TamiFlu

Stefan Band

Computer Science Department
University of Freiburg
What is TamiFlu?

- 2D Fluid Simulation Framework
 - Written in C# / .NET 4.7.1
 - Focus on Exchangeability

- Prerequisites
 - C# Compiler, e.g. Microsoft Visual Studio 2017
 https://www.visualstudio.com
Fluid particles: 3400
Boundary particles: 280
Time: 0.204700 s
Time step: 0.00047156489 s
PDE solver converged 74x
PPE iterations: 9
Error: 1.113054 %

Computation time for advection: 0.0726 ms
Computation time for simulation: 21.0909 ms
Computation time for searching neighbors: 0.2697 ms
Indicators: 0.1833 ms
Sorting and reordering particles: 0.6466 ms
Build grid: 4.3073 ms
Query grid: 1.0753 ms
Computation time for volumes: 0.4263 ms
Computation time for external accelerations: 0.6509 ms
Computation time for calling the IFP: 14.8072 ms.
Simple SPH Fluid Solver

for all particle i do
 find neighbors j
for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute ρ_i from ρ_i
for all particle i do
 $a_i^{\text{pressure}} = -\frac{1}{\rho_i} \nabla p_i$
 $a_i^{\text{viscosity}} = \nu \nabla^2 v_i$
 $a_i^{\text{other}} = g$
 $a_i(t) = a_i^{\text{pressure}} + a_i^{\text{viscosity}} + a_i^{\text{other}}$
for all particle i do
 $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
Simple SPH Fluid Solver with TamiFlu

for all particle i do
 find neighbors j

for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute ρ_i from ρ_i

for all particle i do
 $a_{i,\text{pressure}} = -\frac{1}{\rho_i} \nabla p_i$
 $a_{i,\text{viscosity}} = \nu \nabla^2 v_i$
 $a_{i,\text{other}} = g$
 $a_i(t) = a_{i,\text{pressure}} + a_{i,\text{viscosity}} + a_{i,\text{other}}$

for all particle i do
 $v_i(t+\Delta t) = v_i(t) + \Delta t a_i(t)$
 $x_i(t+\Delta t) = x_i(t) + \Delta t v_i(t+\Delta t)$
for all particle i do
 find neighbors j

for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute ρ_i from ρ_i

for all particle i do
 $a_i^{\text{pressure}} = -\frac{1}{\rho_i} \nabla p_i$
 $a_i^{\text{viscosity}} = \nu \nabla^2 v_i$
 $a_i^{\text{other}} = g$
 $a_i(t) = a_i^{\text{pressure}} + a_i^{\text{viscosity}} + a_i^{\text{other}}$

for all particle i do
 $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
Simple SPH Fluid Solver with TamiFlu

for all particle i do
 find neighbors j

for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute ρ_i from ρ_i

for all particle i do
 \[a_i^{\text{pressure}} = -\frac{1}{\rho_i} \nabla p_i\]
 \[a_i^{\text{viscosity}} = \nu \nabla^2 v_i\]
 \[a_i^{\text{other}} = g\]
 \[a_i(t) = a_i^{\text{pressure}} + a_i^{\text{viscosity}} + a_i^{\text{other}}\]

for all particle i do
 \[v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)\]
 \[x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)\]
Simple SPH Fluid Solver with TamiFlu

for all particle i do
 find neighbors j

for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute ρ_i from ρ_i

for all particle i do
 $a_i^{\text{pressure}} = -\frac{1}{\rho_i} \nabla p_i$
 $a_i^{\text{viscosity}} = \nu \nabla^2 v_i$
 $a_i^{\text{other}} = g$
 $a_i(t) = a_i^{\text{pressure}} + a_i^{\text{viscosity}} + a_i^{\text{other}}$

for all particle i do
 $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
Simple SPH Fluid Solver with TamiFlu

for all particle i do
 find neighbors j

for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 compute ρ_i from ρ_i

for all particle i do
 $a_{i, \text{pressure}} = -\frac{1}{\rho_i} \nabla p_i$
 $a_{i, \text{viscosity}} = \nu \nabla^2 v_i$
 $a_{i, \text{other}} = g$
 $a_i(t) = a_{i, \text{pressure}} + a_{i, \text{viscosity}} + a_{i, \text{other}}$

for all particle i do
 $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
Simple SPH Fluid Solver with TamiFlu

IParticleNeighborhood.SearchNeighbors()

Advection

Compute Density

IStateEquation.ComputePressure()

IPressureForce.ApplyToFluidParticles()
IViscousForce.ApplyToFluidParticles()
IExternalForce.ApplyToFluidParticles()
Interfaces in TamiFlu

- IParticleContext
- IFluidSolver
- IExternalForce, IPressureForce, IViscousForce, ISurfaceTensionForce
- IKernel
- IStateEquation
- IParticleNeighborhood, INeighborSet
- ITimeStep
- ...

06.12.2017
Stefan Band - TamiFlu
Tami Flu

- Demo