j} W_{i j}=V_{i}$.
\bigcirc true \square false
33. In case of a perfect particle sampling, the sum of the SPH kernel gradient values is zero: $\sum_{j} \nabla W_{i j}=\mathbf{0}$.
\bigcirc truefalse
34. In a rigid-body simulation, one position and one orientation are computed per body over time.
\bigcirc truefalse
35. If \boldsymbol{A} is the orientation of a rigid body and $\boldsymbol{\omega}$ is the angular velocity of the rigid body, then the time rate of change of the orientation is: $\frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t}=\boldsymbol{A} \boldsymbol{\omega}$.truefalse
36. The angular momentum of a rigid body is the product of its inertia tensor with its angular velocity.truefalse
37. Torque is the time rate of change of the linear momentum.truefalse
38. If two bounding volumes of two different objects overlap, then the enclosed objects interfere.
\bigcirc true false
39. If two bounding volumes of two different objects do not overlap, then the enclosed objects do not interfere.
\bigcirc truefalse
40. Axis-aligned bounding boxes can be rotated along with an object.true \square false
41. Axis-aligned boxes are a special case of k-DOPs.truefalse
42. OBBs can be rotated along with an object.truefalse
43. The performance of a uniform grid depends on the ratio between the object primitives or elements and the cell size. For an optimal efficiency, the primitives or elements should approximately correspond to the cell size.truefalse
44. Enter the missing entries into the k-d tree.

45. Enter the missing entries into the BSP tree.

