Simulation in Computer Graphics

Exercises

Matthias Teschner

Computer Science Department
University of Freiburg
General Concept

- simulation of a set of particles
 - update particle positions x_t per time step t

- visualization
 - of dynamically changing particle positions
 - of additional properties, e.g. velocities or force

deformable object

fluid

rigid object
Visualization Primitives

- points
 - to illustrate particle positions
 - simple representation, e.g. cube, tetrahedron, or sphere
- line segments
 - to illustrate particle connections, e.g. springs
- triangles
 - to illustrate the simulation domain (triangle mesh)
- tetrahedra
 - to illustrate volumetric elements in deformable objects
Visualization Example
Visualized Simulation

Visualization (main loop)

Object 1
(particles, lines, triangles, tetras)

Object 2
(particles, lines, triangles, tetras)

Object 3
(particles, lines, triangles, tetras)

... visualize particle positions

callback

Simulation

Update of particle positions

Dynamic rigid body simulation

dynamic mass-point simulation

fluid simulation

compute particle positions

Collision Handling

University of Freiburg – Computer Science Department – Computer Graphics - 5
Visualization Tools

- Coin3D bitbucket.org/Coin3D/coin/wiki/Home
- VTK www.vtk.org
- OSG www.openscenegraph.org
- Ogre3D www.ogre3d.org
- ...

Visualization Tools

- **Coin3D**
 - exercises on web page use Coin3D
 - can be difficult to install

- **VTK**
 - sample setting on web page
 - easy to install and to use
 - supported
 - less optimal documentation
 - better performance compared to Coin3D
Coin3D - Example
A First Scene Graph

- Coin3D traverses a graph to render the scene

Node that groups other nodes.

Root

- Camera
 - Node that represents a camera:
 - orthographic camera
 - perspective camera

- Light Source
 - Node that represents a light source:
 - ambient light
 - directional light
 - point light
 - spot light

- Object
 - Node that represents an object:
 - cube
 - sphere
 - text
 - nurbs curve
C/C++ Example

```c
SoSeparator *root = new SoSeparator;
SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
SoDirectionalLight *myLight = new SoDirectionalLight;
SoCone *myCone = new SoCone;

root->addChild (myCamera);
root->addChild (myLight);
root->addChild (myCone);

myCamera->viewAll (root);

SoXtRenderArea *myRenderArea = new SoXtRenderArea;

myRenderArea->setSceneGraph (root);
myRenderArea->show ();
```
Scene Viewer

- left mouse: rotation; middle mouse: translation; left and middle: zoom; right mouse: rendering mode

selection mode
viewing mode
help
reset camera to home
define current camera as home
set camera to view all
define point to zoom in
orthographic/perspective camera

rotation

zoom
Node Types

- shape nodes (geometry) SoCone, SoCube, SoCylinder, SoNurbsSurface, SoSphere, SoText3
- appearance nodes (shading) SoBaseColor, SoMaterial, SoFont, SoDrawStyle
- transform nodes SoTranslation, SoRotation, SoScale, SoRotationXYZ, SoMatrixTransform, SoResetTransformation
- group nodes SoSeparator, SoSwitch
Node Reference Counter

- number of references to a node (parent-child links)

 ![Diagram](image)

 - adding a node as a child to a parent node increments the reference counter of the child node
 - removing a child node from a parent node decrements the reference counter of the child node
 - the reference counter can be manually changed with `ref()` and `unref()`
Node Deletion

- when a node’s reference counter decreases from 1 to 0, the node is deleted by Coin3D
- adding a node to a graph: 0 -> 1
- removing it from the graph: 1 -> 0 -> deletion
- simple, but:
 - removing a node from a graph that you want to keep
 - deleting a node with reference counter 0
 - actions applied to a node increase the reference counter and decrease it afterwards
- to solve or avoid these problems the reference counter can be adjusted with ref() and unref()
Groups and Ordering

- Group nodes save and restore the traversal state

- Transformation is applied to object 1, 2, 3
- Material 1 is applied to o. 1, material 2 is applied to o. 2
- Neither material 1 nor material 2 is applied to object 3
Scene Interaction

- events: mouse and keyboard events
- sensors: notifications for some reasons
Events

- SoMouseButtonEvent (mouse press and release events)
- SoKeyboardEvent (keyboard press and release events)

// Declaration of a callback function
SoEventCallback *myEventCB = new SoEventCallback;
myEventCB->addEventCallback(myKeyPressCB, myUserData);

// Adding the function's node to the scene graph
separator->addChild(myEventCB);

// Implementation of the callback function
void myKeyPressCB(void *userData, SoEventCallback *eventCB)
{
// SoKeyboardEvent
 if (SO_KEY_PRESS_EVENT(event,Q)) exit(0);
}
Sensors

- SoSensor
 - detect changes to time or to nodes
 - incorporate callback functions in alarm cases
- SoAlarmSensor
 - one-time callback
- SoTimeSensor
 - repeat callback at regular intervals
- SoNodeSensor
 - detects node changes or changes to children of group nodes
- SoFieldSensor
 - attached to a field
- SoIdleSensor
 - triggered when there is nothing to do
Visualized Simulation

Visualization (main loop) → callback

Object 1 (particles, lines, triangles, tetras)

Object 2 (particles, lines, triangles, tetras)

Object 3 (particles, lines, triangles, tetras)

Simulation

Update of particle positions

Dynamic rigid body simulation

dynamic mass-point simulation

fluid simulation

Collision Handling

visualize particle positions

compute particle positions